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ANALYTICAL SIGNATURES AND PROPER ACTIONS

NOÉ BÁRCENAS AND QUITZEH MORALES MELÉNDEZ

Abstract. In this short note we compare Mishchenko’s definition of noncom-
mutative signature for a manifold with a proper G-action of a discrete, count-
able group G with the (more analytical) counter part defined by Higson and
Roe in the series of articles ”Mapping Surgery to analysis”. A generalization
of the bordism invariance of the coarse index is also adressed.

1. Introduction

There are different notions of non-commutative signatures that can be applied
to oriented proper cocompact G-manifolds for a discrete group G. Higson and Roe
studied the relation between a signature of C∗-algebras, an analytic signature and
the coarse index of the signature operator, they also show that these signatures are
bordism and homotopy invariants.

For these definitions, they consider two types of so-called Hilbert-Poincaré com-
plexes: algebraic complexes of finitely generated projective modules over a C∗-
algebra C and analytically controlled complexes of Hilbert spaces. Both kind of
complexes are required to satisfy suitable versions of Poincaré Duality. The alge-
braic signature has values in the K-theoryK∗(C) of the algebra C, and the analytic
signature has values in the Mitchener K-theory of a suitable C∗-category.

All these signatures are defined for the case of a compact smooth manifold X and
the authors show that the analytic signature coincides with the K-theoretic index
of the signature operator defined on the L2-completion of the De Rham complex of
X . In this case, it is proven that Mitchener K-theory coincides with the K-theory
K∗(Cr(G)) of the reduced C∗-algebra of the group G.

Their C∗-algebra signature is defined for finitely generated projective Hilbert-
Poincaré modules over the algebra C0(X) of continuous functions vanishing at
infinity. In the case of a smooth manifold X̃ with free co-compact action of a
discrete group G their definition makes no sense if the quotient X = X̃/G is not
compact, because the complexes considered are not finitely generated over this
algebra. The analytic signature does make sense and the proof of its coincidence
with the index of the signature operator generalizes to this context.

On the other hand, Mishchenko defined a signature for finitely generated pro-
jective algebraic Hilbert-Poincaré complexes over the reduced C∗-algebra C∗

r (G) of
the group G. This can be applied to a proper co-compact smooth G-manifold M .
The analytic signature of Higson and Roe also makes sense in this context for the
L2-completion of the De Rham complex.

In this paper we show that, with slight modifications to the notion of algebraic
Hilbert-Poincaré complex, the C∗-algebra signature defined by Higson and Roe co-
incides in even dimension with that of Mishchenko. A consequence of this is another
proof of the homotopy and bordism invariance of the signature of Mishchenko. The
analytic version of the signature can be applied in this context to triangulated
bounded isotropy proper G-manifolds of even dimension. In this case, the coinci-
dence of the analytic signature with the coarse index of the signature operator is
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2 NOÉ BÁRCENAS AND QUITZEH MORALES MELÉNDEZ

a consequence of the results proven by Higson and Roe. Also, another version of
bordism invariance due to Wulff is considered in this context. In the last section,
we syntetize the relations between the signatures considered.
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search grant ”Geometŕıa no conmutativa, Aplicación de Baum-Connes y Topoloǵıa
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3. Algebraic Hilbert-Poincaré complexes and their signature

In [9] a signature for a Hilbert-Poincaré complex was defined. This definition is
as follows.

Let C be a C∗-algebra. Recall that an n-dimensional Hilbert-Poincaré complex
is a triple (E, b, S) where (E, b) is an n-dimensional chain complex

(3.1) E0 E1
b1

!! · · ·
b2

!! En−1
!! En

bn

!!

of finitely generated projective Hilbert modules over a C∗-algebra C, S : E → E is
a self-adjoint operator such that

(i) Sk : En−k → Ek, where Sk = S|En−k
,

(ii) bkSk + Sk−1b∗n−k+1 = 0 and
(iii) S induces an isomorphism from the homology of the dual complex (E, b∗)

to the homology of the complex (E, b).

