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Abstract

Using a combination of Atiyah-Segal ideas in one side and of Connes and Baum-
Connes ideas in the other, we show that the Total Twisted geometric K-homology
group of a Lie groupoid (includes Lie groups and discrete groups) admits a ring
structure (or module structure for the odd group). This group is the left hand side
of the twisted geometric Baum-Connes assembly map recently constructed in [5].
For the case of proper groupoids, for which the assembly map is an isomorphism,
our multiplicative structures coincide with the ones defined by Tu and Xu in [15].

1. Introduction

In recent years twisted K-theory and twisted index theory have benefited of a
great deal of interest from several groups of mathematicians and theoretical physi-
cists. Besides its relations with string theory and theoretical physics in general,
one of the main mathematical motivations was the series of works by Freed, Hop-
kins and Teleman in which they describe a ring structure on an equivariant twisted
K-theory of a group (compact connected Lie group) and in which they give a ring
isomorphism with the Verlinde algebra of the group.

For discrete or non compact Lie groups it is not clear how these multiplicative
structures should be defined directly or even if they exist at all. In this paper we
give a step to try to understand these issues. Our approach is a mixture of Atiyah-
Segal ideas in one side and of Connes and Baum-Connes ideas in the other. Indeed,
if the group in question acts properly in a nice space then one can use a homotopy
theoretical model for the twisted K-theory groups and use Atiyah-Segal ideas for
defining a product in this setting. On the other hand, following Baum-Connes ideas
one might expect that the analytically defined twisted equivariant K-theory can be
approached (or assembled to be precise) by groups defined by using only proper
actions (the so called left hand side). The main result of this paper is to define a
ring structure on the left hand side of a twisted Baum-Connes assembly map associ-
ated to every Lie groupoid, proper or not. We explain this below with more details
but before let us mention why we abruptly changed our terminology from groups
to groupoids. We have at least two big reasons for this, first, the category of Lie
groupoids encodes much more that groups and group actions, many singular situ-
ations can be handled using appropriate groupoids; second, our constructions and
proofs are largely simplified by the use Connes deformation groupoids techniques
(see explanation below).

We pass now to the explicit content of the paper. For proper groupoids one
can define the twisted K-theory groups by a generalization of Atiyah-Jänich Fred-
holm model for classical topological K-theory. More precisely, if G is a proper
Lie groupoid with connected units M and P is a G-equivariant PU(H)−principal
bundle over M , the Twisted G-equivariant K-theory groups of M twisted by P are
defined as the homotopy groups of the G-equivariant sections
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K−pG (M,P ) := πp

(
Γ(M ; Fred(0)(P̂ ))G, s

)
where Fred(0)(P̂ )→M is a certain bundle constructed from P with fibers an space
of Fredholm operators, see definition 3.6 for more details. Using this suitable choice
of Fredholm bundles we follow Atiyah-Segal for defining an associative product

K−pG (M,P )×K−qG (M,P ′)→ K
−(p+q)
G (M,P ⊗ P ′).

These twisted K-theory groups for proper groupoids are isomorphic to the K-theory
of some C∗-algebras associated to the twisting, theorem 3.14 in [16]. In [15] the
authors constructed a ring structure on Twisted K-theory for proper groupoids (and
more generally for crossed modules) using the C∗-algebraic model and Kasparov’s
KK-theory techniques. We check in section 3 below that under the mentioned
isomorphism the multiplicative structures coincide.

For non necessarily proper groupoids one does not dispose of a Fredholm model
for defining the multiplicative structure as above and even if there is a C∗-algebraic
model for twisted K-theory it is not clear how to define this product directly. Follow-
ing Baum-Connes ideas one might expect that the K-theory of the twisted algebra
can be approached by K-theory groups using only proper actions.

Given a Lie groupoid G (not necessarily proper) together with G-equivariant
PU(H)-principal bundle P over the units of G, the authors in [5] generalize to
the twisted case, Connes construction of the geometric K-homology group, de-
noted by Kgeo

∗ (G,P ), and the construction of the geometric Baum-Connes assembly
map. The main theorem in order to prove that this group and the assembly map
are well defined is the wrong way functoriality of the pushforward construction
associated to oriented smooth G-maps (theorem 4.2 in [5]). Given two isomor-
phic G-equivariant PU(H)-bundles their associated twisted K-theory groups and
their associated twisted geometric K-homology groups are isomorphic as well, also
the twisted Baum-Connes map mentioned above is compatible with these isomor-
phisms (theorem 6.4 in [5] gives a vast generalization of this fact). Denote by
H1(G,PU(H)) the set of isomorphism classes of G-equivariant PU(H)-principal
bundles1. Consider the Total twisted geometric K-homology group

Kgeo
TW,∗(G) :=

⊕
α∈H1(G,PU(H))

Kgeo
∗ (G,Pα)

where Pα is a G-equivariant PU(H)-principal bundle in the class of α. The group
Kgeo
TW,∗(G) is well defined up to isomorphism, there is no canonical choice for a

representative in a given isomorphism class.
We want to briefly describe a product on this Total twisted geometric K-homology

group. By definition each Kgeo
∗ (G,P ) is generated by cycles of the form (X,x)

where X is a G−proper co-compact manifold and x ∈ K−pG (X,PX) (where PX is

the twisting over X induced by P and where K−pG (X,PX) denotes the equivariant
twisted K-theory group associated to the action groupoid X o G, see definition
3.6 for more details) and with main relation given by the pushforward maps (see
definition 6.1 for more precisions).

Let P and Q two twistings on G. Let (X,x) with x ∈ K−pG (X,PX) and (Y, y)

with y ∈ K−qG (Y,QY ), the product looks like follows

(1.1) (X,x)·(Y, y) := (X×G0
Y, π∗Xx·π∗Y y) ∈ K−p−qG (X×G0

Y, PX×G0
Y ⊗QX×G0

Y )

1H1(G,PU(H)) is of course the 1st Cech cohomology group of G with values in PU(H) but
for the purpose of this paper we do not need to use it in these terms. There are canonical maps

H1(G,PU(H)) → H2(G,S1) → H3(G,Z) which in general are surjective and isomorphisms for
the case of proper groupoids, see for instance [16] for a detailed discution on this subject.
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where πX , πY stand for the respective projections from X ×G0
Y to X and Y and

where the pullback is defined in section 6 below, it is easy to see that the product
described above is compatible with isomorphism classes of PU(H)−principal bun-
dles. To prove that the definition above induces a product on the Total twisted
K-homology group one needs to prove two main properties:

(i) The compatibility of the product with respect to the pushforward maps,
proposition 5.18 below.

(ii) The compatibilty of the pushforward and the pullback constructions, propo-
sition 6.7 below.

For the two properties above the use of the groupoid language becomes very
useful. First of all the construction of the pushforward maps can be completely re-
alized in the Fredholm picture by using Connes deformation groupoids, and hence
adapting to this model the main results and constructions from [5] for the case of
proper groupoids, we explain this in section 5. Second, the proofs become concep-
tually very simple, for example to prove the first property above amounts to check
that the morphisms induced by restriction are compatible with the product. So
even if one is only interested in the group case (Lie or discrete for instance) the use
of deformation groupoids gives a unified way to construct the pushforwrd maps, to
prove their functoriality and to prove their compatibility with the product.

Our main theorem is the following one:

Theorem 1.2. For any Lie groupoid, the product described above induces

• a ring structure on the even Total twisted geometric K-homology group
Kgeo
TW,0(G), and

• a Kgeo
TW,0(G)-module structure on the odd Total twisted geometric K-homology

group Kgeo
TW,1(G).

