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Abstract. In this short note we prove the Borel conjecture for a family of aspherical
manifolds that includes higher graph manifolds.

1. Introduction

The Borel conjecture is a statement about topological rigidity. It states that a homotopy
equivalence between two aspherical manifolds is homotopic to a homeomorphism.

A lot of work in geometric topology has been done in the last years with the aim to prove
the Borel conjecture using methods involving controlled topology and algebraic K-theory.
In particular, the Borel conjecture was shown by R. Frigerio, J.-F. Lafont, and A. Sisto to
hold for the class of graph manifolds studied in [11].

On the other hand, relationships between several generalizations of the concept of finite
asymptotic dimension in connection with isomorphism conjectures, in algebraic K and L-
theory , as well as coarse versions of these have been carried out by G. Carlsson and B.
Goldfarb in [7], [12], [8].

The method of proof of the Borel conjecture in this note uses these previous developments.
Consider the following construction of smooth n–manifolds M , for n � 3:

Definition 1. (1) For every i = 1, ..., r take a complete finite-volume non-compact pinched

negatively curved ni–manifold Vi, where 2  ni  n.
(2) Denote by Mi the compact smooth manifold with boundary obtained by “truncating

the cusps” of Vi, i.e. by removing from Vi a (nonmaximal) horospherical open neigh-

borhood of each cusp.

(3) Take fiber bundles Zi ! Mi with fiber a compact quotient Ni of an aspherical simply

connected Lie group

fNi by the action of a uniform lattice �i, of dimension n � ni,

i.e. Ni is di↵eomorphic to

fNi/�i, where
fNi is a simply connected Lie group and �i

is a uniform lattice.

(4) Fix a complete pairing of di↵eomorphic boundary components between distinct Zi’s,

provided one exists, and glue the paired boundary components using di↵eomorphisms,

to obtain a connected manifold of dimension n.
We will call the Zi’s the pieces of M and whenever dim(Mi) = n, then we say Zi = Mi is

a pure piece, (short for purely negatively curved).

Remark 1. The construction in the previous definition includes:

(1) The class of generalized graph manifolds of Frigerio, Lafont and Sisto [11]. The

pieces Vi in item (1) above are required to be hyperbolic with toral boundary cusps, the Ni

in item (3) are required to be tori, and the gluing di↵eomorphisms in item (4) are required
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to be a�ne di↵eomorphims. These authors produce examples of manifolds within this

class that do not admit any CAT (0) metric.

(2) The family of cusp-decomposable manifolds of T. Tam Nguyen Phan [14], where

interesting (non)rigidity properties are explored. These manifolds only have pure pieces.

(3) The a�ne twisted doubles of hyperbolic manifolds, for which C.S. Aravinda and T.

Farrell study in [1] the existence of nonpositively curved metrics.

(4) The higher graph manifolds studied in [9] by C. Connell and the third named author.

In that family, item (3) consists of infanilmanifold bundles with a�ne structure group,

which are moreover trivial near the ’cusp boudary’ of the negatively curved pieces in the

base. In item (4) the glueing di↵eomorphisms are restricted to those which are isotopic to

a�ne di↵eomorphisms. These two restrictions are used in [9] to prove statements about

collapsing and computations of minimal volume. They turn out not to be needed in the

arguments we present for the Borel conjecture to hold true.

The following theorem is our main result:

Theorem 1. Let M be an n–dimensional manifold constructed as in Definition 1, for n � 6,
then M satisfies the Borel conjecture. That is, given a homotopy equivalence f : M ! M

0
,

where M
0
is an aspherical n–dimensional manifold, then f is homotopic to a homeomor-

phism.

The following section explains the notions of asymptotic dimension, weak regular coher-
ence, and finite decomposition complexity. In the last section a proof of Theorem 1 that uses
these properties can be found, and also a proof that presents a slight extension of the general
strategy proposed by Frigerio-Lafont-Sisto, and we verify it for the higher graph manifolds
whose pieces are trivial bundles.
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The second named author has support from UNAM-PAPIIT and CONACyT research grants. The
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2. Finite Asymptotic Dimension and Weak Regular Coherence

2.1. Asphericity. Consider the next definition, following [11], which will be used later on:

Definition 2. The boundaries of the pieces Zi that are identified together in Definition 1

will be called the internal walls of M .

Now we will prove, via an adaptation of the arguments of Frigerio-Lafont-Sisto, that the
manifolds we are interested in are in fact aspherical.

Lemma 2. If M is a manifold (possibly with boundary) constructed as in Definition 1, then

M is aspherical.

