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Abstract. We use a spectral sequence developed by Graeme Segal in order to
understand the twisted G-equivariant K-theory for proper and discrete actions.

We show that the second page of this spectral sequence is isomorphic to a

version of Bredon cohomology with local coefficients in twisted representations.
We furthermore explain some phenomena concerning the third differential of

the spectral sequence, and we recover known results when the twisting comes

from finite order elements in discrete torsion.

Introduction

One of the tools for calculating generalized cohomology groups is the Atiyah-
Hirzebruch spectral sequence which was originally developed in [4] in order to study
K-theory. Many generalizations of this spectral sequence have been developed for
studying cohomology theories in the equivariant context and we will pay specific
attention to the spectral sequence developed by Segal in [26].

Twisted equivariant K-theory was defined by Atiyah and Segal in [2] using bun-
dles of Fredholm operators and was extended to the context of proper actions by M.
Joachim and the first three authors in [6]. Due to the relation of the Verlinde Alge-
bra to the twisted equivariant K-theory of a compact Lie group acting on itself by
conjugation stablished by Freed, Hopkins and Teleman in [16], computational meth-
ods have become necessary in order to calculate the twisted equivariant K-theory
groups. Specialized to the case of the conjugation action, the Künneth Spectral se-
quence [9], and the Rothenberg-Steenrod spectral sequence for twisted equivariant
K-homology [11] have been successfully used to determine the twisted equivariant
K-theory groups. Theoretical tools like the completion theorem of Lahtinen [19],
together with the previously described methods, define the group of ideas used for
the computation in [18] of the twisted K-theory of the loop space of the classifying
space of a simply connected and simple compact lie group.

Besides from notable specific examples explained in [15], and the case when the
twisting comes from discrete torsion [12] (where a method is used to reduce the
construction of the spectral sequence to an untwisted version as done in [10]), a
systematic study of a spectral sequence for computing twisted equivariant K-theory
under the presence of a generic twist has not been carried out. This is the main
objective of this work.

In [6] the twisted equivariant K-theory for a properG-ANRX was defined given a
Stable equivariant Projective Unitary bundle; these bundles were shown in [6] to be
classified by elements of the degree three Borel cohomology group H3(X×GEG;Z).
In this note we use the explicit construction of the universal stable equivariant
projective unitary bundle done in [6] in order to determine the first two pages of
Segal’s spectral sequence converging to the twisted equivariant K-theory groups.
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For this purpose we develop a twisted version of Bredon cohomology, cohomology
which turns out to determine the E2-page of Segal’s spectral sequence once it is
applied to an equivariantly contractible cover.

The construction of the spectral sequence extends and generalizes previous work
of C. Dwyer [12], who only treated the twistings which are classified by cohomology
classes of finite order which lie in the image of the canonical map H3(BG,Z) →
H3(X×GEG;Z); these twistings take the name of discrete torsion twistings.

The main result of this note, which is Theorem 4.7, relies on the construction
and the properties of the universal stable equivariant projective unitary bundle
carried out in [6]. Since this work can be seen as a continuation of what has been
done in [6], we will use the notation, the definitions and the results of that paper.
We will not reproduce any proof that already appears in [6], instead we will give
appropriate references whenever a definition or a result of [6] is used.

We emphasize that the topological issues that may appear when working with
the Projective Unitary Group have all been resolved in [22, Section 15] when it is
endowed with the norm topology. We therefore assume in this work that we are
working with the norm topology when discussing topological properties of operator
spaces.

This note is organized as follows. In Section 1 a version of Bredon cohomol-
ogy associated to an equivariant cover of a space is constructed. In Section 2 the
basics of Transformation Groups and Parametrized Homotopy Theory needed for
the construction are quickly reviewed. This is used to construct a version of Bre-
don cohomology with local coefficients. In Section 3 the construction of twisted
equivariant K-theory for proper and discrete actions given in [6] is reviewed. In
Section 4 , the Bredon cohomology with local coefficients in twisted representations
is shown to be isomorphic to the second page of a spectral sequence converging to
twisted equivariant K-theory. Some phenomena concerning the third differential
of this spectral sequence is also analyzed. In Section 5 some simple examples are
given including the case of discrete torsion which was developed by Dwyer in [12].
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fourth author acknowledges the support of an UNAM postdoctoral fellowship.

Contents

Introduction 1
Acknowledgements 2
1. Bredon cohomology associated to a cover 3
2. Parametrized equivariant topology 5
3. Twisted equivariant K-theory and local coefficient versions of Bredon

cohomology 7
3.1. Twisted equivariant K-theory 7
3.2. Universal projective unitary stable equivariant bundle 8
3.3. Bredon cohomology with local coefficients 9
4. Segal’s spectral sequence for twisted equivariant K-theory 12
4.1. The third differential 14



SEGAL’S SPECTRAL SEQUENCE IN TWISTED EQUIVARIANT K-THEORY 3

5. Applications 17
5.1. Equivariant K-theory 17
5.2. The case of η = 0 17
5.3. Twisted equivariant K-theory for trivial G-spheres 17
5.4. Discrete torsion 18
6. Appendix: Brown representability 19
6.1. Based G-CW-complexes 20
6.2. qf -model category structure for G-CW-complexes over B 20
6.3. Generating sets in the category of proper G-CW-complex over B. 23
6.4. Equivariant parametrized homotopy theories and Brown representa-

bility 24
References 24

1. Bredon cohomology associated to a cover

We introduce first the formalism of modules and spaces over a category (see [10]
for details).

Definition 1.1. Let C be a small category. A contravariant C-space is a contravari-
ant functor C −→ SPACES to the category of compactly generated spaces.

Definition 1.2. Let X and Y be C-spaces of the same variance. Their mapping
space HomC(X,Y ) is the space of natural transformations between the functors
X and Y , endowed with the subspace topology of the product of the spaces of
pointed maps Πc∈Obj(C)Map(X(c), Y (c)), where Map(X(c), Y (c)) has the compact-
open topology for any c ∈ Obj(C).

Let I be the constant functor with value the interval [0, 1]. A C-homotopy
between two C-maps f0, f1 : X → Y is a natural transformation H : X × I → Y
such that the composition H ◦ ik with the inclusions ik : X → X × I for k = 0, 1
are equal to fk. The set of C-homotopy classes of maps between two spaces will be
denoted by [X,Y ]C

Definition 1.3. Let X be a contravariant, pointed C-space over C and let Y be a
covariant C-space over C. Their tensor product X ⊗C Y is the space defined by∐

c∈Obj(C)

X(c)× Y (c)/ ∼

where ∼ is the equivalence relation generated by (X(φ)(x), y) ∼ (x, Y (φ)(y)) for
all morphisms φ : c→ d in C and points x ∈ X(d) and y ∈ Y (c).

Definition 1.4. Let C be a small category. A free C-CW complex is a contravariant
C-space together with a filtration

X0 ⊂ X1 ⊂ . . . = X

such that X = colimnXn and each Xn is obtained from the Xn−1 by a pushout
consisting of maps of C-spaces of the form∐

i∈In MorC(?, ci)× Sn−1

��

// Xn−1

��∐
i∈In MorC(?, ci)×Dn // Xn

where the ci’s are objects in C and the spaces MorC(?, ci) carry the discrete topology.
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Definition 1.5. Let C be a small category and R be a commutative ring. A
contravariant RC-module is a contravariant functor from C to the category of R-
modules. A contravariant RC-chain complex is a functor from C to the category of
R-chain complexes.

We write C-module for a ZC-module.
An RC-module F is free if it is isomorphic to an RC-module of the form

F (?) =
⊕
i∈I

R[MorC(?, ci)]

for some index set I and objects ci ∈ C.
Given two RC-modules A, B of the same variance, the R-module

HomRC(A,B)

is the module of natural transformations of functors from C to R-modules.

Definition 1.6. Given a category C and an object c in C, the category over c,
C ↓ c is the category where the objects are morphisms ϕ : c0 → c and a morphism
between ϕ0 : c0 → c and ϕ1 : c1 → c is a morphism ψ : c0 → c1 in C such that
ϕ0 = ϕ1 ◦ ψ.

Dually, the category under an object c, denoted c ↓ C is the category where
the objects are morphisms ϕ : c → c0 and a morphism between ϕ0 : c → c0 and
ϕ : c→ c1 is a morphism in C, ψ : c0 → c1 such that ϕ1 = ψ ◦ ϕ0.

