
POISSON COHOMOLOGY OF SINGULAR FIBRATIONS IN
DIMENSION 4
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1. Introduction

A Poisson structure on a smoooth manifold M is a Lie algebra structure on C∞(M),
the space of smooth real valued smooth functions on M , whose bracket {, } satisfies a
Leibniz rule. The Lie bracket induces an anchor map that additionally endows T ∗M
with a Lie algebroid structure. This algebraic perspective enriches the understanding
of the geometry and topology of the underlying manifold, from both local and global
point of view.

A manifold endowed with such a structure can be described as a foliated space, whose
leaves inherit a symplectic form. This is known as the symplectic foliation. Poisson
structures yield a more general notion of a symplectic structure, which can be defined
on odd dimensional smooth manifolds; in contrast, a symplectic structure can only be
defined on even dimensional manifolds.

The tools needed to understand a manifold that admits a Poisson structure include
aspects of singularity theory. In particular, the classification of singularities is needed,
as they provide ”paradigmatic”, ”canonical” singular Poisson structures.

Poisson structures are closely related to near-symplectic structures and singular fi-
brations. S. Donaldson establishes a correspondence between Lefschetz pencils and
symplectic manifolds of dimension 4 [8]. Lefschetz pencils are applications on the 2-
sphere that have a finite number of isolated singular points, where the differential has
rank equals zero. D. Auroux, S. Donaldson, and L. Katzarkov [1] introduced bro-
ken Lefschetz fibrations (BLF for short), which have an additional type of singularity, a
1-dimensional submanifold formed by indefinite folds. They showed that they are recip-
rocal to near-symplectic structures, which are closed 2-forms that are non-degenerate,
except on a collection of circles where they vanish.

In a sequel of works, it was shown that Poisson structures can be constructed adapted
to singular fibrations. The singular symplectic leaves matches with those of certain fi-
brations. In [12], the authors proved the existence of rank 2 Poisson structures in BLF’s.
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Namely, it is known that a BLF always exists on any closed oriented smooth manifold
of dimension 4. As extension of the previous one, in [26], Poisson structures were
constructed on 4-manifolds which admit a wrinkled fibration. A similar approach was
given in dimension 6, for maps that generalizes wrinkled fibrations, and near-symplectic
structures were studied in [27]. In each case, a similar procedure was carried out, by
prescribing the singularities, given by the corresponding fibration and then perform
the local calculations of the Poisson bivectors as well as the symplectic forms of the
symplectic folation.

One natural way to study global properties is by computing the cohomology. In the
case of a symplectic estructure, it means to compute the de Rham cohomology; for
a Poisson structure, it means the cohomology of T ∗M as Lie algebroid. The latter
is known as the Poisson cohomology. The Poisson cohomology groups, denoted by
H∗π(M), provide information about the Poisson structure in the sense that:

H0
π(M) = {f ∈ C∞(M)| {f, ·} = 0}, referred to as the space of Casimirs,

H1
π(M) =

{Poisson vector fields}
{Hamiltonian vector fields}

,

H2
π(M) =

{infinitesimal deformations of the Poisson structure}
{trivial deformations}

,

H3
π(M) = {Obstructions to deformations of Poisson structures}.

For the higher cohomology groups, it is not clear their algebraic nor even their geomet-
ric interpretation could be.

The computation of the Poisson cohomology requires much effort, in comparison to
de Rham cohomology. One way is by a direct calculation of the corresponding differ-
entials, or via spectral sequences in terms of filtrations. See for instance [2,16,20,21,24].

The contribution of this work is a description of some Poisson cohomology classes
for a Poisson structure whose symplectic foliation is prescribed by a singular fibration
on 4−manifolds, those classes that encloses the topological information of the general
fiber around a singular point. The mechanism is the combinated use of the Thom
isomorphism (for de Rham cohomology), together with the monodromy representation
of the singular fibration. Indeed, such representation is a homomorphism of groups:

π1(Σ \ Sing(f))→Mg

associated to a fibration f : M → Σ over a surface Σ. Here Sing(f) is the singular locus
and Mg is the mapping class group of Σg, the general fiber around singularities. We
provide a description of the action of the monodromy of the fibration on the symplectic
foliation, which si reflected in the first and second Poisson cohomology groups.