Consider, for any Lie groupoid G with an equivariant PU(H)-prinicipal bundle
P , the twisted K-theory group K∗(C

∗
r (G,P )), for ∗ = 0, 1. We can consider as well,

the Total Twisted K-theory group K∗TW (G) :=
⊕

α∈H1(G,PU(H))K∗(C
∗
r (G,Pα))

and the associated Baum-Connes assembly map

(1.3) Kgeo
TW,∗(G)

µTW
// K∗TW (G)

given in each component by the Baum-Connes assembly map

(1.4) Kgeo
∗ (G,P )

µTW
// K∗(C

∗
r (G,P ))

constructed in [5].
By the theorem above one could expect to transpose the ring structure (resp.

module structure for the odd case) to the even (resp. odd) Total Twisted K-theory
group via the assembly map. This is of course the case when this twisted Baum-
Connes map is an isomorphism. After the discussion in the last section of [5] one
might expect that this occurs whenever the untwisted Baum-Connes conjecture is
verified. Another interesting question would be if it is possible to construct directly
these multiplicative structures on the Total twisted K-theory groups such that the
assembly map is a ring/module isomorphism. These questions will be discussed
elsewhere.
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2. Preliminaries on groupoids

In this section, we review the notion of twistings on Lie groupoids and discuss
some examples which appear in this paper. Let us recall what a groupoid is:

Definition 2.1. A groupoid consists of the following data: two sets G and M , and
maps

(1) s, r : G→M called the source map and target map respectively,
(2) m : G(2) → G called the product map (where G(2) = {(γ, η) ∈ G × G :

s(γ) = r(η)}),
together with two additional maps, u : M → G (the unit map) and i : G→ G (the
inverse map), such that, if we denote m(γ, η) = γ · η, u(x) = x and i(γ) = γ−1, we
have

(i) r(γ · η) = r(γ) and s(γ · η) = s(η).
(ii) γ · (η · δ) = (γ · η) · δ, ∀γ, η, δ ∈ G whenever this makes sense.
(iii) γ · x = γ and x · η = η, ∀γ, η ∈ G with s(γ) = x and r(η) = x.
(iv) γ · γ−1 = u(r(γ)) and γ−1 · γ = u(s(γ)), ∀γ ∈ G.

For simplicity, we denote a groupoid by G⇒M .

In this paper we will only deal with Lie groupoids, that is, a groupoid in which
G and M are smooth manifolds, and s, r,m, u are smooth maps (with s and r
submersions).

2.1. The Hilsum-Skandalis category. Lie groupoids form a category with strict
morphisms of groupoids. It is now a well-established fact in Lie groupoid’s theory
that the right category to consider is the one in which Morita equivalences corre-
spond precisely to isomorphisms. We review some basic definitions and properties
of generalized morphisms between Lie groupoids, see [16] section 2.1, or [8, 13, 11]
for more detailed discussions.

Definition 2.2 (Generalized homomorphisms). Let G⇒M and H ⇒M ′ be two
Lie groupoids. A generalized groupoid morphism, also called a Hilsum-Skandalis
morphism, from H to G is given by the isomorphism class of a principal G-bundle
over H, that is, a right principal G-bundle over M ′ which is also a left H-bundle
over M such that the the right G-action and the left H-action commute, formally
denoted by