Fix an object c, and denote by BC ↓ c the classifying space of the category over
c and by Bc ↓ C the classifying space of the category under c.

The contravariant, free ZC-chain complex CZ
∗ (C) is defined on every object as

the cellular Z-chain complex of BC ↓ c.

Definition 1.7. Let M be a contravariant C-module. The cohomology of C with
coefficients in M , Hn(C,M) is defined to be the cohomology groups of the cochain
complex of natural transformations between the C-modules CZ

∗ (C) and M ,

Hn(C,M) := HnHomZC(C
Z
∗ (C),M).

We now specialize to the categories relevant to twisted K-theory and Bredon
cohomology with local coefficient systems.

Let G be a group and X be a proper G-ANR. Let U = {Ui}i∈Σ be a countable
covering of X by open, G-invariant sets X =

⋃
i∈Σ

Ui. Given a subset σ ⊂ Σ,

define Uσ = ∩
i∈σ

Ui. We will assume that for all σ, the open set Uσ is G-homotopy

equivalent to an orbit G/Hσ for a finite group Hσ ⊂ G. The existence of such
a cover, sometimes known as contractible slice cover, is guaranteed for proper G-
ANR’s by an appropriate version of the slice Theorem (see [1]).

The category associated to U , denoted by NGU , has for objects
⊔
σ⊂Σ

Uσ and for

morphism the inclusions Uτ → Uσ whenever there is an inclusion of sets σ ⊂ τ .
A coefficient system with values on R-modules is a contravariant functor NGU →

R−Mod.

Definition 1.8. Let X be a proper G-space with a contractible slice cover U , and
let M be a coefficient system. Define the Bredon cohomology groups with respect
to U as the cohomology groups of the category NGU with coefficients in M ,

Hn
G(X,U ;M) := Hn(NGU ,M).

Whenever we have a refinement V → U of the G-invariant cover, we get a group
homomorphism

Hn
G(X,U ;M)→ Hn

G(X,V;M ′)
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where the functor M ′ is obtained by the composition of the functor NGV → NGU
with the functor M .

Remark 1.9. For more general spaces than a proper G-ANR, a version of Čech
cohomology might be constructed by taking the inverse limit over open covers U of
the space X:

Ȟn
G(X;M) := lim

U
Hn(NGU ,M).

Details are provided in [24]. Other approaches to Čech versions of Bredon coho-
mology include [17].

2. Parametrized equivariant topology

The orbit category was introduced by Bredon for the definition of cohomological
invariants of spaces with an action. We introduce now a formalism for taking into
account also twisting data.

Definition 2.1. Let G be a discrete group. The orbit category OPG, with respect
to the family of finite subgroups, has as objects

Obj(OPG) = {G/H | H is a finite subgroup of G}
and as morphisms G-maps

MorOPG(G/H,G/K) = Map(G/H,G/K)G.

Given a G-space X, the fixed point set system of X, denoted by ΦX, is the
OPG-space defined by:

ΦX(G/H) := Map(G/H,X)G = XH

and if θ : G/H → G/K corresponds to gK ∈ (G/K)H then

ΦX(θ)(x) := gx ∈ XH

whenever x ∈ XK . The functor Φ becomes a functor from the category of proper
G-spaces to the category of OPG-spaces.

If X is a contravariant functor from OPG to spaces, and ∇ is the covariant functor
from OPG to spaces which assigns to an orbit G/H the homogenous space G/H, one
can define the G-space

X̂ :=
⊔

c∈Obj(OPG)

X (c)×∇(c)/ ∼

where ∼ is the equivalence relation generated by (X (φ)(x), y) ∼ (x,∇(φ)(y)) for all
morphisms φ : c → d in OPG and points x ∈ X (d) and y ∈ ∇(c), and the G-action
comes from the left translation action on G/H.

For G a discrete group [10, lemma 7.2] the functors Φ and ×OPG ∇ are adjoint,

i.e. for a OPG space X and a G-space Y there is a natural homeomorphism

Map(X ×OPG ∇, Y )G
∼=→ HomOPG(X ,ΦY ),

and moreover, the adjoint of the identity map on ΦY under the above adjunction,
is a natural G-homeomorphism

(ΦY )×OPG ∇
∼=→ Y.

A model for the homotopical version of the previous construction is defined as
follows. Consider the topological category (X ,∇) whose objects are

Obj((X ,∇)) =
⊔

c∈Obj(OPG)

X (c)×∇(c)
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and whose morphisms consist of all triples (x, φ, y) where φ : c → d is a mor-
phism in OPG and x ∈ X (d) and y ∈ ∇(c), with source(x, φ, y) = (X (φ)(x), y) and

target(x, φ, y) = (x,∇(φ)(y)). Define the space X̂ h as the geometric realization

of the category (X ,∇). The space X̂ h is provided with a map X̂ h → X̂ which
is a model for the map from the homotopy colimit to the colimit. This map is a
G-homotopy equivalence if X is a free OPG-complex.

We recall now results on the homotopy theory of spaces with an action of a group
G and OPG-spaces.

Definition 2.2. Let G be a discrete group. Given a family F of subgroups of G,
which is closed under conjugation and taking subgroups.

• A map f : X → Y of G-spaces is called an F-equivalence if for every
finite subgroup H ≤ G, the map fH : XH → Y H is a weak equivalence of
topological spaces.

• A map f : X → Y of G-spaces is called an F-fibration if for every finite
subgroup H ≤ G, the map fH : XH → Y H is a Serre fibration of topolog-
ical spaces.

• A map f : X → Y of G-spaces is called an F-cofibration if it has the
left lifting property with respect to any map which is F-equivalence and
F-fibration.

The qf -model structure on OPG-spaces, with levelwise weak equivalences and
cofibrations having the left homotopy extension property is Quillen equivalent to
the homotopy category of compactly generated, weak Hausdorff G-spaces, with the
above mentioned model category structure for the family F = ALL of all subgroups
of G [14]. In the Appendix we prove a parametrized version of this result and we
show some more facts concerning the homotopy category of both G-spaces and
OPG-spaces.

We now introduce the category of OPG-spectra. Recall that a spectrum is a
sequence of pointed spaces {En}n∈Z with structure maps En ∧ S1 → En+1.

A (strong) map of spectra f : E → F is a sequence of maps compatible with the
structure maps.

Finally, recall that a spectrum is called an Ω-spectrum if the adjoint of the
structure maps En → ΩEn+1 are weak homotopy equivalences.

Definition 2.3. Let G be a discrete group. An OPG-spectrum is a contravariant
functor E : OPG → SPECTRA to the category of spectra and strong maps.

Given an OPG-space X , we denote by

ΣX = X+ ∧ S1

the space given on each object G/H as the reduced suspension X+(G/H) ∧ S1,
together with the structure maps given by smashing with the identity map.

The n-th suspension ΣnX is the space defined on objects as X (G/H)+ ∧ Sn.

Definition 2.4. Let X be an OPG-space. The naive OPG-suspension spectrum of
X , denoted by Σ∞X , is defined on each object G/H as the n-th suspension space
Σ∞OPG

X (n) = ΣnX = X+ ∧ Sn with the OPG-structure maps obtained by smashing

the OPG-maps of X with the identity map Sn → Sn and spectra structure maps
given by the homeomorphisms Sn ∧ S1 → Sn+1.

We now introduce parametrized versions of the constructions defined in the orbit
category.
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Definition 2.5. Fix a contravariant OPG-space B. A OPG-space over B is a con-
travariant OPG space X endowed with a natural transformation of OPG-spaces pX :
X → B; this map is usually called projection.

A map of OPG-spaces over B is a map of OPG-spaces F : X → Y, which in addition
is compatible with projections in the sense that pY ◦ F = pX .

The space of maps over B, denoted by HomOPG(X ,Y)B, is defined as the subspace

of the OPG-mapping space consisting of OPG-maps which are compatible with the
projection maps:

HomOPG(X ,Y)B := {F ∈ HomOPG(X ,Y) | pY ◦ F = pX }.

We denote the set of homotopy classes of maps over B by

OPG [X ,Y]B := π0

(
HomOPG(X ,Y)B

)
.

3. Twisted equivariant K-theory and local coefficient versions of
Bredon cohomology

3.1. Twisted equivariant K-theory. Twisted equivariant K-theory for proper
actions of discrete groups was introduced in [6]. In what follows we will recall its
definition using Fredholm bundles and its properties following [6] and the classifi-
cation of equivariant principal bundles done in [6, 22].