Proof. This proof is by induction on the number of internal walls c ofM . If c = 0 thenM = Z
for some bundle Z over a closed, negatively curved base. It follows from the homotopy exact
sequence for the bundle Z that M is aspherical in this case, establishing the base case for
our inductive argument.

2



Assume c > 0, and that the result holds for manifolds constructed as in Defintion 1, with
strictly less than c internal walls. Cut open M along an arbitrary internal wall W . Our
inductive hypothesis implies that now M is obtained by gluing one or two (depending on
whether W separates M or not) aspherical spaces. Since the inclusion of W in the piece(s)
in M it belongs to is ⇡1–injective, it follows from a classical result of Whitehead [16] that M
is aspherical. ⇤

2.2. Finite asymptotic dimension. Let G be a finitely presented group. Fix a finite
generator set S and consider the word metric dS induced by the generating set. With this
metric, the group G is a proper metric space.

Definition 3. A family {U} of subsets in a metric space X is D–disjoint if d(U,U
0
) > D for

all subsets in the family. The asymptotic dimension asdimX of X is the smallest number

n such that for any D > 0 there is a uniformly bounded cover of X by n + 1-familes of

D-disjoint families of subsets.

An example of spaces (and groups) for which their asymptotic dimension can be explicitly
computed are precisely quotients of simply connected Lie groups:

Theorem 3. (Carlsson-Goldfarb, Cor. 3.6 in [6])Let � be a cocompact lattice in a connected

Lie group G with maximal compact subgroup K. Then asdim� = dim(G/K).

For spaces that are built up using smaller subsets, there is a theorem that allows us to
bound the asymptotic dimension of the total space. Let X be a metric space. The family
{X↵} of subsets of X is said to satisfy the inequality asdimX↵  n uniformly if for every
r < 1 a constant R can be found so that for every ↵ there exists R–disjoint families
U0
↵, U

1
↵, U

2
↵, . . . , U

n
↵ of R–bounded subsets of X↵ covering X↵.

Theorem 4. (Union theorem, Bell-Dranishnikov, Thm. 25 in [3]) Let X =
S
↵
X↵ be a

metric space where the family {X↵} satisfies the inequality asdimX↵  n uniformly. Suppose

further that for every r there is a Yr ⇢ X with asdimYr  n so that d(X↵�Yr, X↵0 �Yr) � r
whenever X↵ 6= X↵0

. Then asdimX  n.

Lemma 5. The fundamental group ⇡1(M) of a manifold M of dimension n constructed as

in Definition 1 has finite asymptotic dimension.

Proof. The fundamental groups of the pieces ⇡1(Zi) fit in an exact sequence

1 ! ⇡1(Ni) ! ⇡1(Zi) ! ⇡1(Mi) ! 1.

The asymptotic dimension of ⇡1(Mi) equals n� ni by the Cartan-Hadamard Theorem. On
the other hand, the asymptotic dimension of the fibres, which are quotients of Lie groups G
under the action of a uniform lattice, equals dim(G/K) < 1 by Theorem 3.

Finally, we invoke Theorem 4, from which we conclude that the asymptotic dimension of
⇡1(X) is finite. ⇤

2.3. Finite decomposition complexity. We will briefly define the notion of straight finite
decomposition complexity, since we use it as a key property in the proof of the main result
presented below.
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Let X and Y be two families of metric spaces, and R > 0. The family X is called R–
decomposable over Y if, for any space X in X there are collections of subsets {U1,↵} and
{U2,�} such that

X =
[

i=1,2,�=↵,�

Ui,� .

Each Ui,� is a member of the family Y , and each of the collections {U1,↵} and {U2,�} is
R–disjoint. A family of metric spaces is called bounded if there is a uniform bound on the
diameters of the spaces in the family.

Definition 4. A metric space X has straight finite decomposition complexity if, for any

sequence R1  R2  . . . of positive numbers, there exists a finite sequence of metric families

V1, V2, . . . , Vn such that X is R1–decomposable over V1, X is R2–decomposable over V2, etc,

and the family Vn is bounded.

The following well known lemma ties this notion with that of asymptotic dimension, for
completeness we include a proof:

Lemma 6. If a group has finite asymptotic dimension, then it has straight finite decompo-

sition complexity.

Proof. It was shown by Guentner-Tessera-Yu that a countable metric space of finite as-
ymptotic dimension has finite decomposition complexity in [13]. As part of their study of
straight finite decomposition complexity, Dranishnikov-Zarichnyi showed in [10] that groups
with finite decomposition complexity have stright finite decomposition complexity. ⇤

3. Two proofs

3.1. The Carlsson-Goldfarb approach to the Borel conjecture. Let � be the funda-
mental group of a manifold constructed as in Defintion 1. The strategy for proving Theorem
1 for manifolds with fundamental group � consists of showing that � satisfies the following
properties:

(1) � has finite asymptotic dimension.
(2) � has a finite model for the classifying space B�.