Outline of the paper. Section 2 is about the background on Poisson Geometry and
Singularity Theory of generic maps and their deformations. In Section 3, we review
the construction of Poisson structures of rank 2, from two prescribed Casimirs. In our
setting, we consider singular fibrations over 2-dimensional manifolds. Later, in Section
4, we obtain the image of the Thom class of any symplectic leaf in a Poisson manifold.
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We also exhibit its relation with its algebroid version. Finally, in Section 5, we describe
Poisson cohomology classes and describe the effect of the monodromy of the underlying
fibration.

2. Preliminaries

This section contains the relevant basics on Poisson Geometry and Singularity Theory
to follow this work. It has been adapted to the purpose of this paper. The most part
of this section can be consulted in the textbook of I. Vaisman [28].

2.1. Poisson manifolds. A Poisson manifold is a pair (M, {, }) of a smooth manifold
of dimension n and a bilinear operation {·, ·} on C∞(M), the space of real valued
smooth functions on M , with the following properties:

(i) (C∞(M), {·, ·}) is a Lie algebra.
(ii) The bracket {·, ·} is a derivation in each factor, that is,

{gh, k} = g{h, k}+ h{g, k}
for any g, h, k ∈ C∞(M).

Given a function h ∈ C∞(M) we can associate to it the Hamiltonian vector field Xh,
defined as a derivation on C∞(M):

Xh(·) = {·, h}.
The most basic example of a non-trivial Poisson manifold is a symplectic manifold

(M,ω). The bracket on M is given by

(1) {g, h} = ω(Xg, Xh).

The Jacobi identity for the bracket follows from the property of ω of being closed. Then,
for a smooth function h on M , its Hamiltonian vector field Xh is defined through the
relation ιXhω = dh.

The bracket of a Poisson manifold can be regarded as a contravariant antisymmetric
2-tensor π on M :

(2) {g, h} = π(dg, dh).

We will refer to π as the Poisson tensor, or Poisson bivector, and it will be used to mean
a Posson structure on M . In local coordinates (x1, . . . , xn) we have the expression:

(3) π(x) =
1

2

n∑
i,j=1

πij(x)
∂

∂xi
∧ ∂

∂xj
, πij(x) = {xi, xj}.

The Jacobi identity for the bracket is equivalent to a system of first order semilinear
partial differential equations in terms of πij(x), the coefficients of the Poisson bivector.
It can also be expressed as [π, π]N = 0, where [·, ·]N is the Schouten-Nijenhuis bracket
of multivector fields. In other words, the Poisson bracket is a local operator so the
Jacobi identity is a local condition on π.

Definition 2.1. Let (M, {, }) be a Poisson manifold. A function h ∈ C∞(M) is called
a Casimir if {h, g} = 0 for every g ∈ C∞(M). The space of all Casimirs will be denoted
by Casπ(M).
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Definition 2.2. Let π be a bivector (Poisson or not). Then we can associate to it a
bundle map Bπ : T ∗M → TM to π defined by its action on covectors by the fiberwise
rule

Bπ(αq)(·) = πq(·, αq),
at a point q ∈M , for αq ∈ T ∗qM . This bundle map is called the anchor map of π.

Observe that, if π is a Poisson bivector, the Hamiltonian vector field of any smooth
function h on M is Xh = Bπ(dh). We may rewrite the bivector (3) into the form:

(4) π(x) =
1

2

n∑
i,j=1

Bπ(dxi) ∧ ∂

∂xj
,

and by duality, for {(dx1)q, . . . , (dx
n)q}, the canonical basis of T ∗qM ,

Bπ((dxi)q) =
n∑
j=1

πij(q)
∂

∂xj
.

The rank of a π at a point q ∈ M is defined to be the rank of Bπ : T ∗qM → TqM .
At the point q, the image of Bπ is a subspace Dq ⊂ TqM , and the collection of these
subspaces as q varies on M defines the so-called symplectic foliation of π. Then the
image of Bπ at q is a leaf of the symplectic foliation, whose dimension is the rank of
Bπ at q. Observe that its rank is even and coincides with the rank of π, but it may no
be constant, so the symplectic foliation becomes singular. The rank of π at q ∈ M is
called the rank of the Poisson structure at q.

The elements of the symplectic foliation are referred to as symplectic leaves, since
they admit a unique symplectic form. Indeed, if uq and vq are vectors of the symplectic
leaf Σq, such symplectic form ωq is given by the natural pairing 〈 , 〉 between TMq and
T ∗qM :

ωq(uq, vq) := 〈π, αq ∧ βq〉
where α, β ∈ T ∗qM such that

(5) Bπ(αq) = uq, Bπ(βq) = vq,

or equivalently,

ω(uq, vq)q = π(Bπ−1(uq),Bπ−1(vq)).