The second condition means that S : (E,−b∗) → (E, b) is a chain map.
We recall the following definition from [1, Def.2.2, p.280 ]

Definition 3.2. The mapping cone of a chain map A : (E′, b′) → (E, b) is the
complex

(3.3) E′′
0 E′′

1b1

!! · · ·!! E′′
nbn

!! E′′
n+1bn+1

!!

where E′′

j = E′

j−1 ⊕ Ej and differential b′′ : E′′ → E′′ defined by

(3.4) b′′j =

(

−b′j−1 0
Aj−1 bj

)

Using the language and notations in [1], the definitions of the signature are as
follows.

Definition 3.5. (Mishchenko, [9, sec.3]). Let (E, b, S) be a Hilbert-Poincaré com-
plex of Hilbert C-modules (with S self-adjoint and bS+Sb∗ = 0) and let (E⊕E, bS)
the mapping cone of S. Then, the signature of (E, b, S) is the formal difference
[Q+] − [Q−] in K0(C) of the positive and negative projection of the restriction of
the map BS to the +1 eigenspace of the symmetry which exchanges the two copies
of E in E ⊕ E.

Remark 3.6. In the construction of Mishchenko [9] the summands in the mapping
cone are interchanged and this gives a different formula for the operator: BS =
TbS + bST , where T is the symmetry in [9, p.14]. Both constructions give the same
operator as a result, and this operator restricts to the operator Gev = b + b∗ + S
on the +1 eigenspace of the symmetry which exchanges the two copies of E in
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the construction of the mapping cone presented here and borrowed from [1]. More

precisely, according to definition 3.5, one has bS =

(

b 0
S b∗

)

and

BS =

(

b+ b∗ S
S b+ b∗

)

Then one has
(

b+ b∗ S
S b+ b∗

)(

v
v

)

=

(

(b + b∗ + S)v
(b + b∗ + S)v

)

.

But the space Aev =

{(

v
v

)

| v ∈ E

}

is the +1 eigenspace of the symmetry
(

0 1
1 0

)

interchanging the two summands in A = E⊕E, and BS commutes with

this symmetry. This eigenspace identifies with E and the restriction of BS to Aev

identifies with the operator Gev = b + b∗ + S

Definition 3.7. (Higson-Roe). Let (E, b, S) be an even dimensional Hilbert-
Poincaré complex of Hilbert C-modules. The signature of (E, b, S) is the formal
difference [P+]− [P−] of the positive projections of B + S and B − S respectively,
where B = b+ b∗.

Proposition 3.8. Definitions 3.5 and 3.7 coincide.

Proof. Definition (3.5) is just the index in K0(C) of the restriction Gev of the
operator BS to the +1 eigenspace Aev of the symmetry which exchanges the two
copies of E in E ⊕ E. In other words, this is the index of the operator Gev in
K0(C). This index comes from a decomposition of the space Aev = A+

ev ⊕A−
ev with

associated projections Q+ and Q− respectively.
On the other hand, definition 3.7 associates the positive projections P+ and P−

of the restrictions B + S and B − S (respectively) of the operator BS to the +1
and −1 eigenspaces Aev and Aodd (respectively) of the symmetry interchanging the
two copies of E. But the spaces Aev and Aodd are isomorphic by the map T in [9,
p. 14] and the decomposition Aev = A+

ev ⊕A−
ev induces a similar decomposition of

Aodd = T (A+
ev) ⊕ T (A−

ev) whose corresponding projections have opposite signs in
K-theory. !

Remark 3.9. Higson-Roe definition of the index while more elaborated is more
suitable for the aim of comparison with the index of the signature operator on the
de Rham complex. Mishchenko’s definition is a more straightforward generalization
of the signature of an algebraic Poincaré complex to the context of C∗-algebras.

4. Analytically controlled Hilbert-Poincaré complexes over
C∗-categories and their signature

Here we recall the definition of an analytically controlled Hilbert-Poincaré com-
plex, its signature and other relevant constructions from [1].

Consider a triple (H, b, S), where (H, b) is an n-dimensional chain complex

(4.1) H0 H1
b1

!! · · ·
b2

!! Hn−1
!! Hn

bn

!!

of Hilbert spaces, the operator b is an unbounded, closed operator such that b ◦ b is
defined an equal to zero, i.e. Image(b) ⊂ Domain(b), b2 = 0. The map S : H → H
is an everywhere defined self-adjoint operator such that

(i) Sk : Hn−k → Hk, where Sk = S|Hn−k
;

(ii) S : (H,−b∗) → (H, b) is a chain map, i.e. S(Domain(b∗)) ⊂ Domain(b)
and (bS + Sb∗)v = 0 for every v ∈ Domain(b∗);
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(iii) S induces an isomorphism from the homology of the dual complex (H, b∗)
to the homology of the complex (H, b).