Definition 3.1. Let X be a proper G-space with the homotopy type of a proper
G-ANR. Let H be a separable complex Hilbert space and

U(H) = {U : H → H | U ◦ U∗ = U∗ ◦ U = Id}

be the unitary group endowed with the norm topology. The group PU(H) =
U(H)/S1 with the quotient topology is the group of projective unitary operators.

A projective unitary, stable G-equivariant bundle is a right PU(H), principal
bundle

PU(H)→ P → X

endowed with a left G action lifting the action on X such that:

• the left G-action commutes with the right PU(H) action, and
• for all x ∈ X there exists a G-neighborhood V of x and a Gx-contractible

slice U of x with V equivariantly homeomorphic to U ×Gx G with the
action

Gx × (U ×G)→ U ×G, k · (u, g) = (ku, gk−1),

together with a local trivialization

P |V ∼= (PU(H)× U)×Gx G

where the action of the isotropy group is:

Gx × [(PU(H)× U)×G] → (PU(H)× U)×G
k · [(F, y), g] 7→ [(fx(k)F, ky), gk−1]

with fx : Gx → PU(H) a fixed stable homomorphism, in the sense that

the unitary representation H induced by the homomorphism f̃x : G̃x =

f∗xU(H)→ U(H) contains each of the irreducible representations of G̃x on
which S1 acts by multiplication an infinite number of times.

Let X be a G-space and P → X a projective unitary stable G-equivariant
bundle over X. Recall [2, 6] that the space of Fredholm operators is endowed with
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a continuous right action of the group PU(H) by conjugation, therefore we can take
the associated bundle over X

Fred(P ) := P ×PU(H) Fred(H),

where Fred(H) is the space of Fredholm operators with the norm topology, and
with the induced G action given by

g · [(λ,A)] := [(gλ,A)]

for g in G, λ in P and A in Fred(H).
Denote by

Γ(X; Fred(P ))

the space of sections of the bundle Fred(P ) → X and choose as base point in this
space the section which chooses the identity operator on each fiber. This section
exists because the PU(H)-action on IdH is trivial, and therefore

X ∼= P/PU(H) ∼= P ×PU(H) {IdH} ⊂ Fred(P );

let us denote this identity section by s.
The proof of Bott periodicity done in [5, Theorem 5.1] shows the homotopy

equivalence Ω2(Fred(H)) ' Fred(H). This proof can be carried without changes
whenever a compact Lie group K acts in H with infinitely many representations for
each irreducible representation appearing in H. Taking equivariant Fredholm oper-
ators Fred(H)K we obtain the homotopy equivalence Ω2(Fred(H)K) ' Fred(H)K .
Therefore we obtain Bott periodicity for the twisted and equivariant case an we
may define the twisted G-equivariant K-theory groups as follows.

Definition 3.2. Let X be a connected G-space and P a projective unitary stable
G-equivariant bundle over X. The twisted G-equivariant K-theory groups of X
twisted by P are defined as the homotopy groups of the G-equivariant sections

Kp
G(X;P ) := π0

(
Γ(X; Fred(P ))G, s

)
whenever p is even

Kp
G(X;P ) := π1

(
Γ(X; Fred(P ))G, s

)
whenever p is odd

where s denotes the identity section.

3.2. Universal projective unitary stable equivariant bundle. In [6, Section
3.2] it was constructed the universal projective unitary stable equivariant bundle by
gluing the universal bundles over each orbit type. Let us recall how this bundle is
assembled since we need this information in order to define the Bredon cohomology
with local coefficients.

The base of this universal bundle was constructed from the OPG-space |C| which at
each orbit type G/K assigns the space |CG/K |; this space is the geometric realization
of the groupoid

CG/K = [Functst(GnG/K,PU(H))/Map(G/K,PU(H))]

whose objects are functors Functst(G n G/K,PU(H)) from the category defined
by the left G action on G/K, denoted by G n G/K, and the category defined by
the group PU(H) whose restriction to Hom(K,PU(H)) are stable homomorphisms,
and whose morphisms are given by natural transformations Map(G/K,PU(H)).

In the category of OPG-spaces, a classifying map for the bundle ΦP → ΦX is
obtained by map µ : ΦX → |C| assembling the maps µG/K : XK → |CG/K |, with
the property that

(µG/K)∗|DG/K | ∼= P |XK
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where |DG/K | → |CG/K | is the universal projective unitary stableNG(K)-equivariant
bundle over |CG/K | and which is defined as follows [6, Def. 4.1]: the morphisms
Mor(DG/K) are

Functst(GnG/K,PU(H))× PU(H)×Map(G/K,PU(H))

and the objects Obj(DG/K)

Functst(GnG/K,PU(H))× PU(H),

with structural maps source(ψ,F, σ) = (ψ, F ), target(ψ,F, σ) = (σF−1ψFσ−1, σ([K]))
and composition comp((ψ, F, σ), (σF−1ψFσ−1, σ([K]), δ) = (ψ, F, δσ([K])−1σ). The
fucntor DG/K → CG/K forgets the PU(H) component, and the map |DG/K | →
|CG/K | denotes the map of the geometric realizations.

Denote by Fred(|D|)) the OPG-space over |C| defined on the orbit type G/K by

Fred(|DG/K |))K :=
(
|DG/K | ×PU(H) Fred(H)

)K
and denote by p : Fred(|D|)→ |C| the projection map which is the assembly of the
canonical projection maps

pG/K : Fred(|DG/K |)K → |CG/K |.

Since the identity operator IdH on the Hilbert space H is invariant under the
conjugation action of PU(H), then the projection map p has a canonical section

s : |C| → Fred(|D|)

which assigns to every point the operator IdH.
Alternatively, we could define the twisted equivariant K-theory groups in the

category of OPG-spaces in the following way. For a proper G-CW complex X en-
dowed with a map of OPG-spaces µ : ΦX → |C|, we can alternatively define the
twisted equivariant K-theory groups of the pair (ΦX;µ) as the homotopy groups
of the pointed space (

HomOPG(ΦX,Fred(|D|))|C|, s ◦ µ
)

namely

Kp
G(ΦX;µ) := π0

(
HomOPG(ΦX,Fred(|D|))|C|, s ◦ µ

)
whenever p is even

Kp
G(ΦX;µ) := π1

(
HomOPG(ΦX,Fred(|D|))|C|, s ◦ µ

)
whenever p is odd.

Remark 3.3. We would like to note here that an alternative, and homotopically
equivalent, construction of the universal projective unitary stable equivariant bun-
dle was done in [22, Section 15]. There all topological issues regarding the existence
of local sections were resolved.

3.3. Bredon cohomology with local coefficients. The local coefficients for the
Bredon cohomology that we are going to define in this section are constructed from
the fiberwise homotopy groups of the fiber bundles

pG/K : Fred(|DG/K |)K → |CG/K |.

In order to have an explicit definition of these local coefficients, we need to recall
some properties of the previous fibration.

The only non trivial homotopy groups of the spaces |CG/K | exist in degree 0,

1 and 3. We know by [6, Theorem 1.9] that π0(|CG/K |) ∼= Ext(K,S1) is the set

of isomorphism classes of S1-central extensions of K, and that the fundamental
group of each connected component of |CG/K | is isomorphic to Hom(K,S1). Let us
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denote by |CG/K |K̃ the connected components of |CG/K | associated the S1-central

extension K̃; hence

|CG/K | =
⋃

K̃∈Ext(S1,K)

|CG/K |K̃ .

Now, for any point x ∈ |CG/K |K̃ there is associated a specific stable homomor-

phism α : K → PU(H) with K̃ ∼= α∗(U(H)) and lift α̃ : K̃ → U(H) such that the
fiber

p−1
G/K(x) ⊂

(
|DG/K | ×PU(H) Fred(H)

)K
is isomorphic to the space of K-invariant Fredholm operators

Fred(H)α̃ := {F ∈ Fred(H) | α̃(k)F = Fα̃(k) for all k ∈ K̃}.

The index map

ind : Fred(H)α̃ → RS1(K̃)

F 7→ [ker(F )]− [coker(F )]

is a homomorphism of groups that induces an isomorphism of groups at the level
of the connected components

ind : π0(p−1
G/K(x)) = π0(Fred(H)α̃)

∼=→ RS1(K̃);(3.4)

here RS1(K̃) denotes the Grothendieck group of isomorphism classes of K̃ repre-

sentations where ker(K̃ → K) acts by multiplication of scalars. Hence we have that
the connected components of the fibers of the map

pG/K : Fred(|DG/K |)K ||CG/K |K̃ → |CG/K |K̃

are all isomorphic to the group RS1(K̃) via the index map.