f : H // G

or by

H

����

Pf

~~~~   

G

����

M ′ M.

if we want to emphasize the bi-bundle Pf involved.

As the name suggests, generalized morphism generalizes the notion of strict
morphisms and can be composed. Indeed, if P and P ′ give generalized morphisms
from H to G and from G to L respectively, then

P ×G P ′ := P ×M P ′/(p, p′) ∼ (p · γ, γ−1 · p′)
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gives a generalized morphism from H to L. Consider the category GrpdHS with
objects Lie groupoids and morphisms given by generalized morphisms. There is a
functor

(2.3) Grpd −→ GrpdHS

where Grpd is the strict category of groupoids.

Definition 2.4 (Morita equivalent groupoids). Two groupoids are called Morita
equivalent if they are isomorphic in GrpdHS .

We list here a few examples of Morita equivalence groupoids which will be used
in this paper.

Example 2.5 (Pullback groupoid). Let G⇒M be a Lie groupoid and let φ : M →
M be a map such that t ◦ pr2 : M ×M G→M is a submersion (for instance if φ is
a submersion), then the pullback groupoid φ∗G := M ×M G×MM ⇒M is Morita
equivalent to G, the strict morphism φ∗G → G being a generalized isomorphism.
For more details on this example the reader can see [11] examples 5.10(4).

Example 2.6 (Discrete groups). Let Γ be a discret group. Let M be a manifold
together with a generalized morphism

M −−− > Γ

(in this case this is equivalent a continuous map M → BΓ) given by a Γ-principal

bundle M̃ → M over M (i.e., a Γ-covering). Consider the (Connes-Moscovici)
groupoid

M̃ ×Γ M̃ ⇒M

where M̃ ×Γ M̃ := M̃ × M̃/4Γ and with structural maps s(x̃, ỹ) = y, t(x̃, ỹ) = x
and product

(x̃, ỹ) · (ỹ, z̃) := (x̃, z̃).

The groupoids M̃ ×Γ M̃ ⇒M and Γ ⇒ {e} are Morita equivalent.

2.2. Twistings on Lie groupoids. In this paper, we are only going to consider
PU(H)-twistings on Lie groupoids where H is an infinite dimensional, complex and
separable Hilbert space, and PU(H) is the projective unitary group PU(H) with
the topology induced by the norm topology on the unitary group U(H).

Definition 2.7. A twisting α on a Lie groupoid G⇒M is given by a generalized
morphism

α : G // PU(H).

Here PU(H) is viewed as a Lie groupoid with the unit space {e}.
So a twisting on a Lie groupoid G is given by a locally trivial right principal

PU(H)-bundle Pα over G.

Remark 2.8. The definition of generalized morphisms given in the last subsection
was for two Lie groupoids. The group PU(H) it is not a finte dimensional Lie group
but it makes perfectly sense to speak of generalized morphisms from Lie groupoids
to this infinite dimensional groupoid following exactly the same definition.

Example 2.9. For a list of various twistings on some standard groupoids see
example 1.8 in [6]. Here we will only a few basic examples.

(i) (Twisting on manifolds) Let X be a C∞-manifold. We can consider the
Lie groupoid X ⇒ X where every morphism is the identity over X. A
twisting on X is given by a locally trivial principal PU(H)-bundle over X.
In particular, the restriction of a twisting α on a Lie groupoid G⇒M to
its unit M defines a twisting α0 on the manifold M .
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(ii) (Orientation twisting) Let X be a manifold with an oriented real vector
bundle E. The bundle E → X defines a natural generalized morphism

X // SO(n).

Note that the fundamental unitary representation of Spinc(n) gives rise
to a commutative diagram of Lie group homomorphisms

Spinc(n)

��

// U(C2n)

��

SO(n) // PU(C2n).

With a choice of inclusion C2n into a Hilbert space H, we have a canonical
twisting, called the orientation twisting, denoted by

βE : X // PU(H).

(iii) (Pull-back twisting) Given a twisting α on G and for any generalized ho-
momorphism φ : H → G, there is a pull-back twisting

φ∗α : H // PU(H)

defined by the composition of φ and α. In particular, for a continuous
map φ : X → Y , a twisting α on Y gives a pull-back twisting φ∗α on X.
The principal PU(H)-bundle over X defines by φ∗α is the pull-back of the
principal PU(H)-bundle on Y associated to α.

(iv) (Twisting on fiber product groupoid) Let N
p→ M be a submersion.

We consider the fiber product N ×M N := {(n, n′) ∈ N × N : p(n) =
p(n′)},which is a manifold because p is a submersion. We can then take
the groupoid

N ×M N ⇒ N

which is a subgroupoid of the pair groupoid N ×N ⇒ N . Note that this
groupoid is in fact Morita equivalent to the groupoid M ⇒M . A twisting
on N ×M N ⇒ N is given by a pull-back twisting from a twisting on M .

(v) (Twisting on a Lie group) By definition a twisting on a Lie group G is a
projective representation

G
α−→ PU(H).

2.3. Deformation groupoids. One of our main tools will be the use of defor-
mation groupoids. In this section, we review the notion of Connes’ deformation
groupoids from the deformation to the normal cone point of view.

Deformation to the normal cone
Let M be a C∞-manifold and X ⊂M be a C∞-submanifold. We denote by NM

X

the normal bundle to X in M . We define the following set

DMX :=
(
NM
X × 0

)⊔
(M × R∗) .(2.10)

The purpose of this section is to recall how to define a C∞-structure in DMX . This
is more or less classical, for example it was extensively used in [8].

Let us first consider the case where M = Rp × Rq and X = Rp × {0} ( here
we identify X canonically with Rp). We denote by q = n − p and by Dnp for DRn

Rp
as above. In this case we have that Dnp = Rp × Rq × R (as a set). Consider the
bijection ψ : Rp × Rq × R→ Dnp given by

(2.11) ψ(x, ξ, t) =

{
(x, ξ, 0) if t = 0
(x, tξ, t) if t 6= 0
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whose inverse is given explicitly by

ψ−1(x, ξ, t) =

{
(x, ξ, 0) if t = 0
(x, 1

t ξ, t) if t 6= 0

We can consider the C∞-structure on Dnp induced by this bijection.
We pass now to the general case. A local chart (U , φ) of M at x is said to be a

X-slice if

1) U is an open neighbourhood of x in M and φ : U → U ⊂ Rp × Rq is a
diffeomorphsim such that φ(x) = (0, 0).

2) Setting V = U ∩ (Rp × {0}), then φ−1(V ) = U ∩X , denoted by V.

With these notations understood, we have DUV ⊂ Dnp as an open subset. For x ∈ V
we have φ(x) ∈ Rp × {0}. If we write φ(x) = (φ1(x), 0), then

φ1 : V → V ⊂ Rp

is a diffeomorphism. Define a function

(2.12) φ̃ : DUV → DUV
by setting φ̃(v, ξ, 0) = (φ1(v), dNφv(ξ), 0) and φ̃(u, t) = (φ(u), t) for t 6= 0. Here
dNφv : Nv → Rq is the normal component of the derivative dφv for v ∈ V. It is
clear that φ̃ is also a bijection. In particular, it induces a C∞ structure on DUV .
Now, let us consider an atlas {(Uα, φα)}α∈∆ of M consisting of X−slices. Then the

collection {(DUαVα , φ̃α)}α∈∆ is a C∞-atlas of DMX (Proposition 3.1 in [4]).

Definition 2.13 (Deformation to the normal cone). Let X ⊂M be as above. The
set DMX equipped with the C∞ structure induced by the atlas of X-slices is called
the deformation to the normal cone associated to the embedding X ⊂M .

One important feature about the deformation to the normal cone is the functo-
riality. More explicitly, let f : (M,X)→ (M ′, X ′) be a C∞-map f : M →M ′ with

f(X) ⊂ X ′. Define D(f) : DMX → DM
′