Such a triple is called an analytic Hilbert-Poincaré complex.

Definition 4.2. A C∗-categoryA is a subcategory of all Hilbert spaces and bounded
linear maps, i.e. an additive subcategory such that the morphisms setsHomA(H1, H2)
are Banach subspaces of the set Hom(H1, H2) of bounded linear operators from
the Hilbert space H1 to the Hilbert space H2.

Definition 4.3. A C∗-category ideal J of the C∗-category A is a C∗-subcategory
possibly without identity morphisms such that any composition of a morphism in
A with a morphism in J is a moprhism in J.

Remark 4.4. In the case of a C∗-category with a single object, this definition of
ideal coincides with that of a (bilateral) ideal of a C∗-algebra of bounded operators
on a fixed Hilbert space. In all of the following constructions, we will fix this Hilbert
space.

Definition 4.5. An unbounded, self-adjoint Hilbert space operator D : H → H is
said to be analytically controlled over the pair (A, J) if

(i) H is an object of J,
(ii) the operators (D ± iI)−1 are morphisms of J, and
(iii) the operator D(1 +D2)

1
2 is a morphism of A.

This definition means that f(D) is a morphism of J for every f ∈ C0(R) and
f(D) is a morphism of A for every f ∈ C0[−∞,∞].

Definition 4.6. A complex (H, b) of Hilbert spaces is said to be analytically con-
trolled over (A, J) if the self-adjoint operator B = b + b∗ is analytically controlled
over (A, J) according to definition 4.5.

Definition 4.7. An analytic Hilbert-Poincaré complex (H, b, S) is said to be ana-
lytically controlled over (A, J) if the complex (H, b) is analytically controlled over
(A, J) in the sense of the previous definition, i.e. if B = b + b∗ is analytically
controlled, and the duality operator T is a morphism in A.

It is shown in [1, lemma 5.8 and the discussion on p.291] that for a Hilbert-
Poincaré complex analytically controlled over (A, J) the difference P+ − P− of the
positive projections of the operators B + S = b + b∗ + S and B − S = b + b∗ − S
belongs to the ideal J of A, where A is the C∗-algebra of A-endomorphisms of
the space H and J is the C∗-algebra of J-endomorphisms of the same space. This
means that the formal difference [P+] − [P−] is an element of the group Kn(J).
There is a natural map Kn(J) → Kn(J) so there is a class in Kn(J) determined by
the difference [P+]− [P−].

Definition 4.8. Let (H, b, S) be a Hilbert-Poincaré complex analytically controlled
over (A, J). Its analytical signature is the class determined by the formal difference
[P+]− [P−] in Kn(J).

5. Signatures of a G-manifold

In this section we modify some the notions in [2] to extend the main results there
to include proper, not necessarily free actions. Namely, we extend the definitions
of the control categories. Also, we take into account the additional structure on
the complex Cl2

∗
(M) of a co-compact G-manifold M needed to make it an algebraic

Hilbert-Poincaré complex over the reduced C∗-algebra C∗
r (G). This complex also

is interpreted by Higson and Roe as an analytically controlled Hilbert-Poincaré
complex and, therefore, it has two signatures. The relation between this signatures
is addressed.
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5.1. The algebraic signature of a triangulated smooth G-manifold. In [4],
[8] it is shown that a smooth manifold M with proper action of a discrete group
G admits G-invariant triangulations. They also show the uniqueness of this piece-
wise linear structure up to barycentric subdivision. In this case one shall choose a
triangulation such that every simplex is either fixed point-wise or permuted by the
action.

Following [2, p.306-310] we denote by C∗(M) the space of finitely supported
chains on M with complex coefficients, then for each p the complex vector space
Cp(M) has a basis comprised of the p-simplices. Define an inner product on Cp(M)
such that this basis is orthonormal. The completion of this space is denoted by
Cl2

p (M), in other words, this is the Hilbert space of square summable p-chains on

M . The differentials ∂p : Cp(M) → Cp−1(M) extend to operators bp : Cl2

p (M) →

Cl2

p−1(M).
The operators bp are bounded if the number of simplices in the triangulated

space M with a common boundary is bounded, and this assumption can in turn by
reduced to requiring that the number of simplices containing a point in the space
M is bounded. Such a space M is called of bounded geometry.