If the inherent Poisson structure have a singularity at q ∈M , then the matrix πij(q)
is not of maximum rank and both equations produce overdetermined systems.

2.2. Poisson cohomology. Let (M,π) be a Poisson manifold. Denote by VpM the
space of smoth p-vector fields on M . Consider dπ : V•M → V•+1M given by

dπ(A) := [π,A]N .

for [, ]N the Schouten-Nijenhuis bracket. Since [π, π]N = 0, it follows that dπ is a
differential operator for the complex

· · · dπ−→ Vp−1 dπ−→ VpM dπ−→ Vp+1M
dπ−→ · · ·
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and the quotient groups

Hp
π(M) =

ker(dπ : VpM → Vp+1M)

Im(dπ : Vp−1M → VpM)

are called the Poisson cohomology groups of (M,π).

The anchor map Bπ : T ∗M → TM can be extended to a homomorphism

Bπ : ΛpT ∗M → ΛpTM.

With some abuse of notation we use the same notation as for the anchor map. Then it
induces a C∞-linear homomorphism:

Bπ : Ωp(M)→ VpM,

defined by:

(6) Bπ(η)(α1, . . . , αp) = (−1)pη(Bπ(α1), . . . ,Bπ(αp)).

Then it preserves the wedge product of forms, and the relation:

Bπ(dη) = −[π,Bπ(η)]N

holds, which induces a homomorphism of graded Lie algebras from the de Rham coho-
mology and the Poisson cohomology:

Bπ :
⊕
p

Hp
dR(M) →

⊕
p

Hp
π(M)

[η] → [Bπ(η)],

given componentwise. It is known as the Lichnerowicz homomorphism. In general,
it is not an isomorphism. For instance, the de Rham cohomology groups of compact
manifolds have finite dimensions, but Poisson cohomology groups may have infinite
dimensions.

2.3. Generic maps on 4–manifolds over closed surfaces. In this section, f : X →
Σ will be a smooth map between two closed smooth manifolds with dim(X) = 4 and
dim(Σ) = 2, with differential map df : TX → TΣ. The space of smooth maps from X
to Σ will be denoted by C∞(X,Σ). The content about singularities of this mappings is
based in [13].

A point p ∈ X is called regular if the rank of dfp has dimension 2. In this case f is a
submersion at p. Otherwise, the rank must be 0 or 1, and the point p ∈ M is called a
singularity of f , while the set

Sing(f) = {p ∈M | Rank(dfp) = 1}

is named the singularity set or singular locus of f .

Therefore, around singular point p there are local coordinates such that f is given
by (t, x, y, z) 7→ (t, ψ(t, x, y, z)) for some smooth function ψ in a nearby of p.
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Two maps f, f̃ ∈ C∞(X, Y ), between two smooth manifolds X and Y are said to be
equivalent if there exists diffeomorphisms ψ : X → X and ϕ : Y → Y such that

ϕ ◦ f = f̃ ◦ ψ.
A property P of smooth mappings f : X → Σ is generic if:

• The set WP = {f ∈ C∞(X, Y )|f satisfies P} is open and dense in C∞(X, Y )
and,
• if an application f is in WP, then any equivalent application to f also belongs

to WP.

A function satisfying a generic property is called a generic function. A singularity
described (locally) by a generic function is a generic singularity.

In general, for a generic map, the set of points of corank r, r = 0, 1, . . . , dim(X), is
a submanifold of X, and the restriction of f at the singular locus of those points of
corank r gives a smooth map between manifolds that can also have generic singularities
(see Theorem 5.4 p.61 [13]).

The points in the set Sing(f) satisfying TpSing(f) ⊕ ker(dfp) = TpM are called fold
singularities of f . In particular, a submersion with folds i.e, a submersion outside the
set of folds, restricts to an immersion on its fold locus (see Lemma 4.3 p.87 [13]). Folds
are locally modelled by

(7) R4 → R2, (t, x, y, z)→
(
t,±x2 ± y2 ± z2

)
.

Cusps are points p belonging to Sing(f) such that TpSing(f) = ker(dfp). In dimension
4, they are parametrized by real charts

(8) R4 → R2 (t, x, y, z)→
(
t, x3 + t · x± y2 ± z2

)
.

A classical result due to Whitney says that generic maps from any n–dimensional
manifold to a 2–dimensional base only have folds and cusps. Then a generic map over
a 2-dimensional manifold admits one of the of the two forms (7) or (8) around its
singularities.