Definition 3.5. Consider the OPG-space TR0 over |C| which at each orbit type
G/K is defined by

(TR0)G/K :=
⊔

K̃∈Ext(K,S1)

|CG/K |K̃ ×Hom(K,S1) RS1(K̃)

where |CG/K |K̃ is the universal cover of |CG/K |K̃ , the action of Hom(K,S1) on the

left hand side is given by an explicit isomorphism π1(|CG/K |K̃) ∼= Hom(K,S1) and
the action on the right hand side is given by

Hom(K,S1)×RS1(K̃)→ RS1(K̃), (ρ, V ) 7→ ρ⊗C V

where ρ is understood as the 1-dimensional representation of K̃ that the homomor-
phism ρ defines. Denote by t : |CG/K | → (TR0)G/K the 0-section.

Note that the definition of the explicit isomorphism π1(|CG/K |K̃) ∼= Hom(K,S1)
is based on the following construction. The first two homotopy groups of |CG/K |
come from the first two homotopy groups of Homst(K,PU(H)), the space of stable
homomorphisms. Denote by Homst(K,PU(H))K̃ the connected component that

defines K̃ and let HomS1(K̃,U(H)) be the space of homomorphisms such that

ker(K̃ → K) acts on H by multiplication. Then the projection map

HomS1(K̃,U(H))→ Homst(K,PU(H))K̃

is a principal Hom(K,S1)-bundle where Hom(K,S1) acts on HomS1(K̃,U(H)) by
multiplication [22, Prop. 15.7], and therefore the projection map is a universal
cover for the base.
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For a stable homomorphism α : K → PU(H) such that α∗U(H) ∼= K̃, we choose

a lift α̃ : K̃ → U(H) in order to define the index map

indα̃ : Fred(H)α → RS1(K̃)

F 7→ [ker(F )]− [coker(F )]

Whenever we choose another lift α̃′ = α̃ · ρ with ρ : K → S1, we have that

indα̃
′
(F ) = indα̃(F ) · ρ, and since the structural group of Fred(|DG/K |)K is con-

nected, we have that the fiberwise index map

Fred(|DG/K |)K
ind
//

pG/K

��

(TR0)G/K

qG/K

��

|CG/K |

sG/K

TT

=
// |CG/K |

tG/K

TT
(3.6)

is a well defined map of fiber bundles, and that it induces an isomorphism of the
connected components of the fibers

π0(p−1
G/K(x)) ∼= RS1(K̃)(3.7)

for every point x ∈ |CG/K |K̃ and every S1-central extension K̃. Assembling these

maps we obtain an index map at the level of the OPG-spaces over |C|

Fred(|D|) ind
//

p

��

TR0

q

��

|C|

s

UU

=
// |C|

t

UU
(3.8)

which induces an isomorphism on the connected components of the fibers.
To construct the Bredon cohomology with coefficients in twisted representations,

we perform a construction similar to the one done in Definition 3.5 but we replace

the group of twisted representations RS1(K̃) by HRS1(K̃), the Eilenberg-MacLane

spectrum of the abelian group RS1(K̃).

Denote by HRS1(K̃) the Eilenberg-MacLane spectrum associated to the group

RS1(K̃), i.e. at level n ≥ 0 we have (HRS1(K̃))n = K(RS1(K̃), n) whereK(RS1(K̃), n)
is a functorial model for the Eilenberg-MacLane space whose only non-trivial homo-

topy group is RS1(K̃) in degree n, and which comes endowed with weak homotopy

equivalences ΩK(RS1(K̃), n) ' K(RS1(K̃), n+ 1).

Definition 3.9. For n ≥ 0 consider the OPG-space TRn over |C| of twisted repre-
sentations, such that on the orbit type G/K we have

(TRn)G/K :=
⊔

K̃∈Ext(K,S1)

|CG/K |K̃ ×Hom(K,S1) K(RS1(K̃), n)

where |CG/K |K̃ is the universal cover of |CG/K |K̃ , the action of Hom(K,S1) on the

left hand side is given by an explicit isomorphism π1(|CG/K |K̃) ∼= Hom(K,S1) and
the action on the right hand side is the one induced on the Eilenberg-MacLane

space K(RS1(K̃), n) by the action

Hom(K,S1)×RS1(K̃)→ RS1(K̃), (ρ, V ) 7→ ρ⊗C V.

Denote by rn : TRn → |C| the natural projection map and by σn : |C| → TRn the

section which chooses the base point in K(RS1(K̃), n). For n < 0 let TRn := |C|
with rn = σn = Id|C|.
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The weak homotopy equivalences ΩK(RS1(K̃), n) ' K(RS1(K̃), n + 1) induce
weak homotopy equivalences ΩTRn ' TRn+1 in the category of OPG-spaces over
|C|. Assembling the spaces TR = {TRn}n∈Z we obtain the following lemma.

Lemma 3.10. TR = {TRn}n∈Z is a Ω-spectrum in the category of OPG-spaces over
|C|.

We are now ready to define the twisted Bredon cohomology associated to twisted
representations.

Definition 3.11. Let X be a proper G-ANR endowed with a fixed map of OPG-
spaces ξ : ΦX → |C|. The Bredon cohomology groups with local coefficients in
twisted representations associated to the pair (ΦX; ξ) are defined as the connected
components of the based spaces HomOPG(ΦX,TRn)|C|, i.e.

HpG(ΦX, ξ) := π0

(
HomOPG(ΦX,TRp)|C|;σp ◦ ξ

)
.

Alternatively, in the category of OPG-spectra over |C| we have:

HpG(ΦX, ξ) := πp

(
HomOPG(Σ∞ΦX,TR)|C|;σ ◦ ξ

)
.

These cohomology groups satisfy the axioms of a parametrized G-equivariant
cohomology theory and the proof follows the same lines as the one for the twisted
equivariant K-theory groups which can be found in [6, Chapter 5]; we will not
reproduce its proof here.

Remark 3.12. Other approaches to Bredon cohomology with local coefficients in-
clude [8], where methods from the theory of crossed complexes and their classifying
spaces are used to produce a classifying object for Bredon cohomology with local
coefficients.

4. Segal’s spectral sequence for twisted equivariant K-theory

We will use Segal’s method [26] to obtain a filtration of the homotopy theoreti-
cally defined twisted equivariant K-theory, as well as a version of Bredon cohomol-
ogy associated to a cover to handle the homotopical version of Bredon cohomology
described in the previous section. We describe first the local coefficient system
associated to twisted equivariant K-theory.

Definition 4.1 (Local coefficient system of twisted equivariant K-theory). Con-
sider a projective unitary stable bundle P over a proper G-space X and a G-
invariant and countable cover U for which each open set Uσ is equivariantly con-
tractible, i.e. G-homotopic to G/Hσ for some finite subgroup Hσ depending on the
set Uσ. We can define local coefficient systems by the functors

KpG(?, P?) : NGU → Z−Mod

Uτ ⊂ Uσ 7→ Kp
G(Uσ;P |Uσ )→ Kp

G(Uτ ;P |Uτ )

Proposition 4.2. Let X be a proper compact G-ANR and P a projective unitary
stable equivariant bundle. Then Segal’s spectral sequence applied to K∗G(X,P ) and
associated to the locally finite and equivariantly contractible cover U , has as sec-
ond page Ep,q2 the cohomology of NGU with coefficients in the functor K0

G(?, P |?)
whenever q is even, i.e.

(4.3) Ep,q2 := Hp
G(X,U ;K0

G(?, P |?))

and is trivial if q is odd. Its higher differentials

dr : Ep,qr → Ep+r,q−r+1
r

vanish for r even.
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Proof. Since the cover consists of equivariantly contractible spaces we know that the
groups Kq

G(Uσ;P |Uσ ) are periodic and trivial for q odd. Therefore the fact that the
second page of Segal’s spectral sequence is isomorphic to Hp

G(X,U ;KqG(?, P |?)) fol-
lows directly from Segal’s original proof. Bott’s isomorphism implies thatK2n

G (Uσ;P |Uσ ) ∼=
K0
G(Uσ;P |Uσ ) and therefore we have that the even differentials vanish. �

We are mainly interested in the second page of the spectral sequence, and to
understand it we need to elaborate on the cohomology of NGU with coefficients
in the functor K0

G(?, P |?)) and compare it with the homotopy theoretic definition
given in Section 3. This comparison will be done in the category of OPG-spaces over
|C|.