Also, the adjoint operators b∗p : Cl2

p−1(M) → Cl2

p (M) identify with the extension

of the co-boundary maps. This makes (Cl2

∗ (M), b) a complex of Hilbert spaces.
Denote by C0(M) the algebra of continuous functions vanishing at infinity. De-

fine a representation of C0(M) on Cl2

∗ (M) as follows: for every f ∈ C0(M) and
chain c =

∑

σ cσ[σ],

f · c =
∑

σ

f(bσ)cσ[σ],

where bσ is the barycenter of the simplex σ. With this and the bounded geometry as-
sumption, one might interpret (Cl2

∗ (M), b) as a complex of Hilbert C0(M)-modules,
but this spaces are not in general finitely generated over this algebra.

On the other hand, as the action of M × G → M is simplicial, the complex
C∗(M) has a natural action of this group defined by the formula

c · g =
∑

σ

cσ[σ]g =
∑

σ

cσ[σg],

for g ∈ G. The action is simplicial, so it commutes with the boundary map. As
the action either fixes simplices or permutes them, this action is by unitaries, and
it extends to a representation of the reduced C∗-algebra C∗

r (G) of the group G.

This means that (Cl2

∗ (M), b) is a complex of C∗
r (G)-modules. If the quotient M/G

is compact, then the modules Cl2

p (M) are finitely generated: one may assume that
there is a finite number of simplices in the triangulation of the compact quotient
X = M/G induced by the map M → M/G, and this means that there is a finite
number of G-orbits of simplices in M .

In order to analyze Poincaré duality in this context one shall first give some
explicit expression of the action of G on cochains. If u : Cp(M) → C a p-cochain,
this is defined by the rule

(u · g)[σ] = u([σg−1]),

for σ ∈ Cp(M).
The Poincaré duality homomorphism of an oriented, possibly non-compact man-

ifold M is given by the intersection [M ]∩u of the fundamental class of the manifold
with a finitely supported cochain u. More precisely, let u : Cn−p(M) → C a finitely
supported (n− p)-cochain and [M ] =

∑

σ(−1)ϵ(σ)[σ] the fundamental class, where
ϵ(σ) denotes the orientation of the simplex σ induced by the orientation of the man-
ifold M , and the sum runs over all n-simplices in the triangulation of M . Then,
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the Poincaré duality homomorphism Tp : Cn−p(M) → Cp(M) is defined by the
formula

Tp(u) = [M ] ∩ u =
∑

σ=[v0···vn]

(−1)ϵ(σ)u([v0 · · · vn−p])[vn−p · · · vn].

This map is G-equivariant, i.e. satisfies the identity

Tp(u · g) = (Tp(u)) · g.

Indeed,

(Tp(u)) · g =

⎛

⎝

∑

σ=[v0···vn]

(−1)ϵ(σ)u([v0 · · · vn−p])[vn−p · · · vn]

⎞

⎠ · g =

=
∑

σ=[v0···vn]

(−1)ϵ(σ)u([v0 · · · vn−p])[vn−p · · · vn]g =

=
∑

σ=[v0···vn]

(−1)ϵ(σ)u([v0 · · · vn−p]g
−1g)[vn−p · · · vn]g =

=
∑

σ=[v0···vn]

(−1)ϵ(σ)(u · g)[v0 · · · vn−p]g[vn−p · · · vn]g =

=
∑

σg=[v0···vn]g

(−1)ϵ(σ)(u · g)[v0 · · · vn−p][vn−p · · · vn] =

= Tp(u · g).

where in the last step one must require that g preserves orientation. The equivariant
map T : C∗(M) → C∗p(M) satisfies the classic Poincaré duality identities and

extends to a G-linear map T : Cl2

∗
(M) → Cl2

∗
(M). Then, if the dimension of M is

even, the operator S : Cl2

∗
(M) → Cl2

∗
(M) defined by the rule

Sp = ip(p−1)Tp : Cl2

n−p(M) → Cl2

p (M)

satisfies the identities

(i) S is self-adjoint,
(ii) bS + Sb∗ = 0 and
(iii) S induces an isomorphism from the homology of the dual complex (C∗(M), b∗)

to the homology of the complex (C∗(M), b).