A group satisfying these two conditions has been proven to also satisfy the integral iso-
morphism conjecture in algebraic K-theory, according to Theorem 3.11 of Goldfarb in [12].

Proof. (of Theorem 1)
Item (1) was shown in Lemma 5 above.
Item (2) follows from the fact that these are fundamental groups of compact aspherical

manifolds (possibly with boundary) Therefore the Borel conjecture holds for the manifolds
in Definition 1. ⇤

This simple strategy provides an alternative to the one layed out by Frigerio-Lafont-Sisto
in [11]. We also present in the following a modified version of their strategy, and verify that
it can be carried out for certain manifolds within those of Definition 1.

In a series of articles, B. Goldfarb and G. Carlsson have investigated several notions which
generalize that of regular coherence for the group ring of infinite groups. The main geometric
interest on this situation resides on the fact that these conditions are strong enough to allow
the vanishing of the Whitehead group and negative algebraic K–theory groups of group

4



rings, and weak enough to be handled with methods dealing with coarse versions of the
isomorphism conjecture in algebraic K–theory [12],[6].

We will recall some definitions and fundamental results related to finite asymptotic di-
mension and the coarse assembly map in the boundedly controlled setting. See, for example,
[5] and [12] for further reference.

Let P(G) be the power set viewed as a category where morphisms are inclusions of subsets.
Let R be a noetherian ring and consider a finitely generated R[G]–module M. A G–filtration
of M is a functor f : P(G) ! R � Sub(M) to the category of R–submodules of M such
that f(G) = M, and each bounded set in the word metric dS , T ⇢ G is mapped to a finitely
generated R–submodule. Such a functor f is equivariant if f(gS) = gf(S)

Definition 5. A homomorphism � : F1 ! F2 between finitely generated R[G]–modules with

fixed filtrations f1, f2 is boundedly controlled with respect to the bound D > 0 if �(f1(S)) ⇢
f2(BD(S)) for each subset S ⇢ G. If � also satisfies �F1 \ f2(S) ⇢ �F1(BD(S)), then F is

called boundedly bicontrolled.

Definition 6. Let M be a finitely presented R[G]–module. A finite presentation F : R[G]m !
R[G]n ! M is admissible if the homomorphism F is boundedly bicontrolled.

Definition 7. A group ring R[G] is weakly coherent if every R[G]–module with an admissible

presentation has a projective resolution of finite type. Similarly, a group ring is weakly

regular coherent if every R[G]–module with an admissible presentation has finite homological

dimension.

Theorem 7. (Carlsson-Goldfarb, Corollary 3.9 in [12]) Let R be a noetherian ring and let

G be a group of finite asymptotic dimension. Then, the group ring R[G] is weakly regular

coherent.

Weak regular coherence has been verified to be enough to guarantee the vanishing of
Whitehead groups and negative algebraic K–theory.

Theorem 8. (Goldfarb, Theorem 3.11 in [12]). Let G be a group of finite asymptotic dimen-

sion (or more generally of finite decomposition complexity, as explained in [12]). Assume

that there is a finite model for the classifying space K(G, 1). Then, the assembly map in

algebraic K–theory is an isomorphism. In particular, the Whitehead group of G vanishes.

As a consequence of theorem 8 and lemma 5, we obtain:

Corollary 9. The group ring Z⇡1(M) of a manifold M constructed as in Definition 1 is

weakly regular coherent.

3.2. An extension of the Frigerio-Lafont-Sisto approach to the Borel conjecture.
The proof of the Borel conjecture for the class of manifolds studied by Frigerio-Lafont-Sisto in
[11] in fact developed a general strategy to be carried out for a given family of manifolds. In
their Theorem 3.1 they proved that if a manifold is built up from a geometric decomposition,
as are the higher graph manifolds in this paper, and satisfies the following six conditions,
then it also satisfies the Borel conjecture:

(1) Each of the inclusions Wi,j ! Zi is ⇡1–injective.
(2) Each of the pieces Zi and each of the walls Wi,j are aspherical.
(3) Each of the pieces Zi and each of the walls Wi,j satisfy the Borel Conjecture.
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(4) The rings Z⇡1(Wi,j) are all regular coherent.
(5) Whk(Z⇡1(Wi,j)) = 0 = Whk(Z⇡1(Zi)) for k  1.
(6) Each of the inclusions ⇡1(Wi,j) ! ⇡1(Zi) is square-root-closed.