We claim the following result:

Theorem 4.4. Let U be a locally finite cover of G-invariant sets of X such that
each non-trivial intersection of sets in the cover is equivariantly contractible. Then
for any map µ : ΦX → |C| the second page of Segal’s spectral sequence applied to
the groups K∗G(ΦX;µ) is isomorphic to the Bredon cohomology groups with local
coefficients in twisted representations HpG(ΦX,µ); i.e. for q even

Ep,q2
∼= HpG(ΦX,µ).

Proof. Applying Segal’s spectral sequence to HpG(ΦX,µ) with the cover U we get
that the second page of this spectral sequence is

Ēp,q2 = Hp
G(ΦX,U ;HqG(?, µ|?)).

Since the open sets Uσ are equivariantly contractible we have that for q 6= 0

HqG(ΦUσ, µ|ΦUσ )) = 0

and therefore Ēp,q2 = 0 for q 6= 0. Therefore the spectral sequence collapses at the
second page and this page becomes

Ēp,02 = Hp
G(ΦX,U ;H0

G(?, µ|?)) ∼= HpG(ΦX,µ)

where H0
G(?, µ|?) is the local coefficient system defined by

H0
G(?, µ|?) : NGU → Z−Mod

Uτ ⊂ Uσ 7→ H0
G(ΦUσ, µ|ΦUσ )→ H0

G(ΦUτ , µ|ΦUτ ).

Now we need to show that there is a canonical way to assign isomorphisms

φσ : K0
G(ΦUσ;µ|ΦUσ )

∼=→ H0
G(ΦUσ, µ|ΦUσ )(4.5)

which commute with the restriction maps on each side; the existence of such iso-
morphisms would induce a canonical isomorphism between the complexes defined
in the first page of the spectral sequences

Ep,01

∼=→ Ēp,01

and therefore would induce an isomorphism at the second pages

Ep,02

∼=→ Ēp,02 .

The existence of the isomorphisms described in (4.5) and which are compatible with
the inclusions, follow from the explicit maps described in diagrams (3.6), (3.8) and
from the isomorphisms of equations (3.7). Since Uσ is equivariantly contractible to
a point, by equation (3.4) we know that the index map

HomOPG(ΦUσ,Fred(|D|))|C| → HomOPG(ΦUσ,TR0)|C|

f 7→ ind ◦ f
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induces an isomorphism on connected components, and hence a canonical isomor-
phism

φσ : K0
G(ΦUσ;µ|ΦUσ )

∼=→ H0
G(ΦUσ;µ|ΦUσ ).

The inclusion Uτ ⊂ Uσ induces a commutative diagram

HomOPG(ΦUσ,Fred(|D|))|C|

��

ind
// HomOPG(ΦUσ,TR0)|C|

��

HomOPG(ΦUσ,Fred(|D|))|C|
ind
// HomOPG(ΦUσ,TR0)|C|

which implies that the isomorphisms φσ are compatible with restrictions, i.e. we
have the commutative diagram

K0
G(ΦUσ;µ|ΦUσ )

φσ

∼=
//

��

H0
G(ΦUσ;µ|ΦUσ )

��

K0
G(ΦUτ ;µ|ΦUτ )

φτ

∼=
// H0

G(ΦUτ ;µ|ΦUτ ).

The isomorphisms φσ induce the desired isomorphism Ep,01

∼=→ Ēp,01 , and since they
are compatible with restrictions, they induced an isomorphism of complexes thus

preserving the first differential. This implies that Ep,02

∼=→ Ēp,02 . Bott periodicity

implies that there are canonical isomorphisms Ep,q1
∼= Ep,01 for q even, which are

compatible with the restrictions. We conclude that

Ep,q2
∼= HpG(ΦX;µ)

whenever q is even and Ep,q2 = 0 whenever q is odd. �

4.1. The third differential. The third differential on Segal’s spectral sequence

d3 : Ep,q2 → Ep+3,q−2
2 ,

together with the isomorphism of Theorem 4.4, induce a degree three map

d3 : HpG(ΦX,µ)→ Hp+3
G (ΦX,µ)

on the Bredon cohomology with local coefficients in twisted representations which
we will denote with the same symbol d3.

The purpose of this section is to evidence some particular phenomena concerning
this differential d3.

4.1.1. G-Invariant cohomology class. Consider the trivial subgroup {1} ⊂ G and
recall that the bundle |DG/{1}| → |CG/{1}| is a universal projective unitary bundle
thus having that |CG/{1}| is a K(Z, 3). Hence for any map µ : ΦX → |C| which
classifies a projective equivariant stable unitary bundle over X, the map µG/{1} :
X → |CG/{1}| encodes the information of the projective unitary bundle once the
G-action is forgotten. The map µG/{1} defines a degree 3 cohomology class η ∈
H3(X,Z) which is moreover G-invariant.

In cohomological terms we know that the bundle P → X is classified by an
element η ∈ H3(X ×G EG,Z). Denoting by η the restriction of η to any fiber of
the Serre fibration X → X ×G EG → BG, and restricting it further to the fixed
point set of the group K, we get a class

ηK := η|XK ∈ H3(XK ;Z).

This class ηK is precisely the class defined by the the composition XK
µG/K→

|CG/K |
κG/K→ |CG/{1}|, and it is furthermore NG(K)/K-invariant.
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Since the groups RS1(K̃) are free Z-modules, there is an induced structure at
the level of the Eilenberg-MacLane spaces

|CG/{1}| ×K(RS1(K̃), n)→ K(RS1(K̃), n+ 3)

which is NG(K)/K-equivariant, compatible with restrictions and which recovers
the cup product by a degree 3 cohomology class. Composing with the canonical
maps κG/K : |CG/K | → |CG/{1}| we obtain maps

εG/K : |CG/K | ×K(RS1(K̃), n)→ K(RS1(K̃), n)

which are Hom(K,S1) equivariant, and therefore they define maps

(TRn)G/K → (TRn+3)G/K

over |CG/K | which can be assembled into a map TRn → TRn+3 over |C|. At the
level of based maps we have an induced map

HomOPG(ΦX,TRn)|C| → HomOPG(ΦX,TRn+3)|C|

F 7→ F̃

with F̃G/K(x) := εG/K(µG/K(κG/K(x)), F (x)), such that it induces a degree three
homomorphism

η∪ : HnG(ΦX,µ)→ Hn+3
G (ΦX,µ).

Remark 4.6. The procedure described above defines in general a H∗(X,Z)G-
module structure on H∗G(ΦX,µ) by the cup product. Therefore we could say that
the degree three homomorphism η∪ is equivalent to performing the cup product
with the class η.

If the group G is trivial, the class η ∈ H3(X,Z) classifies the projective unitary
bundles over X, and it was proven by Atiyah and Segal [3] that the third differential
of Segal’s spectral sequence was equivalent to the homomorphism Sq3

Z − η∪.

Theorem 4.7. Consider the Segal’s spectral sequence defined in Theorem 4.4 and
the isomorphism of its second page with the Bredon cohomology with coefficients in
twisted representations

Ep,q2
∼= HpG(ΦX,µ)

whenever q is even. Then the third differential of the spectral sequence d3 : Ep,q2 →
Ep+3,q−2

2 is a natural transformation in Bredon cohomology with local coefficients
in twisted representations.

Proof. The result follows from Brown’s representability theorem (see section 6.4 in
the Appendix for a discussion of Brown representability in the parametrized and
equivariant setting). Since the third differential is a homomorphism

HpG(ΦX,µ)→ Hp+3
G (ΦX,µ)

which is functorial and only depends on the map µ : ΦX → |C|, the third differential
is thus given by a map of TRp → TRp+3 of OPG-spaces over |C|. �

Note that a map from (TRp)G/K → (TRp+3)G/K over |CG/K | is determined by

a Hom(K,S1)-equivariant map

|CG/K |K̃ ×K(RS1(K̃), n)→ K(RS1(K̃), n+ 3).