Therefore, (C∗(M), b, S) is an algebraic Hilbert-Poincaré complex over C∗
r (G) and

has algebraic signature in K0(C∗
r (G)) as in definitions 3.5 or 3.7.

With this structure, one obtains another proof of the following:

Proposition 5.1. The signature of Mishchenko is a homotopy invariant.

Proof. This is theorem 4.3 of [1] applied to the signature defined there, but using the
algebraic Hilbert-Poincaré complex we have just defined. These signatures coincide
by proposition 3.8. !

Remark 5.2. The construction of this Hilbert-Poincaré complex has been pre-
sented by Mishchenko in several conference talks before 2010, so the authors claim
no originality. We refer to [9, sec.3] and check that this complex satisfies the defi-
nition given there.
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5.2. The analytic signatures of a smooth G-manifold. Here we generalize
the C∗-categories considered in [2] and reinterpret the complex (C∗(M), b, S) as an
equivariant analytically controlled Hilbert-Poincaré complex. Then we show that
the results about invariance of the analytic signature can be applied to bounded
geometry spaces with bounded isotropy action, and that this is the case for proper
spaces with bounded geometry quotient.

Definition 5.3. Let M be a proper metric space. An M -module H is a separable
Hilbert space equipped with a non-degenerate representation of the C∗-algebra
C0(M) of continuous, complex-valued functions on M vanishing at infinity.

Definition 5.4. Let G a finitely generated discrete group. A G-presented space X
is a proper geodesic metric space presented as the quotient X = M/G of a proper
geodesic metric space M by an isometric proper action µ : G × M → M of the
group G. The pair (M,µ) is called a G-presentation of X .

For fixed discrete group G and space X , the presentations of X together with
equivariant maps form a category. We avoid the action in the notation and say
that M is a G-presentation of X . We shall assume in the following that all such
presentations have an invariant open set where the action of the group G is free.

Definition 5.5. An equivariant G-X-module is an M -module H , where M is a
G-presentation of X equipped with a compatible unitary representation of G.

Given a locally compact, separable and metrizable space, together with a non-
degenerate representation on the Hilbert space H , that is, a nondegenerate contin-
uous ∗-homomorphism

ρ : C0(X) → B(H),

we define the suppport of ν ∈ H to be the complement in X of the union of all open
subsets U ⊂ X such that ρ(f)(ν) = 0 for all f ∈ C0(U). An operator T ∈ B(H)
is locally compact on X if fT and Tf are compact operators for all functions
f ∈ C0(X).

Definition 5.6. The support of an operator T ∈ B(H), denoted by Supp(T ), is
the complement in X ×X of the union of all open subsets U × V ⊂ X ×X such
that ρ(f)Tρ(g) = 0 for all f ∈ C0(U) and g ∈ C0(V ). More generally , if C0(X)
and C0(Y ) are represented no degnerately on Hilbert spaces HX and HY , then the
support of a bounded operator T : HX → HY is the complement in Y × X of
the union of all open subsets U × V ⊂ Y ×X such that ρY (f)TρX(g) = 0 for all
f ∈ C0(U) and g ∈ C0(V ).

Definition 5.7. LetX be a locally compact separable and metrizable space, proper
in the sense of metric geometry, meaning that closed balls are compact. Let ρ :
C0(X) → B(H) be a nondegenerate representation on the Hilbert space X .

An operator T ∈ B(H) is boundedly controlled if the support Supp(T ) is at
bounded distance of the diagonal in X ×X , that means

sup
y∈Supp(T ),x∈∆(X)

{(dX×X(y, x)} < ∞.

An operator T is locally compact onX if fT and Tf are compact for all functions
f ∈ C0(X).

Given an operator T ∈ B(H), we define its propagation Prop(T ), to be the
following extended real number:

Prop(T ) = sup{dX×X(d(x, y) | x, y ∈ Supp(T )},

and will say that an operator is of finite propagation if this number is finite.
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Definition 5.8. Let M be an equivariant G-X-module. The category A(G,M) =
A(X,G,M) is the category where the objects are equivariant G-X-modules for
a fixed presentation M , and the morphisms are norm limits of G-equivariant,
bounded, finite propagation operators between G-X-modules. The ideal C(G,M) =
C(X,G,M) is the category with the same objects as A(G,M), and morphisms given
by norm limits of G-equivariant, bounded, compactly supported operators.