Definition 2.3. A broken Lefschetz fibration (BLF) is a surjective smooth map f : X →
Σ that is a submersion outside the singularity set, where the only allowed singularities
are of the following type:

(1) Lefschetz singularities: finitely many points {p1, . . . , pk} ⊂ X, which are locally
modeled by complex charts:

C2 → C, (z1, z2) 7→ z2
1 + z2

2 ,

or in real coordinates:

R4 → R2, (t, x, y, z) 7→ (t2 − x2 + y2 − z2, 2tx+ 2yz).

(2) Indefinite fold singularities, or also called broken singularities, contained in the
smooth embedded 1-dimensional submanifold Γ ⊂ X \ {p1, . . . , pk}, which are
locally modelled by the real charts

R4 → R2, (t, x, y, z) 7→ (t,−x2 + y2 + z2).

The curve Γ is called a singular circle.
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If f : X → Σ has no broken singularities, it is called a Lefschetz fibration.

The singular circles of folds could intersect each other or the Lefschetz points could
lie between the singular circles. Nevertheless, along this work we are assuming that a
BLF has only one singular circle Γ, and a finite set of Lefschetz singularities outside Γ.
This kind of BLF are known as simplified broken Lefschetz fibrations. Additionally, we
are also assuming that the general fiber has genus g ≥ 2.

Example 1. Given Morse function ψ : R3 → R whose critical points have only index
1 or 2, then the mapping (t, x, y, z) → (t, ψ(x, y, z)) is a BLF whose singular locus
corresponds to the critical points of f .

In a nearby of a singular fiber at a Lefschetz singularity, the fibers are diffeomorphic
to closed surfaces attached to the singularity. As a regular fiber approaches a Lefschetz
singularity, the curve (up to homotopy) shrinks to a point. Such curves are called van-
ishing cycles. For a point in the singular circle, the genus of the fiber drops down by 1.
In Section 5.1 we will return to the topology of a BLF.

Singularity theory of submersions leads to understand the behavior of the singular
locus under a perturbation of the relevant map. This conduces to study the stability
of maps.

Definition 2.4. A map f : X → Y between smooth manifolds is said to be stable if
any nearby map f̃ ∈ C∞(X,Σ) (in the Whitney topology) is equivalent to f after a
smooth change of coordinates in the domain and range.

Example 2. Morse functions f : M → R, injective immersions with 2 dim(X) <
dim(Y ) and immersions with normal crossings for 2 dim(X) = dim(Y ) are generic
functions. All these are also examples of stable mappings. BLF’s are not stable maps.

Following the work by Y. Lekili, there is class of stable maps that naturally appear
when deforming BLF’s around a Lefschetz singularity [17]. Those fibrations exist in
every closed oriented manifold of dimension 4.

Definition 2.5. A wrinkled fibration on a closed 4–manifold X is a smooth map f to
a closed surface which is a BLF when restricted to X \ C, where C is a finite set such
that around each point in C, f has cusp singularities. It is called a purely wrinkled
fibration if it has no isolated Lefschetz-type singularities.

Part of the mentioned work performed by Lekili, consisted in describing a set of
moves that give all the possible one-parameter deformations of broken and wrinkled
fibrations, up to isotopy. Roughly speaking, it is possible to eliminate a Lefschtez type
singularity on a BLF by introducing a wrinkled fibration structure; as well as there
exists a mechanism to smoothing out the cusp singularity by introducing a Lefschtez
singularity. This also shows the stability of wrinkled fibrations. The Lekili’s moves are
real 1-parameter applications, locally given by:

(1) Birth

bs(x, y, z, t) = (t, x3 − 3x(t2 − s) + y2 − z2).
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(2) Merging

ms(x, y, z, t) = (t, x3 − 3x(s− t2) + y2 − z2).

(3) Flipping

fs(x, y, z, t) = (t, x4 − x2s+ xt+ y2 − z2).

(4) Wrinkling

ws(x, y, z, t) = (t2 − x2 + y2 − z2 + st, 2tx+ 2yz).

Any generic deformation of a surjective map f : X → Σ, around a critical point of
rank 1, is given by one of the first 3 moves. The wrinkling move is a deformation of a
Lefschetz singularity, where its differential map vanishes, which changes the Lefschetz
singularity into a singularity into 3 cusps. The existence of points where dfp vanishes
is not a generic property.