The assembly of these maps produces a map TRp → TRp+3 of OPG-spaces over |C|.
In the case that the acting group is trivial, Atiyah and Segal have proved [3,

Prop. 4.6] that the map of Eilenberg-MacLane spaces

K(Z, 3)×K(Z, p)→ K(Z, p+ 3)

is given by the operation (η, b) 7→ Sq3
Zb− η ∪ b.
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Equivariantly, the situation is much more involved. A complete description of
natural transformations in Bredon cohomology with local coefficients is not available
in the literature.

Even untwisted, the expression for the third differential in Bredon cohomology
turns out to be considerably different. One could expect that a version of Steenrod
cubes defined as follows should cover the natural transformations.

For any S1 central extension K̃, the group of twisted representations RS1(K̃) is

a free Z-module generated by the irreducible representations of K̃ on which S1 acts
by scalar multiplication. Therefore we have the short exact sequence of coefficients

(4.8) 0→ RS1(K̃)
×2−→ RS1(K̃)

mod2−→ RS1(K̃)⊗Z Z/2→ 0

and we can consider the composition of maps of Ω-spectra

HRS1(K̃)
mod2−→ H(RS1(K̃)⊗Z Z/2)

Sq2

−→ Σ2H(RS1(K̃)⊗Z Z/2)
β−→ Σ3HRS1(K̃)

where the first map is the reduction modulo 2 map, the second is the Steenrod
square defined over each Z/2-module generated by irreducible representations, and
the third map is the Bockstein map induced by the short exact sequence of (4.8).

Denote the composition

Sq3
K̃

= β ◦ Sq2 ◦mod2 : HRS1(K̃)→ Σ3HRS1(K̃)

and note that it is compatible with the NG(K)/K-action on HRS1(K̃) and with
the restriction maps. At the level of the OPG-spaces over |C| we see that the maps
Sq3

K̃
induce maps⊔

K̃∈Ext(K,S1) |CG/K |K̃ ×Hom(K,S1) K(RS1(K̃), n)

Sq3
K̃

��⊔
K̃∈Ext(K,S1) |CG/K |K̃ ×Hom(K,S1) K(RS1(K̃), n+ 3)

which can be assembled into a map that we denote

Sq3 : TRn → TRn+3,

which furthermore assembles into a map of OPG-spectra over |C| which we denote

Sq3 : TR→ Σ3TR.

At the level of Bredon cohomology with local coefficients in twisted representa-
tions, the map Sq3 induces a degree three homomorphism

Sq3 : HpG(ΦX,µ)→ Hp+3
G (ΦX,µ)(4.9)

which will be denoted by the same symbol in order to simplify the notation.
The Steenrod cube over twisted representation vanishes on zero dimensional

Bredon cohomology classes. The coincidence of the third differential for the spectral
sequence with this cohomology operation would imply that the edge homomorphism

K0
G(X)→ E0,2r

∞ → E0,2r
2
∼= H0

G(X;R(?))

is surjective. However, evidence in specific computations [21, Ex. 5.2 pp. 614]
and [20, Lemma 3.3 pp. 6] shows that this is not the case. The first author thanks
Dieter Degrijse and Justin Noel for conversations on this issue leading to a precision
on the first version of this note.
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5. Applications

5.1. Equivariant K-theory. When Segal’s spectral sequence is applied to non-
twisted equivariant K-theory, it is known that the second page of the spectral
sequence is isomorphic to the Bredon cohomology with coefficients in representa-
tions

Ep,q2 = HpG(X,R(?))

where R(G/K) = R(K) is the representation ring of K.

5.2. The case of η = 0. If the restriction of the class η ∈ H3(X ×G EG;Z) to
H3(X;Z) is zero, then we have that all the higher differentials of Segal’s spectral
sequence vanish if we tensor the spectral sequence with the rationals. This follows
from the fact that the operations on the Eilenberg-MacLane spectrum are all tor-
sion operations. In this case Segal’s spectral sequence tensored with the rationals
collapses at the second page, and therefore the twisted equivariant K-theory is iso-
morphic to the Bredon cohomology with local coefficients in twisted representations
after tensoring both cohomology groups with the rationals.

5.3. Twisted equivariant K-theory for trivial G-spheres. We know from [6,
Theorem 4.8] that the twistings are classified by H3(X×GEG;Z). In the case that
X is a trivial G-space, we have that the group G is finite and the Borel cohomology
group satisfies

H3(X ×G EG;Z) ∼= H3(X ×BG;Z),

and if X has torsion free integral cohomology, by the Künneth isomorphism we
obtain

H3(X ×BG;Z) ∼=
3⊕
i=0

Hi(X;Z)⊗H3−i(BG;Z).

In the case that X = S1, given

α = [P ] ∈ H3(S1 ×G EG;Z) ∼= H2(BG;Z)⊕H3(BG;Z),

the class α can be decomposed as α = γ ⊕ β, with γ ∈ H2(BG;Z) ∼= Hom(G,S1)
and β ∈ H3(BG;Z) ∼= Ext(G,S1). To the homomorphism γ : G → S1 one can

associate the linear 1-dimensional representation ργ , and let 1→ S1 → G̃→ G→ 1
be the S1-central extension of G associated to β.

If U and V are two open contractible subsets of S1, with U ∪ V = S1 and
U ∩ V ' S0, then the Mayer-Vietoris sequence for K∗G(S1;P ) is given by the
following six-terms exact sequence

K0
G(S1;P ) // K0

G(U ;P |U )⊕K0
G(V ;P |V ) // K0

G(U ∩ V ;P |U∩V )

��

K1
G(U ∩ V ;P |U∩V )

OO

K1
G(U ;P |U )⊕K1

G(V ;P |V )oo K1
G(S1;P ).oo

On the other hand (cf. [6, Section 5.3.4]), the isomorphismsK0
G(U ;P |U ) ∼= RS1(G̃) ∼=

K0
G(V ;P |V ) and K0

G(U ∩ V ;P |U∩V ) ∼= RS1(G̃)⊕RS1(G̃) fit in the following com-
mutative diagram

K0
G(U ;P |U )⊕K0

G(V ;P |V )

∼=
��

// K0
G(U ∩ V ;P |U∩V )

∼=
��

RS1(G̃)⊕RS1(G̃)
j∗

// RS1(G̃)⊕RS1(G̃)

,
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where the bottom morphism j∗ : (a, b) 7→ (a − b, a − ργ · b) is induced by the
inclusions U ∩ V ↪→ U and U ∩ V ↪→ V ; thus we obtain the exact sequence

0 // K0
G(S1;P ) // RS1(G̃)

×(1−ργ)
// RS1(G̃) // K1

G(S1;P ) // 0

which implies that the K-theory groups are respectively the invariants and the
coinvariants of the operator ργ , i.e.

K0
G(S1;P ) ∼= RS1(G̃)ργ and K1

G(S1;P ) ∼= RS1(G̃)/(1− ργ)RS1(G̃).

For the 2-dimensional sphere, the Borel cohomology is given by

H3(S2 ×G EG;Z) ∼= H3(BG;Z)

by Künneth formula and the fact H2(S2;Z)⊗H1(BG;Z) = 0, since G is finite. So,
in this case there is only discrete torsion and

K∗G(S2;P ) ∼= K∗(S2)⊗RS1(G̃).

where G̃ is the S1-central extension associated to [P ].
For X = S3 with a trivial G-action, we have

H3(S3 ×G EG;Z) ∼= H3(S3;Z)⊕H3(BG;Z),

thus every cohomology class α ∈ H3
G(S3;Z) can be decomposed as nγ ⊕ β, where

γ ∈ H3(S3;Z) is the generator and β ∈ H3(BG;Z). Take a projective unitary
stable bundle P over S3 which is classified by the class nγ ⊕ β. Then in this case
the second page of Segal’s spectral sequence is isomorphic to

H∗(S3)⊗Z RS1(G̃)

and the third differential is given by cupping with the class nγ ⊗ 1. Therefore we
get that for n 6= 0

K0
G(S3;P ) = 0 and K1

G(S3;P ) ∼= Z/n⊗Z RS1(G̃).

5.4. Discrete torsion. One of the first versions of twisted equivariant K-theory
were defined with the information of a 2-cocycle Z2(G,S1) whenever the group
was finite (see [27, 23] and references therein); these cocycles were called discrete
torsion. Using the fact that the group H2(G,S1) classifies isomorphism classes of
S1-central extensions of the group G, this definition of the twisted equivariant K-
theory was generalized to the context of proper and discrete actions in [12], under
the additional hypothesis that the class η ∈ H2(G,S1) is a finite order element.
With our setup we can recover the twisted equivariant K-theory groups associated
to discrete torsion, as well as the spectral sequence developed in [12].