The category A(G,M) and its ideal C(G,M), are defined in an analogous way
to the categories A(X) and C(X), compare [2, p. 304].

Definition 5.9. Let X be a proper (both in the sense of group actions and metric
geometry), locally compact and metrizable G-space. D : H → H be a bounded
selfadjoint operator . We will say that T is analytically controlled if it is controlled
over (A(X,G,M),C(X,G,M)) in the sense of definition 4.5.

We will now include for the sake of completness the following notion of geomet-
rically controlled operator, which will be relevant for the comparison with Hilbert-
Poincaré complexes (see Def. 5.3 and 5.5 in [1] for more details on geometric
control):

Definition 5.10. Let X be a geodesic, proper space (in the sense of metric geom-
etry, meaning that closed balls are compact). A complex based vector space V is
called geometrically controlled over X if it is provided with a basis B ⊂ V , and
a function c : V → X with the following property: for every r > 0, there is an
N < ∞ such that if S ⊂ X has diameter less than R, then c−1(S) has cardinality
less than N .

A linear transformation T : V → W between geometrically controlled spaces is
geometrically controlled if

• The matrix coefficients with respect to the basis are uniformly bounded.
• There exists some C > 0 such that the (v, w)-matrix coefficient is zero

whenever d(c(v), c(w)) > C.

For X compact, one can now proof the analogous of lemma 2.12 in [2]:

Lemma 5.11 (2.12 in [2]). The C∗-algebra of endomorphisms of a non-trivial object
in C(X,G,M) is Morita equivalent to C∗

r (G) and, therefore, their K-theories are
isomorphic.

Proof. Actually, the arguments for its proof in [13] are given for a proper cocompact
action of G. !

Let M be a simplicial complex, and let G × M −→ M be a proper simplicial
action of a discrete group G. Assume that the quotient M/G is compact. Let FM

the family generated by the (finite) subgroups of G having non empty fixed point
set in M , i.e.

FM = {H < G |MH ̸= ∅},

where
MH = {x ∈ M |hx = x, h ∈ H}.

Definition 5.12. The action G ×M −→ M is said to be of bounded isotropy if
the order of the elements in FM is uniformly bounded, i.e. there is a constant cM
such that |H | < cM for every H ∈ FM .

Lemma 5.13. If the quotient X = M/G is of bounded geometry and the action
G×M −→ M is of bounded isotropy, then M is of bounded geometry.

Proof. Take a point x ∈ M and let S(x) the set of simplices containing x. Denote
by p : M −→ M/G the projection on the quotient. Then p(S(x)) = S(p(x)) and,
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therefore, #S(x) " #S(p(x)) · cM " N · cM , where N is the bound on the number
of simplices containing a point in M/G. !

Lemma 5.14. A proper co-compact space M , with action G × M −→ M of a
discrete group G is of bounded isotropy.

Proof. Choose finite family (Ui, Gi), i = 1, . . . , N ′ such that Ui ⊂ M are open
subsets and Gi < G are finite subgroups such that, if a point x ∈ gUi for some
g ∈ G, then one has that Gx < gGig−1. Therefore β = maxi |Gi| is a bound on the
orders of isotropy groups of points in the space M . !

We will not discuss the functorial properties of the C∗-alebras associated to
coarse structures of a proper metric space, called in the literature “morphism cov-
ering a coarse map”. However, we will need a restriction map for the inclusion of a
boundary component into a a bordism satisfying some additional assumptions, see
the coments preceeding section 6.

Definition 5.15. Let X be a proper space and M a G-presentation of X . A
Hilbert-Poincaré complex is equivariantly analytically controlled if it is analyt-
ically controlled over (A(X,G,M),C(X,G,M)), i.e. the modules in the com-
plex are objects of these categories, the operator B = b + b∗ is controlled over
(A(X,G,M),C(X,G,M)) and the duality operator S is a morphism in the cate-
gory A(X,G,M).

In the following, by controlled in the case of a complex of Hilbert modules we
mean equivariantly analytically controlled and in the case of an operator we mean
controlled over (A(X,G,M),C(X,G,M)).

Theorem 5.16. If the quotient X = M/G is of bounded geometry and the action
G×M −→ M is of bounded isotropy and orientation preserving, then its Higson-Roe
non-commutative signature is a homotopy and bordism invariant in the controlled
category.