We propose a slightly modified version of this strategy, where we replace the last three
conditions, (4), (5) and (6), by a couple of new requirements. So that we obtain the following:

Lemma 10. Let M be a compact manifold of dimension n � 6 with a topological decompo-

sition (as described in [11]). Assume the following conditions hold:

(1) Each of the inclusions Wi,j ! Zi is ⇡1–injective.

(2) Each of the pieces Zi and each of the walls Wi,j are aspherical.

(3) Each of the pieces Zi and each of the walls Wi,j satisfy the Borel Conjecture.

(4) The group � = ⇡1(M) has finite decomposition complexity.

(5) There exists a finite model for the classifying space K(�, 1).

Then the manifold M also satisfies the Borel conjecture.

Proof. Conditions (4) and (5) imply that the Whitehead groups Whi(Z�) = 0, for i  1, as
proved in [12].

Therefore the rest of the proof presented in Theorem 3.1 [11] follows through, and the
result holds. ⇤

Now we will concentrate on certain higher graph manifolds, explained briefly in the intro-
duction (see [9]).

Lemma 11. Assume M is a higher graph manifold, all of whose pieces are trival as bun-

dles. Then, each of the pieces Zi
⇠= Ni ⇥ Mi, and each of the walls Wi,j, satisfy the fibred

isomorphism conjecture (FIC) of Farrell-Jones.

Proof. First notice that the validity of FIC for the wallsWi,j follows from the work of Bartels-
Farrell-Lück in [2], since these are quotients of Lie groups (see also their Remark 2.13).

As each piece Zi is a trivial fibre bundle

Zi
⇠= Ni ⇥Mi

the fundamental group of Zi is a product

⇡1(Zi) ⇠= ⇡1(Ni)⇥ ⇡1(Mi).

Recall that Mi is a manifold that admits a pinched negatively curved metric. So it also
admits a CAT (0) metric, and therefore FIC holds for ⇡1(Mi). The fibres satisfy FIC following
[2]. Therefore ⇡1(Zi) also satisfies FIC, by Theorem 2.9 in [2]. ⇤

As a consequence we obtain that the Borel conjecture holds for each of the pieces Zi, with
trivial fibration structure, and each of the walls Wi,j, and so condition (3) is verified.

Lemma 12. Let M be a higher graph manifold, all of whose pieces Zi are trvial as bundles,

and let Wi,j denote its internal walls. Then, the rings Z⇡1(Wi,j) are weakly regular coherent.

Proof. From the proof of Lemma 5, we conclude that these groups have finite asymptotic
dimension. Now the result follows from Theorem 7. ⇤
Lemma 13. Let M be a higher graph manifold, all of whose pieces Zi are trvial as bundles,

and let Wi,j denote its internal walls. Then, Whk(Z⇡1(Wi,j)) = 0 = Whk(Z⇡1(Zi)) for

k  1.
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Proof. Since each of the walls and pieces are aspherical, their fundamental groups are torsion-
free. By the previous Lemma 11, the result holds for each of the pieces and walls. Alterna-
tively, the result follows from Theorem 8. ⇤
Lemma 14. Let M be a manifold constructed as in Definition 1. For every 1  i  r, the
map Ni ! X is ⇡1–injective. Moreover, the image of ⇡1(Ni) is a square root closed subgroup

in the group ⇡1(X).

Proof. Consider the long exact sequence of homotopy groups of a fibration:

. . . ! ⇡n(Ni) ! ⇡n(Zi) ! ⇡n(Mi) ! . . . .

The connectedness of Ni implies the ⇡1–injectivity condition.
Using proposition VII.2 in page 168 of [4], it su�ces to verify the square root closed

condition in the fundamental groups of the edges ⇡1(Wi, j) ! ⇡1(Zi). Using the long exact
sequence of the fibration again, this is equivalent to showing that there are no 2–torsion
elements in ⇡1(Mi). This is certainly the case, since Mi is an aspherical manifold. ⇤
Lemma 15. Let M be a manifold constructed as in Definition 1 and � = ⇡1(M). Then

there exists a finite model for K(�, 1).

Proof. Notice that the manifold M is aspherical and hence it is itself a finite model for
K(�, 1). ⇤

Now we collect all of these auxiliary results to present:

Theorem 16. Let M be a higher graph manifold of dimension � 6. Assume that all of the

pieces of M are trivial bundles. Then M satisfies the Borel conjecture.

Proof. Notice that these higher graph manifolds satisfy all the hypothesis of Lemma 10. As
has been shown in Lemmas 6, 11, 13, 14, and 15. ⇤
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