X′ by the following formulas:

1) D(f)(m, t) = (f(m), t) for t 6= 0,
2) D(f)(x, ξ, 0) = (f(x), dNfx(ξ), 0), where dNfx is by definition the map

(NM
X )x

dNfx−→ (NM ′

X′ )f(x)

induced by TxM
dfx−→ Tf(x)M

′.

Then D(f) : DMX → DM
′

X′ is a C∞-map (Proposition 3.4 in [4]). In the language of
categories, the deformation to the normal cone construction defines a functor

(2.14) D : C∞2 −→ C∞,
where C∞ is the category of C∞-manifolds and C∞2 is the category of pairs of
C∞-manifolds.

Given an immersion of Lie groupoids G1
ϕ→ G2, let GN1 = NG2

G1
be the total space

of the normal bundle to ϕ, and (G
(0)
1 )N be the total space of the normal bundle to

ϕ0 : G
(0)
1 → G

(0)
2 . Consider GN1 ⇒ (G

(0)
1 )N with the following structure maps: The

source map is the derivation in the normal direction dNs : GN1 → (G
(0)
1 )N of the

source map (seen as a pair of maps) s : (G2, G1) → (G
(0)
2 , G

(0)
1 ) and similarly for

the target map.
The groupoid GN1 may fail to inherit a Lie groupoid structure (see counterex-

ample just before section IV in [8]). A sufficient condition is when (G
(0)
1 )N is a

GN1 -vector bundle over G
(0)
1 . This is the case when Gx1 → G

ϕ(x)
2 is étale for every

x ∈ G(0)
1 (in particular if the groupoids are étale) or when one considers a manifold

with two foliations F1 ⊂ F2 and the induced immersion (again 3.1, 3.19 in [8]).
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The deformation to the normal bundle construction allows us to consider a C∞

structure on

Gϕ :=
(
GN1 × {0}

)⊔
(G2 × R∗) ,

such that GN1 ×{0} is a closed saturated submanifold and so G2×R∗ is an open sub-
manifold. The following results are an immediate consequence of the functoriality
of the deformation to the normal cone construction.

Proposition 2.15 (Hilsum-Skandalis, 3.1, 3.19 [8]). Consider an immersion G1
ϕ→

G2 as above for which (G1)N inherits a Lie groupoid structure. Let Gϕ0
:=
(
(G

(0)
1 )N×

{0}
)⊔ (

G
(0)
2 × R∗

)
be the deformation to the normal cone of the pair (G

(0)
2 , G

(0)
1 ).

The groupoid

(2.16) Gϕ ⇒ Gϕ0

with structure maps compatible with the ones of the groupoids G2 ⇒ G
(0)
2 and

GN1 ⇒ (G
(0)
1 )N , is a Lie groupoid with C∞-structures coming from the deformation

to the normal cone.

One of the interest of these kind of groupoids is to be able to define family
indices. First we recall the following elementary result.

Proposition 2.17. Given an immersion of Lie groupoids G1
ϕ→ G2 as above and a

twisting α on G2. There is a canonical twisting αϕ on the Lie groupoid Gϕ ⇒ Gϕ0
,

extending the pull-back twisting on G2 × R∗ from α.

Proof. The proof is a simple application of the functoriality of the deformation to
the normal cone construction. Indeed, the twisting α on G2 induces by pullback (or
composition of cocycles) a twisting α◦ϕ on G1. The twisting α on G2 is given by a
PU(H)-principal bundle Pα with a compatible left action of G2, and by definition

the twisting α ◦ ϕ on G1 is given by the pullback of Pα by ϕ0 : G
(0)
1 → G

(0)
2 . In

particular, Pα◦ϕ = G
(0)
1 ×G(0)

2
Pα Hence the action map G2 ×G(0)

2
Pα → Pα can be

considered as an application in the category of pairs:

(G2 ×G(0)
2
Pα, G1 ×G(0)

1
Pα◦ϕ) −→ (G

(0)
2 ×G(0)

2
Pα, G

(0)
1 ×G(0)

1
Pα◦ϕ).

We can then apply the deformation to the normal cone functor to obtain the de-
sire PU(H)-principal bundle with a compatible Gϕ-action, which gives the desired
twisting. �

3. Twisted equivariant K-theory

The crucial diference to [3] is the use of graded Fredholm bundles, which are
needed for the definition of the multiplicative structure.

Let H be a separable Hilbert space and

U(H) := {U : H → H | U ◦ U∗ = U∗ ◦ U = Id}
the group of unitary operators acting on H. Let End(H) denote the space of
endomorphisms of the Hilbert space and endow End(H)c.o. with the compact open
topology. Consider the inclusion

U(H)→ End(H)c.o. × End(H)c.o.

U 7→ (U,U−1)

and induce on U(H) the subspace topology. Denote the space of unitary operators
with this induced topology by U(H)c.o. and note that this is different from the usual
compact open topology on U(H). Let U(H)c.g be the compactly generated topology
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associated to the compact open topology, and topologize the group PU(H) from
the exact sequence

1→ S1 → U(H)c.g. → PU(H)→ 1.

Definition 3.1. Let H be a separable Hilbert space. The space Fred′(H) consist of
pairs (A,B) of bounded operators on H such that AB− 1 and BA− 1 are compact
operators. Endow Fred′(H) with the topology induced by the embedding

Fred′(H) → B(H)× B(H)× K(H)× K(H)

(A,B) 7→ (A,B,AB − 1, BA− 1)

where B(H) denotes the bounded operators on H with the compact open topology
and K(H) denotes the compact operators with the norm topology.

We denote by Ĥ = H⊕H to a Z2-graded, infinite dimensional Hilbert space.

Definition 3.2. Let U(Ĥ)c.g. be the group of even, unitary operators on the Hilbert

space Ĥ which are of the form (
u1 0
0 u2

)
,

where ui denotes a unitary operator in the compactly generated topology defined
as before.

We denote by PU(Ĥ) the group U(Ĥ)c.g./S
1 and recall the central extension

1→ S1 → U(Ĥ)→ PU(Ĥ)→ 1

Definition 3.3. The space Fred′′(Ĥ) is the space of pairs (Â, B̂) of self-adjoint,

bounded operators of degree 1 defined on Ĥ such that ÂB̂ − I and B̂Â − I are
compact.

Given a Z/2-graded Hilbert space Ĥ, the space Fred′′(Ĥ) is homeomorphic to
Fred′(H).

Definition 3.4. We denote by Fred(0)(Ĥ) the space of self-adjoint degree 1 Fred-

holm operators A in Ĥ such that A2 differs from the identity by a compact operator,
with the topology coming from the embedding A 7→ (A,A2 − I) in B(H)×K(H).

The following result was proved in [1], Proposition 3.1 :

Proposition 3.5. The space Fred(0)(Ĥ) is a deformation retract of Fred′′(Ĥ).

The above discussion can be concluded telling that Fred(0)(Ĥ) is a representing

space for K-theory. The group U(Ĥ)c.g. of degree 0 unitary operators on Ĥ with

the compactly generated topology acts continuously by conjugation on Fred(0)(Ĥ),

therefore the group PU(Ĥ) acts continuously on Fred(0)(Ĥ) by conjugation. In [3]
twisted K-theory for proper actions of discrete groups was defined using the rep-
resenting space Fred′(H), but in order to have multiplicative structure we proceed

using Fred(0)(Ĥ).
Let us choose the operator

Î =

(
0 I
I 0

)
.

as the base point in Fred(0)(Ĥ).

Choosing the identity as a base point on the space Fred
′
(H), gives a diagram of

pointed maps



10 NOÉ BÁRCENAS, PAULO CARRILLO ROUSE, AND MARIO VELÁSQUEZ

Fred(0)(Ĥ)
i
// Fred

′′
(Ĥ)

r

��

f
// Fred

′
(H)

Fred(0)(Ĥ)

,

where i denotes the inclusion, r is a strong deformation retract and f is a homeo-
morphism. Moreover, the maps are compatible with the conjugation actions of the

groups U(Ĥ)c.g., U(H)c.g. and the map U(Ĥ)c.g. → U(H)c.g..
Let X be a proper G-space and let P → X be a projective unitary G-equivariant

bundle over X. Denote by P̂ the projective unitary bundle obtained by performing

the tensor product with the trivial bundle P(Ĥ), P̂ = P ⊗ P(Ĥ).