Proof. As M is of bounded geometry, its simplicial chain and cochain complexes
are geometrically controlled. The action either permutes or fixes simplices and is
therefore unitary, and the fundamental cycle of such a triangulation is invariant. By
theorem 3.14 in [2, p.309] geometric control implies analytic control. The comment
before section 3.2 on [2, p.310] ensure that this is true also in the equivariant setting.

This means that the l2-chain complex Cl2

∗ (M) of M is an example of an analytically
controlled Hilbert-Poincare complex.

In the case of bordism invariance, one shall assume that one has a triangulated
bordism such that the simplices in the boundary coincide with the given triangu-
lation of M .

The result now follows as a corollary of theorems 5.12 and 7.9 of [1]. !

6. Directed bordism invariance

In this section, we review the approach to bordism invariance of the coarse index
due to C. Wulff [14] and extend it to the context of manifolds with proper actions
of a discrete group.

We recall that given a smooth manifold with a proper, smooth G-action M , the
existence of G- invariant Riemannian metrics due to Palais [12] implies the existence
of a G-invariant geodesic length metric on M . Recall that this geodesic metric is
proper in the sense of metric geometry, meaning that closed balls are compact.

In order to define adequately the (coarse index) boundary maps and the functori-
ality properties after K-treory, certain remarks on the bounded coarse structure on
a proper geodesic manifold are pertinent within an equivariant setting. References
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for the bounded coarse bounded structure, and other ones on a geodesic metric
space include [3], chapter 6, although we specialize here to the Riemannian man-
ifold case. We recall however that, as noticed by Wulff [14], the proof of bordism
invariance of the coarse index is independent of the coarse structure considered on
the manifolds.

Definition 6.1 (Coarse map in the bounded metric structure). Let M and N be
proper Riemannian G-manifolds equipped with G-invariant geodesic length metrics
dM and dN . A map f : N → M is a coarse map is

• The inverse image of every closed ball is compact.
• For every R > 0, there exists δ > 0, such that dN (x, x

′

) < R implies
dM (f(x), f(x

′

)) < δ.

A coarse map induces a C∗-homomorphism of the alebras of locally compact and
finite propagation operators by lemma 6.3.13 in [3].

Definition 6.2 (Coarse equivalence). A coarse equivalence is a map f : N → M
for which there exists another map g : M → N , called a coarse inverse, such that
the compositions f ◦ g and g ◦ f are at bounded distance to the identity, meaning
that there exists a real number M > 0 that satisfies the following inequalities:

dN (g ◦ f(x), g ◦ f(x
′

)) < M
dM (f ◦ g(y), f ◦ g(y

′

)) < N

Definition 6.3 (Directed bordism). LetN1 andN2 be proper, orientedG-manifolds
of dimension n. Assume that they are furnished with the bounded coarse structure
associated to the geodesic length metric.

A directed bordism from N1 to N2 is a proper G-manifold W , such that ∂W =
N1

∐

N2, the inclusions i1 : N1 → W , i2 : N2 → W are coarse maps, and the coarse
map i2 is a coarse equivalence.

Definition 6.4. [Analytical c- bordism groups] Let M be a proper G-space with an
action of bounded isotropy. The analytical bordism group Ωan,eq

n (M) is the group
with generators (N, f,E, b, ), such that N is a proper, oriented manifold of bounded
isotropy with an equivariant coarse map f : N → M . E is G-X-Hilbert module
with presentation N , i.e. an equivariant N -module with X = N/G, and b : E → E
is a controlled operator.

Two of such generators (N1, f1, E1, b1) and (N2, E2, f2, b2) are said to be c-
bordant if there exist directed bordisms W from N1 to N2, and W̄ from N2 to
N1, together with coarse maps F : W → M , F̄ : W̄ → M , maps Ei → E, cov-
ering the inclusions Ni → W , Ni → W̄ and a pair of controlled operators B , B̄
restricting to fi, respectively bi .

If the space M is a proper oriented manifold of bounded isotropy, then one
defines the signature representative in the group Ωan,eq

n (M) by taking f = id and,
for example, E = Ω∗

L2(M), the L2-completion of the de Rham complex of M and b
as the signature operator. Although this is an unbounded operator, the generalized
conditions of analytical control meet (meaning that the Cayley transform is locally
compact and of finite propagation and the resolvent has finite propagation).