3. Poisson structures with prescribed singularities

In this section, M will denote an oriented smooth manifold of dimension n, with µ
an orientation, and F1, . . . , Fn−2 will be fixed functions in C∞(M). Consider a bivector
on M defined by the relation

(9) {g, h}µ = π(dg, dh)µ = k dg ∧ dh ∧ dF1 ∧ · · · ∧ dFn−2

for smooth functions g and h on M , and k is a non-vanishing smooth function. Note
that the skew-symmetric matrix πij annihilates dFi, i = 1, . . . , n − 2, and it has rank
at most two. Also note that µ can be chosen to be degenerate.

Set F := (F1, . . . , Fn−2) : M → Rn−2. The symplectic foliation of a bivector π given
by 9 is integrable and its leaves are given by:

(1) 2-dimensional leaves F−1(y), given by the regular values y ∈ Rn−2 of F ,
(2) 2-dimensional leaves F−1(y)\{Critical Points of F}, where y ∈ Rn−2 is a critical

value of F ,
(3) zero dimensional leaves, consisting of critical points.

The following proposition directly implies that such bivector π is Poisson [12].

Proposition 3.1. Let π be a bivector field on M whose symplectic foliation is integrable
and has rank less than or equal to two at each point. Then π̃ = k ·π is a Poisson bivector
for any non-vanishing function k ∈ C∞(M).

It is straightforward to see that F1, . . . , Fn−2 are Casimirs for the bracket given by
the formula (9). It also follows directly that the singularities of F will determine the
singular structure of π. That is, formula (9) provides a mechanism for constructing
singular Poisson manifolds, from prescribed singularities. This was explored in [12]
for a BLF; in [26] and [27] for wrinkled fibrations in dimension 4 and 6; with an
slight modification, in [10] it was adapted to Bott-Morse foliations in dimension 3. The
objective of this section is to give a more general form of such construction, but adapted
to 4–manifolds.
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Remark 1. The freedom on the choice of the function k follows since we are considering
Poisson structures of rank 2. In this case, a leafwise 2−form is closed if and only if the
Jacobi identity holds.

Definition 3.1. Given F1, . . . , Fn−2 ∈ C∞(M), a Jacobian Poisson structure of dimen-
sion n on an oriented manifold M , with orientation µ is a Poisson bracket {, }µ on M
given by the formula (9). For short, we simply write JP structure, and the respective
JP manifold will be denoted by (M, {, }µ).

These Poisson structures were firstly regarded in the Ph.D. Thesis of P.A. Dami-
anou [7], where they are attributed to H. Flaschka and T. Ratiu. Hereinafter, we will
be focused on JP structures on smooth manifolds of dimension 4. Then they are de-
termined by two functions F,G ∈ C∞(M).

Let S4 be the symmetric group on four letters. Each element of S4 is a bijection
σ : {1, 2, 3, 4} → {1, 2, 3, 4}. For fixed indices i, j, consider the assignment (i, j) 7→
σ = (ijrs) ∈ S4, where (ijrs) denotes the permutation given in the cyclic notation.
Observe that, once i and j are fixed, there exist a unique pair (r, s) such that σ is an
even permutation.

Definition 3.2. For two vector fields X and Y in R4, and two fixed indices i, j =
1, . . . , 4, we define the skew-symmetric bilinear operator ∧ij given by:

(10) X ∧ij Y := dxr ∧ dxs(X, Y )

where (r, s) is the unique pair such that (ijrs) is an even permutation.

On the other hand, formula (9) implies that:

πij = k ·
4∑

r,s=1

εijrs
∂F

∂xr
∂G

∂xs

= k ·
(
∂F

∂xr̄
∂G

∂xs̄
− ∂F

∂xs̄
∂G

∂xr̄

)
where εijrs denotes the Levi-Civita symbol in dimension 4, and (r̄, s̄) is the unique pair
such that (ijr̄s̄) is an even permutation. Therefore we have:

Proposition 3.2. The local expression of the Poisson bivector of a JP manifold of
dimension 4 with prescribed Casimirs F and G, (M, {, }µ), around a point q ∈ M , is
given by:

(11) πij = k · ∇F ∧ij ∇G.