The space of Fredholm operators is endowed with a continuous right action of

the group PU(Ĥ) by conjugation, therefore we can take the associated bundle over
X

Fred(0)(P̂ ) := P̂ ×PU(Ĥ) Fred(0)(Ĥ),

and with the induced G action given by

g · [(λ,A))] := [(gλ,A)]

for g in G, λ in P̂ and A in Fred(0)(Ĥ).
Denote by

Γ(X; Fred(0)(P̂ ))

the space of sections of the bundle Fred(0)(P̂ ) → X and choose as base point in

this space the section which chooses the base point Î on the fibers. This section

exists because the PU(Ĥ) action on Î is trivial, and therefore

X ∼= P̂ /PU(Ĥ) ∼= P̂ ×PU(Ĥ) {Î} ⊂ Fred(0)(P̂ );

let us denote this section by s.

Definition 3.6. Let X be a connected proper G-space and P a projective unitary
G-equivariant bundle over X. The Twisted G-equivariant K-theory groups of X
twisted by P are defined as the homotopy groups of the G-equivariant sections

K−pG (X;P ) := πp

(
Γ(X; Fred(0)(P̂ ))XoG, s

)
where the base point s = Î is the section previously constructed.

3.1. Additive structure. There exists a natural map

Γ(X; Fred(0)(P̂ ))XoG × Γ(X; Fred(0)(P̂ ))XoG → Γ(X; Fred(0)(P̂ ))XoG,

inducing an abelian group structure on the twisted equivariant K- theory groups,
which we will define below. Consider for this the following commutative diagram.

Fred(0)(Ĥ)× Fred(0)(Ĥ)

��

f◦i
// Fred

′
(Ĥ)× Fred

′
(Ĥ)

◦
��

Fred(0)(Ĥ) Fred
′
(Ĥ)

f−1◦r
oo

where the vertical map denotes composition. As the maps involved in the diagram

are compatible with the conjugation actions of the groups U(Ĥ)c.g, respectively
U(H)c.g and G, for any projective unitary G-equivariant bundle P , this induces a
pointed map
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Γ(X; Fred(0)(P̂ ))XoG, s)× (Γ(X; Fred(0)(P̂ ))XoG, s)→ (Γ(X; Fred(0)(P̂ ))XoG, s).

Which defines an additive structure in K−pG (X;P ).

3.2. Multiplicative structure. We define an associative product on twisted K-
theory.

K−pG (X;P )×K−qG (X;P ′)→ K
−(p+q)
G (X;P ⊗ P ′)

Induced by the map

(A,A′) 7→ A⊗̂I + I⊗̂A′

defined in Fred0(Ĥ), and ⊗̂ denotes the graded tensor product, see [2] in pages
24-25 for more details. We denote this product by •.

Definition 3.7 (Equivariant Total Twisted K-theory). For every p ∈ N, the degree
p, G-equivariant Total Twisted K-theory group is given by

(3.8) K−pTW,G(X) :=
⊕

α∈H1(G,PU(H))

K−pG (X,Pα).

By the discussion above

(3.9) Kev
TW,G(X) :=

⊕
p∈N, even

K−pTW,G(X)

has a ring structure and

(3.10) Kodd
TW,G(X) :=

⊕
p∈N, odd

K−pTW,G(X)

is a Kev
TW,G(X)-module. The last groups above are called the even, respectively

odd, G−equivariant Total Twisted K-theory groups of X.

3.3. Topologies on Fredholm Operators. In [16] a Fredholm picture of twisted
K-theory is introduced. Denote by Fred′(H)s∗ the space whose elements are the
same as Fred′(H) but with the strong ∗-topology on B(H).

Definition 3.11. [16, Thm. 3.15] Let X be a connected G-proper space and P
a projective unitary G-equivariant bundle over X. The Twisted G-equivariant K-
theory groups of X (in the sense of Tu-Xu-Laurent) twisted by P are defined as the
homotopy groups of the G-equivariant strong∗-continuous sections

K−pG (X;P ) := πp
(
Γ(X; Fred′(P )s∗)

G, s
)
.

The bundle Fred′(P )s∗ is defined in a similar way as Fred′(P ).

We will prove that the functors K∗G(−, P ) and K∗G(−, P ) are naturally equivalent.

Lemma 3.12. The spaces Fred′(H) and Fred′(H)s∗ are PU(H)-weakly homotopy
equivalent.

Proof. The strategy is to prove that Fred′(H)s∗ is a representing of equivariant
K-theory. The same proof for Fred′(H) in [1, Prop. A.22] applies. In particular
GL(H)s∗ is G-contractible because the homotopy ht constructed in [1, Prop. A.21]
is continuous in the strong∗-topology and then the proof applies. �

Using the above lemma one can prove that the identity map defines an equiv-
alence between (twisted) cohomology theories K∗G(−, P ) and K∗G(−, P ). Then we
have that the both definitions of twisted K-theory are equivalents. Summarizing
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Proposition 3.13. For every proper G-manifold X and every projective unitary
G-equivariant bundle over X. We have an isomorphism

K−pG (X;P ) ∼= K−pG (X;P ).

Remark 3.14. In order to simplify the notation from now on we denote by H to

a Z2-graded separable Hilbert space and we denote by Fred(0)(P ) to the bundle

Fred(0)(P̂ ).

3.4. Relation with the Kasparov external product. In [16] twisted K-theory
for Lie groupoids is defined and in Prop. 6.11 of that work this group is described
as a KK-group for the case of proper groupoids.

Proposition 3.15. [16, Prop. 6.11] If G⇒M is a proper Lie groupoid andM/G is
compact, then for i = 0, 1, there is a natural isomorphism χ : KKi

G(C0(M), BP )→
Ki
G(M,P ), where BP is certain C∗-algebra associated to the twisting P .

Using the external Kasparov product they define a product

Ki
G(M,P )⊗Kj

G(M,P ′)
•TXL

// Ki+j
G (M,P ⊗ P ′).

Using the functoriality of both products • and •TXL one can prove that they are
the same.

Definition 3.16. (i) If Φ is a KKG(A,B)-cycle we denote by Φ∗ to the ho-
momorphism

Φ∗ : KKG(C0(M), B0)→ KKG(C0(M), BP )

x 7→ x •TXL Φ.

(ii) If s ∈ ΓG(Fred(0)(P )) we denote by s∗ the homomorphism

s∗ : Ki
G(X)→ Ki

G(X,P )

[f ] 7→ [s • f ].

Proposition 3.17. If Φ ∈ KKi
G(C0(M), BP ) and Ψ ∈ KKi

G(C0(M), BP ′), then
χ(Φ •tuxustacks Ψ) = χ(Φ) • χ(Ψ).

Proof.

χ(Φ •TXL Ψ) = χ(Φ∗(1C0(M)) •TXL Ψ∗(1C0(M)))

= χ(Φ∗(Ψ∗(1C0(M))))

= (χ(Φ))∗((χ(Ψ))∗(χ(1C0(M)))

= (χ(Φ))∗(1M ) • (χ(Ψ))∗(1M )

= (χ(Φ)) • (χ(Ψ)).

�

The above result implies that both products are the same module the equivalence
χ.

4. Thom isomorphism

Let G ⇒ G0 be a Lie groupoid and P a twisting. Consider a G-oriented vector
bundle E −→ X. In particular since we will assume that G acts properly on P
and on E, we can assume E admits a G-invariant metric, see for instance [14]
proposition 3.14 and [7] theorem 4.3.4.. As explained in [5] appendix A (specially
proposition A.3), in this situation there is a natural isomorphism

Th : K∗G(X,P)→ K
∗−rank(E)
G (E, π∗(P⊗ βE))
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where K∗G(X,P) stands for the K-theory of the twisted groupoid C∗-algebra C∗r (Xo
G,P ) and where βE is the orientation G-twisting over E defined in example ((ii))
in 2.9 above. The fact that it is indeed the Thom isomorphism comes from the
functoriality and the naturality with respect to the Kasparov products of the Le
Gall’s descent construction [10] theorem 7.2. This is explained in details in the ap-
pendix cited above or in [12] in the context of real groupoids (the same arguments
apply in the complex case).

Now, in [16] theorem 3.14 the authors prove that for proper Lie groupoids the

groups K∗G(X,P) and K−pG (X;P ) are naturally isomorphic. We thus obtain, by
proposition 3.13, the Thom isomorphism

Th : K∗G(X,P )→ K
∗−rank(E)
G (E, π∗(P ⊗ βE)).

It is possible however to construct the Thom isomorphism directly in the Fred-
holm picture of the twisted K-theory (whenever the respectives action groupoids
are proper), we will perform this construction for the benefit of the reader.