One can also, take E′ = Cl2

∗
(M) ⊕ Cl2

∗
(M) and b = BS as in (3.5), where S is

the Poincaré duality homomorphism completion. Both choices coincide in terms of
index by theorems 5.5 and 5.12 in [2], using the version of analytic control defined
in here.

Definition 6.5 (Coarse Index). The coarse index of a bordism class α ∈ Ωan,eq
n (M)

with representative (M, f,E, b)is the class in Kn−1(A(X,G,M)/C(X,G,M)) of the
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boundedly controlled operator b associated to the Hilbert-Poincaré complex E. We
will denote this group homomorphism by I, denoting the coarse index.

Definition 6.6 (Analytical signature). The analytical signature of a bordism class
α ∈ Ωan,eq

n (M) with representative (M, f,E, b) is given as the composition of the
coarse index map I together with the coarse assembly map . ( The coarse assembly
map for X is the homomorphism

µ : Ki(M) ∼= Ki+1(D
∗

G(M)/C∗

G(M)) → Ki(C
∗

G(M)),

where the first isomorphism is given by Paschke duality and the second is the
boundary map in the long exact sequence ofK-groups associated to the ideal C∗(M)
in D∗(M).)

In the following we shorten the notation A(X,G,M), C(X,G,M) by A(M),
C(M) respectively.

We interpret now the main result of [14] in an equivariant setting:

Theorem 6.7. The analytical G-signature is a directed bordism invariant.

Proof. The situation is completely analogous to [14], where the invariance is seen
to be a consequence of the naturality of the assembly map. Consider the diagram
of G-equivariant inclusions, which are assumed to give coarse maps.

N1
"" ∂W

##

N2
!!

W

The long exact sequence in K-theory of C∗-algebras gives:

Kp+1(A(W!∂W )/C(W!∂W ))
∂

"" Kp(A(∂W )/C(∂W )

A∂W

##

"" Kp(A(W )/C(W )

AW

##

Kp(C∗(∂W ))
i∗

"" Kp(C∗(W ))

Where the upper morphism ∂ is the connecting homomorphism, and the vertical
morphisms are coarse assembly maps.

The functoriality of the index morphism, assembly map gives thus that

AW (i1([b1]) = AW (i2([b2]).

!

7. Mapping surgery to analysis

In this section, we will state the main theorem of this note:

Theorem 7.1. Let M be a proper G manifold with a bounded isotropy action.
Assume that the quotient M/G has bounded geometry. Then, the following diagram
is commutative

Ωan,eq
n (M)

Alg Signature

$$❬❬❬
❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

❬

I

##

Kn−1(A(M)/C(M))
ω1

"" KKn
G(C0(M),C)

ω2

"" KKn
G(C0(EG),C)

µ
"" Kn(Cr

∗(G))

,
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where the maps are definded as follows: the map I is the coarse index, ω1 is the
isomorphism constructed in [13](denoted by ω4 in page 242), the group homomor-
phism ω2 is induced by the up to G-equivariant homotopy unique map M → EG,
and µ denotes the analytical Baum-Connes assembly map in KK-theory. We will
call the composition

µ ◦ w2 ◦ w1 ◦ I : Ωan,eq
n (M) −→ Kn(C

r
∗ (G))

the analytical signature.

Proof. The analytical Assembly map µ : KKn
G(C0(EG),C) → Kn(Cr

∗ (G)) is given
by the composite of the descent homomorphism

KKn
G(C0(EG),C) → KKn(C0(EG)"r G,C"r G)

followed by composing with the map given by the Kasparov product with the
Mishchenko-Fomenko line bundle for EG,

KKn(C0(EG)"r G,C"r G) → KKn(C, C∗

r (G)).

By KK-theoretical homotopy invariance, the composite map

KKn
G(C0(M),C) −→

ω2

KKn
G(C0(EG),C) −→

µ
Kn(C

r
∗(G))

agrees with the composite

KKn
G(C0(M),C) → KKn(C0(M)"r G,C"r G) → KKn(C, C∗

r (G)),

which consists of the descent homomorphism followed by the Kasparov product
with a Mishchenko-Fomenko element for C0(M) (called w5 and w6 in [13], p. 242,
respectively.) !
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