Let G be a countable discrete group and let 1 → S1 → G̃ → G → 1 be a S1-
central extension of G which is classified by the cohomology class α ∈ H2(G,S1).

Consider L2(G̃), the square integrable complex functions on G̃, and endow it with

the natural G̃-action given by composition (g · f)(h) := f(hg−1). Let

V (G̃) := {f ∈ L2(G̃) | f(hx) = f(h)x for all h ∈ G̃ and x ∈ S1}

be the subspace on which S1 acts by multiplication and let H := V (G̃)⊗L2([0, 1])

be the G̃-Hilbert space on which kernel G̃ → G acts also by multiplication. Let

U(H) be the group of unitary operators on H and note that the G̃-action on V (G̃)
defines a homomorphism

ρ̃ : G̃→ U(H)
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whose projectivisation ρ : G→ PU(H) makes the following diagram commutative

G̃
ρ̃
//

��

U(H)

��

G
ρ
// PU(H).

For every orbit type G/K with K finite, define the functor

ρG/K := Functst(GnG/K,PU(H))

by the equation ρG/K(g, h[K]) := ρ(g), and note that this assignment is functorial
since any G-equivariant map ψ : G/K → G/H induces a functor G o G/K →
G o G/H, (g, h[K]) 7→ (g, ψ(h[K])), and therefore the first coordinate stays fixed.

Moreover, since L2(K̃) ⊂ L2(G̃), where K̃ denotes the S1-central extension of K

induced by G̃ and the inclusion K ⊂ G, then we know by Peter-Weyl’s theorem

that H includes all irreducible representations of K̃ on which the circle acts by
multiplication, an infinitely number of times; therefore we know that ρG/K is a
stable functor, since its restriction to the group K is a stable homomorphism (see
Definition 3.1), and therefore it defines a point in |CG/K |.

For every proper G-CW-complex X we can associate the map of OPG-spaces

ρX : ΦX → |C|

such that for every orbit type we get the constant map

ρXG/K : XK 7→ |CG/K |, x 7→ ρG/K .

In this way we get that the twisted G-equivariant K-theory groups K∗G(ΦX; ρX)
realize the twisted G-equivariant K-theory groups associated to the S1-central ex-

tension G̃ defined by Dwyer in [12]. Now, since the map ρX is constant on each

orbit type and only depends on the central extension G̃ defined by α, we could de-

fine the contravariant OPG-module Rα(?) with Rα(G/K) := RS1(K̃) thus obtaining
a canonical isomorphism

H∗G(ΦX, ρX) ∼= Ȟ∗G(X;Rα(?))

between the Bredon cohomology of the map ρX and the Bredon cohomology with
coefficients in the twisted representations Rα(?).

The groups Ȟ∗G(X;Rα(?)) are the ones shown in [12] to be isomorphic to the sec-
ond page of the Atiyah-Hirzebruch spectral sequence that converges to the twisted
equivariant K-theory groups K∗G(ΦX; ρX).

The methods developed in the present work have been successfully applied in
[7] for the explicit calculation of the twisted Sl3(Z)-equivariant K-theory and K-
homology of the space ESl3(Z). In this case, the calculations are done using an
universal coefficients theorem for α-twisted Bredon cohomology, and the fact that
the spectral sequence constructed in this work collapses at the second page.

6. Appendix: Brown representability

The content of this appendix is based on Chapter 7 of [25]. We assume the
reader is familiar with the qf -model category structure defined in [25, Section 6.2].
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6.1. Based G-CW-complexes. Let B denote a fixed proper G-CW-complex. A
based proper G-CW-complex is a pair (X;x) with X a G-CW-complex, X −{x} a
proper G-CW-complex and x a G-fixed point.

A based G-space over B is a triple X = (X, p, s) where p : X → B and s : B → X
are G-maps and p ◦ s = idB . A map X → X ′ of based G-spaces over B is a map
of based G-spaces that commute with projections and sections. We denote the
space of such maps by Hom0

G,B(X,X ′) and by G[X,X ′]0B the corresponding set of
homotopy classes.

Let (X, p) be a G-space over B. We use the notation (X, p)+ for the union
X
∐
B of a based G-space (X, p) over B with a disjoint section, i.e. (X, p)+ =

(X
∐
B, p

∐
id, i), where i : B → X

∐
B is the natural inclusion.

If (X, p) is a G-space over B and Z is a based G-space, then let X ×B Z be
the G-space X × Z with projection the product of the projections p : X → B and
Z → ∗. Define X ∧B Z to be the quotient of X ×B Z obtained by taking fiberwise
smash products, so that (X ∧B Z)b = Xb ∧Z; the basepoints of fibers prescribe the
section.

For G-spaces (X, p) and (Y, q) over B, X×B Y is the pullback of the projections
p : X → B and q : Y → B, with the evident G-projection X ×B Y → B. When
X and Y have G-equivariant sections s and t, their pushout X ∨B Y specifies the
coproduct, or wedge, of X and Y in the category of based proper G-spaces, and s
and t induce a G-map X ∨B Y → X ×B Y over B that sends x and y to (x, tp(x))
and (sq(y), y). Then X∧B Y is the pushout in the category of compactly generated
spaces over B, displayed in the diagram

X ∨B Y //

��

X ×B Y

��

∗B // X ∧B Y.

This implies that (X ∧B Y )b = Xb ∧ Yb, and the section and projection are evident
maps.

We denote by ΣBX the G-space S1 ∧B X over B, where S1 has the trivial
G-action.

6.2. qf-model category structure for G-CW-complexes over B. Let n be a
natural number. Let IG be the set of all maps of the form G/H+× i, where H is a
finite subgroup of G and i runs through the set of based inclusions i : Sn−1

+ → Dn
+

(where S−1 is empty). Analogously, let JG be the set of all maps of the form
G/H+× i0, where H is a finite subgroup of G and i0 runs through the set of based
maps i0 : Dn

+ → (Dn × I)+.
Given maps i : (X, p) → (Y, q) and d : (Y, q) → B of based G-CW-complexes,

the composition d ◦ i : (X, p)→ B defines i as a map over B. We write i(d) for this
map over B. Let IGB be the set of all such maps i(d) with i ∈ IG, and denote by
JGB the set of all such maps j(d) with j ∈ JG.

In order to define the qf -model category structure on proper G-CW-complexes
over B we need to recall the definition of q-fibration.

Proposition 6.1. [25, Prop. 6.2.2] The following conditions on a map of compactly
generated spaces p : E → Y are equivalent. If they are satisfied, then p is called a
q-fibration.
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(i) The map p satisfies the covering homotopy property with respect to disks
Dn; that means there is a lift in the following diagram

Dn α
//

��

E

p

��

Dn × I

;;

h
// Y.

(ii) If h is a homotopy relative to the boundary Sn−1 in the diagram above,
then there is a lift that is a homotopy relative to the boundary.

(iii) The map p has the relative lifting property (RLP) with respect to the inclu-
sion Sn+ → Dn+1 of the upper hemisphere into the boundary Sn of Dn+1;
that is, there is a lift in the diagram

Sn+
α
//

��

E

p

��

Dn+1

<<

h̄
// Y.

Definition 6.2. A map g of spaces over B is an f -cofibration if it satisfies the
fiberwise homotopy extension property (HEP), that is, if it has the left lifting
property (LLP) with respect to the maps p0 : MapB(I,X)→ X.

A map d : Dn → B of compactly generated spaces is said to be an f -disk if
i(d) : Sn−1 → Dn is an f -cofibration. An f -disk d : Dn+1 → B is said to be a
relative f -disk if the lower hemisphere Sn− is also an f -disk, so that the restriction
i(d) : Sn−1 → Sn− is an f -cofibration.

A map f : (X, p, s)→ (Y, q, t) of based G-spaces over B is called a q-equivalence
if f : X → Y is a G-equivariant weak equivalence of spaces (forgetting the based

structure over B ). Define IfB to be the set of inclusions i(d) : Sn−1 → Dn where

d : Dn → B is an f -disk. Define JfB to be the set of inclusions i(d) : Sn+ → Dn+1

of the upper hemisphere into a relative f -disk d : Dn+1 → B. A map of compactly
generated spaces over B is said to be

(i) a qf -fibration if it has the RLP with respect to JfB and
(ii) a qf -cofibration if it has the LLP with respect to all q-acyclic qf -fibrations,

that is, with respect to those qf -fibrations that are q-equivalences.