The spin representation and twisted K-Theory. Let n be an even natural
number.

Let Rn denote the euclidean, n-dimensional vector space denoted with the eu-
clidean scalar product.

The Clifford algebra Cliff(Rn) is defined as the complexification of the quotient

of the tensor algebra TRn =
∞⊗
j=0

Rn by the two-sided ideal defined by elents of the

form x⊗ x− 〈x, x〉, where 〈 〉 denotes the euclidean scalar product.
It is generated as C-algebra by the elements of a an orthogonal basis ei of Rn

with the relations ei · ej = −2δi,j .
The algebra Cliff(Rn) is isomorphic as a vector space to the exterior algebra

Λ∗(Rn) =
n⊕
j=0

ΛjRn [9], Proposition 1.3 in page 10, in particular, it has complex

dimension 2n .
The map given by Clifford multiplication with the element e1·, . . . , ·en defines

a linear operator on Cliff(Rn). The Clifford algebra then decomposes as a vector
space Cliff(Rn) = S+ ⊕ S−, where S+ is the eigenspace associated to +1 and S−

is the one associated with −1. An element in S+ is called even, an element in S−

is said to be odd.
The group Spin(Rn) consists of the multiplicative group of even units in the

Clifford algebra, in symbols Spin(Rn) = Cliff(Rn)∗ ∩ S+.
The group Spin(Rn) is the universal covering of the special orthogonal group

SO(n). The map

1→ Z2 → Spin(Rn)→ SO(n)→ 1

is a model for the universal central extension of SO(n).
This extension is classified by the nontrivial class τ ∈ H2(SO(n), S1) ∼= Z2.
The group Spin(Rn) has a complex linear representation ρ : Spin(Rn)→ U(2n),

given by the identification of Cliff(Rn) = Cliff(Rn) ⊗ C with the complex vector
space of dimension 2n as an algebra, and the linear operator given by ρ(x) : v 7→
x−1vx.



14 NOÉ BÁRCENAS, PAULO CARRILLO ROUSE, AND MARIO VELÁSQUEZ

The representation ρ gives rise to a continuous group homomorphism β as in the
following diagram:

1 // S1 //

��

// Spinc(Rn) //

ρ

��

SO(n) //

β

��

1

1 // S1 // U(2n) // PU(2n) // 1

Definition 4.1. The spin representation is the homomorphism β : SO(n) →
PU(H)

Remark 4.2. Let n be a even positive integer. Consider a proper oriented G-

vector bundle E
π−→ X over a proper G-manifold X. We can suppose that the chart

data is given by a generalized morphism

X oG
OE
// SO(n) .

Composing the generalized morphism OE with the spin representation β we obtain

a twisting βE : X oG // PU(H) , called the orientation twisting.

We will construct now the Thom class in the Fredholm picture. If X is a proper
G-manifold, by Theorem 2.3 in [17] for every x ∈ X there is a open neighbourhood
U of x contractible to the orbit of x in X oG with action of the isotropy group Gx
such that there is a Lie groupoid isomorphism

(X oG) | U ∼= U oGx.

We have an isomorphism

(4.3) K−nGx (U, βE |U ) ∼= RS1(G̃x),

where G̃x is the S1-central extension of Gx associated to the twisting βE |U . On
the other hand, E |{x} is a real representation of Gx, since it can be viewed as a
homomorphism ηx : Gx → SO(n). The composition β ◦ ηx : G→ PU(H) is a pro-

jective representation and its isomorphism class determines an element of RS1(G̃x).
Using the identification 4.3, it can be viewed as an element of K−nGx (U, βE |U ). We

denote this element by λU−1.
Taking a covering of X oG one can see that these local elements are the same

on intersections. The local trivializations define a global element

[λE−1] ∈ K−nG (X,βE),

we call it the Thom class.
Given s ∈ ΓG(P ×PU(H) Fred(0)(H)), where P → X is a twisting, we define the

Thom isomorphism

Th : K∗G(X,P )→K∗−nG (E, π∗(P ⊗ βE))

[s] 7→[e 7→ s(π(e)) • λE−1(π(e))].

When the vector bundle E is odd dimensional, using the classic suspension iso-
morphism and the previous Thom isomorphism for E⊕R, one gets as well a Thom
isomorphism as above.

Since the Thom isomorphism is natural with respect to the Kasparov product
we can resume the discussion above in the following statement.

Theorem 4.4. [Thom isomorphism] With notations as above, there is a natural
isomorphism

Th : K∗G(X,P )→ K
∗−rank(E)
G (E, π∗(P ⊗ βE))
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which gives the Thom isomorphism.

(i) If E is a Spinc G− vector bundle of even ranck, then βE is trivial and one
obtains a ring isomorphism

Th : Kev
TW,G(X)→ Kev

TW,G(E)

and an isomorphism of Kev
TW,G(X)-modules

Th : Kodd
TW,G(X)→ Kodd

TW,G(E).

(ii) If E is a Spinc G− vector bundle of odd rank, then βE is trivial and one
obtains a Kev

TW,G(X)-module isomorphism

Th : Kev
TW,G(X)→ Kodd

TW,G(E)

and a Kev
TW,G(X)-module isomorphism

Th : Kodd
TW,G(X)→ Kev

TW,G(E).

5. Pushforward Map

In this section we will recall how to define the pushforward morphism associated
to any smooth G-map f : X → Y between to G- manifolds, definition 4.1 in [5]. For
the purpose of this paper we will perform the construction in the case of K-oriented
maps. By this we mean that the bundle T ∗X⊕ f∗(TY ) admits a Spinc−structure.

The difference in the present construction with respect to ref.cit. is that we
will not make reference to C∗-algebras and we will perform the construction using
the Fredholm picture of the twisted K-theory, in particular the construction below
works only for G-proper manifolds.

We will need to state some general statements about groupoids that will simplify
the particular constructions we are interested in.

Lemma 5.1. Let G⇒ G0 be a proper Lie groupoid together with a twisting P. Let
H ⇒ H0 be a proper Lie saturated closed subgroupoid.

(i) There is a canonical restriction morphism

(5.2) K−pG (G0, P )→ K−pH (H0, P |H0)

(ii) Suppose G decomposes as the union of two saturated proper subgroupoids
G = H tH ′ ⇒ H0 tH ′0 with H closed subgroupoid. There is a long exact
sequence

(5.3)

// K
−p
H′ (H

′
0, P |H′0

) // K
−p
G

(G0, P ) // K
−p
H

(H0, P |H0
) // K

−p−1

H′ (H′0, P |H′0
) //

Lemma 5.4. Let G ⇒ G0 be a proper Lie groupoid together with a twisting P,
consider the product groupoid G × (0, 1] ⇒ G0 × (0, 1] with the pullback twisting
P(0,1]. For every p ∈ Z

K−pG×(0,1](G0 × (0, 1], P(0,1]) = 0.

The two previous lemmas are classic in the C∗-algebraic context, i.e., once we
use that the isomorphism between the twisted K-theory with the C∗-picture and
the twisted K-theory with the Fredholm picture (theorem 3.14 [16]).

The following result is an immediate consequence of lemmas 5.1 and 5.4 above.

Proposition 5.5. Given an immersion of proper Lie groupoids G1
ϕ→ G2 and a

twisting α on G2, consider the twisted deformation groupoid (Gϕ, Pα) of section 2.3
(propositions 2.15 and 2.17). The morphism in K-theory induced by the restriction
at zero,

(5.6) K−pGϕ(G
(0)
ϕ , Pϕ)

e0
// K−pG2

(G
(0)
2 , P2)
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is an isomorphism.

Definition 5.7 (Index associated to a groupoid immersion). Given an immersion

of proper Lie groupoids G1
ϕ→ G2 as above and a twisting α on G2, we let

(5.8) Indϕ : K−p
GN1

((G
(0)
1 )N , PN1 )→ K−pG2

(G
(0)
2 , P2)

to be the morphism in K-theory given by Indϕ := e1 ◦ e−1
0 .

We are ready to define the shriek map. Let G⇒ G0 be a Lie groupoid together
with a twisting P . Let X,Y be two G-proper manifolds and let f : X → Y be a
smooth G-map with T ∗X ⊕ f∗TY a G-Spinc vector bundle that we will assume in
a first time to have even rank. We will also assume the moment maps X → G0

and Y → G0 to be submersions, then T ∗X ⊕ f∗TY being Spinc is equivalent to
Vf := T ∗vX ⊕ f∗TvY being Spinc. The shriek morphism

(5.9) f ! : K−pG (X,PX)
f!
// K
−p−df
G (Y, PY ),

where df := rank Vf , will be given as the composition of the following three mor-
phism

I. The twisted G-equivariant Thom isomorphism

(5.10) K−pG (X,PX)
T
∼=
// K
−p−df
G (T ∗vX

⊕
f∗TvY, PVf ).

II. We consider now the index morphism

(5.11) K
−p−df
(TvX

⊕
f∗TvY )oG(f∗TvY, P )

Ind
// K
−p−df
f∗TvYo(TvXoG)(f

∗TvY, P )

associated to the immersion

f∗TvY oG −→ f∗TvY o (TvX oG)

given by the product of the identity in G and the inclusion of the units f∗TvY in
the groupoid f∗TvY o TvX.

III. Consider the groupoid immersion

(5.12) X oG
f̃

// (Y ×G0
(X ×G0

X)) oG,

where f̃ := (f ×4)× IdG. Then the induced deformation groupoid is

Gf oG

where

Gf ⇒ G
(0)
f

is the groupoid given by

(5.13) Gf := f∗(TvY ) o TvX × {0}
⊔
Y ×G0 (X ×G0 X)× (0, 1] and

(5.14) G
(0)
f = f∗TvY × {0}

⊔
Y ×G0

X × (0, 1]

Notice that Y ×G0 (X ×G0 X) and Y are Morita equivalent groupoids with Morita
equivalence the canonical projection.

Let αf the twisting on Gf o G given by proposition 2.17. It is immediate to
check that αf |(f∗(TvY )oTvX)oG = π∗f∗TvYoTvXα.

We can hence consider the twisted deformation index morphism associated to
(Gf oG,αf ) :
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(5.15) K
−p−df
f∗TvYo(TvXoG)(f

∗TvY, P )
Indf

// K
−p−df
(Y×G0

(X×G0
X))oG(Y ×G0

X,P )

µ∼=
��

K
−p−df
G (Y, P )

For composing 5.10 with 5.11 remember that by the Fourier isomorphism proved
in proposition 2.12 in [6] and by theorem 3.14 in [16] we have an isomorphism

K∗G(T ∗vX
⊕

f∗TvY, PVf ) ≈ K∗(TvX⊕
f∗TvY )oG(f∗TvY, P ).

We can now give the following definition:

Definition 5.16 (Pushforward morphism for twisted G-manifolds). Let X,Y be
two manifolds and f : X −→ Y a smooth map. Under the presence of a twisting P
on G we let

(5.17) K−pG (X,PX)
f!
// K
−p−df
G (Y, PY )

to be the morphism given by the composition of the three morphisms described
above, 5.10 followed by 5.11 followed by 5.15.

One of the main results is that the pushforward maps induce a ring morphisms
between the total twisted K-theory rings:

Proposition 5.18. Let G ⇒ G0 be a Lie groupoid. Let X,Y be two G-proper
manifolds and let f : X → Y be a G-smooth K-oriented map. We have that

(i) If T ∗vX ⊕ f∗TvY has even rank, the pushforward map

f ! : Kev
TW,G(X)→ Kev

TW,G(Y )

is a ring morphism and the pushforward map

f ! : Kodd
TW,G(X)→ Kodd

TW,G(Y )

is a Kev
TW,G(X)-module morphism.

(ii) If T ∗vX ⊕ f∗TvY has odd rank, the pushforward map

f ! : Kev
TW,G(X)→ Kodd

TW,G(Y )

is Kev
TW,G(X)-module morphism and the pushforward map

f ! : Kodd
TW,G(X)→ Kodd

TW,G(Y )

is a Kev
TW,G(X)-module morphism.

Proof. By definition f ! is constructed by means of a Thom isomorphism and of
two deformation indices. These indices are at their turn constructed by restriction
(or evaluation) morphisms. To conclude the proof one has only to observe that
restrictions induce ring/modules morphisms together with the fact that Thom is a
ring/module isomorphism, see 4.4. �

The main theorem in [5] (theorem 4.2) can be now written as follows

Theorem 5.19. The above push-forward morphism is functorial, that means, if
we have a composition of smooth K-oriented G-maps between G− proper manifolds
with T ∗vX ⊕ f∗TvY and T ∗v Y ⊕ f∗TvZ of even rank:

(5.20) X
f−→ Y

g−→ Z,
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Then the following diagram of ring morphisms commutes

Kev
TW,G(X)

(g◦f)!
//

f!
&&

Kev
TW,G(Z)

Kev
TW,G(Y )

g!

88

In the case the bundles T ∗vX ⊕ f∗TvY and T ∗v Y ⊕ f∗TvZ are not both simulta-
neously of even rank a similar conclusion is obtained for modules morphisms.

6. Connes Approach to twisted K Homology for Lie groupoids

The pushforward functoriality theorem (thm. 4.2 in [5]) allows us to give the
following definition:

Definition 6.1 (Twisted geometric K-homology). Let G ⇒ M be a Lie groupoid
with a twisting P . By the ”Twisted geometric K-homology group” associated to
(G,P ) we mean the abelian group denoted by Kgeo

∗ (G,P ) with generators the cycles
(X,x) where

(1) X is a smooth co-compact G-proper manifold,
(2) πX : X → M is the smooth momentum map which supposed to be a

K-oriented submersion and
(3) x ∈ K−pG (X,PX) for some p ∈ N,

and relations given by

(6.2) (X,x) ∼ (X ′, g!(x))

where g : X → X ′ is a smooth G-equivariant map.
The group defined above admits a Z2-gradation

Kgeo
∗ (G,P ) = Kgeo

0 (G,P )
⊕

Kgeo
1 (G,P ).

where Kgeo
j (G,P ) is the subgroup generated by cycles (X,x) for which TvX has

rank congruent to j modulo 2.

We will now describe a product between two cycles with possibly different twist-
ings by using the product structure defined in previous sections. For that we will
need first to recall the a basic operation:

The Pullback: Let A
h−→ B be a smooth G-equivariant map (A,B G-proper

manifolds). Suppose we have a twisting P on G. We are going to consider, for
every q ∈ N, the pullback

(6.3) h∗ : K−qG (B,PB) −→ K−qG (A,PA)

given as follows: If γ : Sq → Γ(B,Fred(P̂B))G is a continuous map with γ(∗) = s
one let

h∗γ : Sq → Γ(A,Fred(P̂A))G

to be given by
(h∗γ)(z)(a) := γ(z)(h(a)),

it is then classic to show that it induces a map between the homopoty classes.
More generally we will need a pullback map associated to aG-equivariant Hilsum-

Skandalis map. We explain next what do we mean by this.
Consider a Lie groupoid HA ⇒ A, we say that it is a G-groupoid if G acts on

HA, on A and the source and target maps of HA are G−equivariant. Under this
situation we might form the semi-direct product groupoid

HA oG⇒ A.
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Suppose now that we have two G-proper (all the actions are required to be proper)
Lie groupoids HA and HB together with a generalized morphism h : HA−−− > HB

between them, that is, suppose we are given a HB-principal bundle Ph over HA,
putting this in a diagram:

HA

����

Ph
sh

!!

th

}}

HB

����

A B

We are going to consider, for every q ∈ N, the pullback

(6.4) h∗ : K−qHBoG(B,PB) −→ K−qHAoG(A,PA)

given as follows: If γ : Sq → Γ(B,Fred(P̂B))HBoG is a continuous map with
γ(∗) = s one let

h∗γ : Sq → Γ(A,Fred(P̂A))HAoG

to be given by
(h∗γ)(z)(a) := γ(z)(b)

where b = sh(v) for some v ∈ t−1
h (a). One proves using the invariance of γ together

with the identification Ph×HBoG Fred(P̂B) = Fred(P̂A) that the definition of h∗γ
does not depend on the choice of v.

Lemma 6.5. The pullback is natural. The following properties hold:

(i) Id∗ = Id
(ii) (h2 ◦ h1)∗ = h∗1 ◦ h∗2

Remark 6.6 (On Le Gall’s descent functors). The definition of the pullback above
recalls Le Gall’s pullback construction on the untwisted case which generalizes
Kasparov descent morphisms. The simplicity of our construction is due to the
fact that we are only dealing with the proper action case. In the general case is