Now we proceed equivariantly. Let OALLG denote the set of all orbits G/H.

Definition 6.3. A set C of proper G-CW-complexes that contains the orbits G/K
with K ∈ FIN (G) and is closed under products with elements in OALLG is called
a generating set. It is closed if it is closed under finite products.

Let C be a generating set.

(i) Let IfB(C) be the set of maps

(id×i)(d)
∐

id : C × Sn−1
∐

B → C ×Dn
∐

B

such that C ∈ C, d : C ×Dn → B is a G-map, i is the boundary inclusion,
and the associated map ĩ over MapG(C,B) is a generating qf -cofibration
in the category of compactly generated spaces over MapG(C,B).

(ii) Let JfB(C) consist of the maps

(id×i)(d)
∐

id : C × Sn+
∐

B → C ×Dn+1
∐

B

such that C ∈ C, d : C×Dn+1 → B is a G-map, i is the inclusion, and the
associated map ĩ over MapG(C,B) is a generating acyclic qf -cofibration
in the category of compactly generated spaces over MapG(C,B).
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Fixing a generating set C, we define a qf -type model structure based on C,
called the qf(C)-model structure. Its weak equivalences are the weak equivalences
of proper G-CW-complexes. We define now the qf(C)-fibrations.

Definition 6.4. A G-map over B is a qf(C)-fibration if MapG(C, f) is a qf -
fibration in the category of compactly generated spaces over MapG(C,B), for all
C ∈ C.

In [25, Section 5.5, p.90], the notion of well grounded model category is intro-
duced. There it is established that the category of based proper G-CW-complexes
can be endowed with a structure of a well grounded model category.

Theorem 6.5. [25, Th. 7.2.8] For any generating set C the category of based proper
G-CW-complexes over B is a well grounded model category. The weak equivalences
are the based weak G-homotopy equivalences and fibrations are qf(C)-fibrations.

The sets IfB(C) and JfB(C) are the generating qf(C)-cofibrations and the generating
acyclic qf(C)-cofibrations.

We define a qf -fibration in the category of based G-spaces over B as a map
which is a qf -fibration when regarded as a map of G-spaces over B, and similarly
for qf -cofibrations.

Let (Y, q, t) is a based G-space over B and f : A → B be a G-map, we define
f∗Y as the based G-space over A obtained from the pullback diagram

A

s

��

f
// B

t

��

f∗Y

p

��

// Y

q

��

A
f
// B

On the other hand if (X, s, p) is a based G-space over A and f : A→ B, define
f∗X and its structure maps q and t by means of the map of retracts in the following
diagram on the left, where the top square is a pushout and the bottom square is
defined by the universal property of pushouts and the requirement that q ◦ t = id.

A

s

��

f
// B

t

��

X

p

��

// f!X

q

��

A
f
// B

Recall that an adjoint pair of functors (T,U) between model categories is a
Quillen adjoint pair, or a Quillen adjunction, if the left adjoint T preserves cofibra-
tions and acyclic cofibrations or, equivalently, the right adjoint U preserves fibra-
tions and acyclic fibrations. It is a Quillen equivalence if the induced adjunction
on homotopy categories is an adjoint equivalence.

The following base change result will be useful in the following:

Proposition 6.6. . If f : Z1 → Z2 is a G-map, then the pair (f∗, f
∗) is a Quillen

adjunction for the model category structures defined above. Morever, if f is a weak
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F-equivalence with respect to a family of subgroups F , then (f∗, f
∗) is a Quillen

equivalence

Proof. This is the content of Propositions 7.3.4 and 7.3.5 in [25]. Note that f∗ is
denoted by f! in [25].

�

Theorem 6.7. Let G be a discrete group. For a G-CW complex B, there exists
a ziz-zag of Quillen equivalences between the category of G-spaces over B with the
qf -model structure and OPG-spaces over ΦB with the levelwise model structure.

Proof. Let Φ be the fixed point functor, which associates an OPG-complex to a G-
CW complex X. Notice that the additional section or projection data p : X → B,
and s : B → X restrict to fixed points.

Let J be a functorial cellular approximation functor in the category of OPG-spaces
(See Theorem 3.7 in [10]), in the sense that J(X ) is a free OPG-CW complex for
every OPG-space X , and J(X )→ X is a weak OPG-equivalence .

The cellular approximation functor defines a map ε : J(ΦB)×OPG∇ → B, which is

a G-homotopy equivalence. The base change functors (ε∗, ε
∗) satisfy the hypothesis

of Proposition 6.6 thus giving a Quillen equivalence pair between the categories of
G-spaces over B and over J(ΦB)×OPG ∇.

Analogously, the mentioned cellular approximation defines a map of OPG-spaces

ε
′

: JΦ(B) → Φ(B) giving a Quillen equivalence ε
′
∗, ε
′∗

between the categories of
OPG-spaces over ΦB and over J(ΦB).

Finally, the OPG map ΦB → J(ΦB) determines a Quillen equivalence pair be-
tween the categories of OPG spaces over ΦB and G-spaces over J(ΦB)×OPG ∇.

�

6.3. Generating sets in the category of proper G-CW-complex over B.
Let H be a category with weak colimits, denoted by hocolimYn, we say that an
object X of H is compact if

colimH(X,Yn) ∼= H(X,hocolim(Yn))

for any sequence of maps Yn → Yn+1 in H.

Definition 6.8. A set D of objects in a pointed category H is a generating set if
a map f : X → Y such that f∗ : H(D,X)→ H(D,Y ) is a bijection for all D ∈ D is
an isomorphism.

For n > 0, b ∈ B, and H ⊂ Gb, let Sn,bH be the based G-space over B given by
(G/H+∧Sn)∨bB, where the wedge is taken with respect to the standard basepoint
of G/H+ ∧ Sn and the basepoint b ∈ B. The inclusion of B gives the section and
the projection maps G/H+ ∧ Sn to the point b and maps B by the identity map.

Let DcB be the set of all such based G-spaces Sn,bH over B, with n > 0. Then,
from [25, Lemma 7.5.13-14] it follows the next result.

Lemma 6.9. DcB is a generating set in the homotopy category of based G-connected
spaces over B. Moreover, each element in DcB is a compact object in that category.

We want to use the following abstract Brown representability theorem.

Theorem 6.10. [25, Th. 7.5.7] Let H be a category with coproducts and weak
pushouts. Assume that H has a generating set of compact objects. Let k : H→ SETS
be a contravariant functor that takes coproducts to products and weak pushouts
to weak pullbacks. Then there is an object Y ∈ H and a natural isomorphism
k(X) ∼= H(X,Y ) for X ∈ H.

Given a model category T, it is possible to construct the homotopy category H.
For its definition see [13].



24 NOÉ BÁRCENAS, JESÚS ESPINOZA, BERNARDO URIBE, AND MARIO VELÁSQUEZ

6.4. Equivariant parametrized homotopy theories and Brown representa-
bility. Let us recall that a functor HBG defined on the category of based proper
G-CW-complexes over B with values in Z-modules is a proper reduced generalized
cohomology theory over B if it satisfies a parametrized version of the Eilenberg-
Steenrod axioms (except the reduced dimension axiom). For definitions of axioms
see for example [6, Section 4.3.2] or [25, Definition 20.1.2].

Theorem 6.11. Let H∗G be a reduced proper G-equivariant parametrized cohomol-
ogy theory over B. Then, there exist a sequence of proper G-CW-complexes Rn
over B and natural transformations such that

HnG(X, p, s) ∼= G[X,Rn]0B

for every based G-connected proper G-CW-complex X over B.

Proof. Given a G-equivariant parametrized cohomology theory H∗G over B, since
the category of proper G-CW-complexes has a compact generating set DcB , one
applies Theorem 6.10 for the parametrized cohomology theory H∗G, and we obtain
a Brown Representability Theorem for reduced proper G-equivariant parametrized
cohomology theories. �

We can apply the above theorem for Bredon cohomology associated to a cover.
Note that this functor HpG(Φ(−), µ) is an equivariant parametrized cohomology
theory over |C|. Therefore any operation in cohomology

HpG(ΦX,µ)→ Hp+qG (ΦX,µ)

which is functorial and only depends on the map µ : ΦX → |C|, must be obtained
by a map TRp → TRp+q of OPG-spaces over |C|.
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