certainly possible to adapt Le Gall’s to S1-central extensions and then to apply it
to the Twisted K-theory case. We do not need to do it in this generality in this
paper.

The main property is the naturality of the pushforward maps with respect to
pullbacks, this is the new and the main key technical result in this paper.

Proposition 6.7. Let G ⇒ G0 be a Lie groupoid together with a twisting P .
Suppose we have a commutative diagram of G-smooth K-oriented maps between
G-proper manifolds

A
g
//

p

��

A′

q

��

B
f
// B′

Then we have the following equality between K-theory morphisms

g! ◦ p∗ = q∗ ◦ f !

Proof. We have to show that the following diagram is commutative

(6.8) K∗G(A,PA)
g!
// K∗G(A′, PA′)

K∗G(B,PB)

p∗

OO

f !
// K∗G(B′, PB′)

q∗

OO
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We will split the above diagram in four commutative diagrams:
Diagram I. Consider the following commutative diagram of groupoid mor-

phisms which are equivariant with respect to the G-action:

A′ ×G0 (A×G0 A)

q×4(p)

��

IdA′×PrG0
// A′ ×G0 G0

q×IdG0

��

B′ ×G0
(B ×G0

B)
IdB′×PrG0

// B′ ×G0
G0

Once identifying A′ ×G0
G0 with A′ (and respectively for B′) we have that IdA′ ×

PrG0
induces the Morita equivalence of groupoids between A′ ×G0

(A×G0
A) and

A′ with inverse a Hilsum-Skandalis isomorphism that induces the isomorphism µ
in K-theory. Hence the diagram above induces the following commutative diagram
in K-theory:

(6.9) K∗Gn(A′×G0
(A×G0

A))(A
′ ×G0

A,PA′×G0
A)

µ

≈
//

I

K∗G(A′, PA′)

K∗Gn(B′×G0
(B×G0

B))(B
′ ×G0

B,PB′×G0
B)

(q×G0
4(p))∗

OO

µ

≈
// K∗G(B′, PB′)

q∗

OO

Diagram II. Remember the G-groupoid immersions

A
g×4−→ A′ ×G0

(A×G0
A)

and

B
f×4−→ B′ ×G0 (B ×G0 B)

used above to construct the deformation indices ( see (5.12) and 5.15). They fit in
the following commutative diagram of G-morphisms:

(6.10) A′ ×G0
(A×G0

A)
q×4(p)

// B′ ×G0
(B ×G0

B)

A

g×4

OO

p
// B

f×4

OO

By the functoriality of the deformation to the normal cone we have a morphism
of G-groupoids (see (5.13) for notations)

Gg

����

˜q×4(p)
// Gf

����

G
(0)
g

( ˜q×4(p))0

// G
(0)
f

whose restriction at t = 1 gives q × 4(p) and whose restriction at t = 0 gives
dvp n dvq : TvA n g∗TvA

′ → TvB n f∗TvB
′ as a morphism of G-groupoids where

dvp (resp. dvq) stands for the derivative in the tangent vertical direction. Since
pullbacks obviuosly commutes with restrictions we have the following commutative
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diagram
(6.11)

K∗Gn(TvAng∗TvA′)(g
∗TvA

′, Pg∗TvA′)
Indg̃

//

II

K∗Gn(A′×G0
(A×G0

A))(A
′ ×G0

A,PA′×G0
A)

K∗Gn(TvBnf∗TvB′)(f
∗TvB

′, Pf∗TvB′) Indf̃

//

(dvpndvq)∗
OO

K∗Gn(B′×G0
(B×G0

B))(B
′ ×G0

B,PB′×G0
B)

(q×G0
4(p))∗

OO

Diagram III. The groupoid morphism (equivariant w.r. to G)

dvpn dvq : TvAn g∗TvA
′ → TvB n f∗TvB

′

induces (again by functoriality of the deformation to the normal cone) a G-groupoid
morphism between the respective tangent groupoids

(dvpn dvq)tan : (TvAn g∗TvA
′)tan → (TvB n f∗TvB

′)tan

whose restriction at t = 1 gives dvp n dvq and whose restriction at zero gives
dvp⊕ dvq : TvA⊕ g∗TvA′ → TvB ⊕ f∗TvB′. For the same reason as diagram II we
have the following commutative diagram in K-theory:

(6.12)

K∗Gn(TvA⊕g∗TvA′)(g
∗TvA

′, Pg∗TvA′)

III

Ind
// K∗Gn(TvAng∗TvA′)(g

∗TvA
′, Pg∗TvA′)

K∗Gn(TvB⊕f∗TvB′)(f
∗TvB

′, Pf∗TvB′)

(dvp⊕dvq)∗
OO

Ind
// K∗Gn(TvBnf∗TvB′)(f

∗TvB
′, Pf∗TvB′)

(dvpndvq)∗
OO

Diagram IV. The commutativity of the following diagram follows from the
naturality of Thom isomorphism:

(6.13) K∗G(A,PA)
Thom

≈
// K∗Gn(TvA⊕g∗TvA′)(g

∗TvA
′, Pg∗TvA′)

K∗G(B,PB)

p∗

OO

Thom

≈
// K∗Gn(TvB⊕f∗TvB′)(f

∗TvB
′, Pf∗TvB′)

(dvp⊕dvq)∗
OO

By definition, diagram (6.8) decomposes, with the previous diagrams, in the
following form:

//

IV

//

III

//

II

//

I

//

OO OO

//

OO

//

OO

//

OO

and hence it is commutative. �

The product of two cycles: Let P and Q two twistings on G. Let (X,x) with

x ∈ K−pG (X,PX) and (Y, y) with y ∈ K−qG (Y,QY ) we put
(6.14)

(X,x) · (Y, y) := (X ×G0
Y, π∗Xx · π∗Y y) ∈ K−p−qG (X ×G0

Y, PX×G0
Y ⊗QX×G0

Y )

where πX , πY stand for the respective projections from X ×G0 Y to X and Y .
The following is the main result of this paper:

Theorem 6.15. For any Lie groupoid, the Total twisted geometric K-homology
group

Kgeo
TW,0(G) :=

⊕
α∈H1(G,PU(H))

Kgeo
0 (G,Pα)
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has a ring structure with the product described above and

Kgeo
TW,1(G) :=

⊕
α∈H1(G,PU(H))

Kgeo
1 (G,Pα)

has a Kgeo
TW,0(G)-module structure.

Proof. We only have to prove that the product described above is well defined
in the K-homology group. Let P and Q two twistings on G. Let (X,x) with

x ∈ K−pG (X,PX) and (Y, y) with y ∈ K−qG (Y,QY ). Suppose we have smooth maps

X
g−→ X ′ and Y

f−→ Y ′. We would finish if we can show that

(X ×G0
Y, π∗Xx · π∗Y y) ∼ (X ′ ×G0

Y ′, π∗X′g!x · π∗Y ′f !y).

In fact we can consider the smooth map

X ×G0
Y

g×f−→ X ′ ×G0
Y ′

which fits the following commutative diagrams

X ×G0
Y

πX

��

g×f
// X ′ ×G0

Y ′

πX′

��

X
g

// X ′

and

X ×G0
Y

πY

��

g×f
// X ′ ×G0

Y ′

πY ′

��

Y
f

// Y ′

The result now follows from proposition 6.7 and proposition 5.18 since they imply

(g × f)!(π∗Xx · π∗Y y) = (g × f)!(π∗Xx) · (g × f)!(π∗Y y) = π∗X′g!x · π∗Y ′f !y

and hence

(X ×G0
Y, π∗Xx · π∗Y y) ∼ (X ′ ×G0

Y ′, π∗X′g!x · π∗Y ′f !y).

�

7. The Baum-Connes map

Recall that in [5] the Baum-Connes assembly map

(7.1) Kgeo
∗ (G,Pα)

µα
// K−∗(G,Pα)

was constructed for every twisting α on G where K∗(G,Pα) := K−∗(C
∗
r (G,Pα))

stands for the K−theory of the reduced C∗-algebra associated to the twisted
groupoid (G,Pα), (there is also the assembly map taking values on the maximal
C∗-algebra). The definition of the Baum-Connes map is given by

µα(X,x) := πX !(x) ∈ K∗(G,Pα)

where πX ! is the pushforward map defined in [5]. Consider the Total Twisted
K-theory group

K∗TW (G) :=
⊕

α∈H1(G,PU(H))

K∗(G,Pα).
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By the theorem above we have a ring (module for the odd case) structure on the
image of the Total twisted Baum-Connes assembly map

(7.2) Kgeo
TW,0(G)

µTW
// K0

TW (G)

where µTW := ⊕µα whenever µTW is injective. In particular if µTW is an isomor-
phism then K0

TW (G) has a ring (module for the odd case) structure such that µTW
is a ring isomorphism.
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E-mail address: mavelasquezm@gmail.com

URL: https://sites.google.com/site/mavelasquezm/


	1. Introduction
	Aknowledgments

	2. Preliminaries on groupoids
	2.1. The Hilsum-Skandalis category
	2.2. Twistings on Lie groupoids
	2.3. Deformation groupoids

	3. Twisted equivariant K-theory
	3.1. Additive structure
	3.2. Multiplicative structure
	3.3. Topologies on Fredholm Operators
	3.4. Relation with the Kasparov external product

	4. Thom isomorphism
	The spin representation and twisted K-Theory

	5. Pushforward Map 
	6. Connes Approach to twisted K Homology for Lie groupoids
	7. The Baum-Connes map
	References