Proposition 3.3. Let U be a neighborhood of a singular point p of f . Then the sym-
plectic form ωq of the symplectic leaf at any q ∈ U \ {p} is given by:

ωq = 〈αq, vq〉 = 〈βq, uq〉

where uq, vq are tangent to the symplectic leaf S and 〈, 〉 denotes the natural pairing
between forms and vector fields.
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Proof. In order to compute the symplectic forms we need to solve equations (5). Note
that their solutions depend merely on the first partial derivatives of F and G. In fact,
since Ann TS = Ker(Bπ), then the tangent vectors uq, vq can be found by seeking for
vectors annihilated simultaneously by dF and dG. Now, αq and βq are solutions to the
overdetermined system (5) that satisfy:

Bπ(αq) = uq, Bπ(βq) = vq.

�

In the sequel we will assume that the volume form in local coordinates (t, x, y, z)
around a point q ∈M has the form:

(µ)q =
1

k(q)
(dt ∧ dx ∧ dy ∧ dz)q

for some non-vanishing k ∈ C∞(M).

Since generic maps can only have folds and cusps, using Proposition 3.2 one has:

Theorem 1. Given a (singular) generic map F : M → Σ from an oriented 4–manifold
on a closed surface, with µ the volume form on M , there exists a singular JP structure
on M , whose singularities coincide with the generic singularities of F . Locally F =
(t, ψ(t, x, y, z)) and the Poisson bivector around a generic singularity takes the form

(12) π(p) = k(p)

[
∂ψ

∂y

∂

∂x
∧ ∂

∂z
+
∂ψ

∂z

∂

∂x
∧ ∂

∂y
− ∂ψ

∂x

∂

∂y
∧ ∂

∂z

]
.

for some non-vanishing smooth function k on M . The regular leaves of the symplectic
foliation are the non-singular fibres of F . The bivector is singular at the critical points
of ψ.

Lefschetz type singularities are not generic. Nevertheless, a Poisson structure can
be obtained in the same way, and it has the form (11). Moreover, since Lefschetz and
Broken Lefschetz fibrations exist on every 4-manifold M , then a singular JP structure
always exists on any closed oriented smooth manifold of dimension 4. This was shown
in [12].

Remark 2. These kind of strtuctures are quite similar to those considered by A.
Picherau in [24], where computation of the Poisson cohomology groups were given for
structures in R3 given by:

π(p) = k(p)

[
∂ϕ

∂y

∂

∂x
∧ ∂

∂z
+
∂ϕ

∂z

∂

∂x
∧ ∂

∂y
+
∂ϕ

∂x

∂

∂y
∧ ∂

∂z

]
.

for ϕ : R3 → R a weight homogeneous polynomial with an isolated singularity.

There is an immediate way to construct higher rank Poisson manifolds with pre-
scribed singularities. It follows from an analogous formula 9, due to P. Damianou and
F. Petalidou in [6]. Consider an oriented smooth manifold M of dimension 2n, with

volume form µ =
ωn0
n!

, where ω0 is a non-degenerate closed smooth 2–form. Then ω0
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induces an isomorphism Bω0 : Ω1(M)→ V1M , and so a bivector field πω0 . Following [6],
there exist a 2–smooth form η such that the bivector:

(13) {g, h}µ = k dg ∧ dh ∧
(
η +

ιπω0η

r − 1
ω0

)
∧ ωr−2

0

(r − 2)!
dF1 ∧ · · · ∧ dF2n−2r

defines a Poisson bivector of rank 2r, for some non-vanishing function k ∈ C∞(M).
Therefore, given a nondegenerate smooth 2–form ω0 and a generic map F : M → Y
over a 2r-dimensional smooth manifold, there exists a singular Poisson structure on M ,
whose singularities coincides with those of F .

From local to global. The bivectors given in the previous are local, but they can be
extended to define a global Poisson structure, by means of cut-off functions. The
mechanism follows merely topological arguments, we will explain it in a more general
form, by considering two types of singularities: isolated points or (singular) circles; and
maps F : X → Σ (generic or not) with those singularities.

Let F : X → Σ be a surjective map, which is a submersion outside its singular
locus Sing(f). It is allowed to be generic or not. Let UΓ be the union of tubular
neighborhoods of circle-type singularities (e.g. broken singularities) and UC be the
union of small enough neighborhoods around isolated-type singularities (e.g. cusps or
Lefschetz singularities). We may take those open sets small enough such that UC∩UΓ =
∅. For an isolated singularity p ∈M , let Vp be a neighborhood such that Vp ⊂ Vp ⊂ UC ,
and set VC the union of such open sets, over all isolated singularities. Analogously
there exists an open set VΓ such that VΓ ⊂ VΓ ⊂ UΓ, containing the circle singularities.
Denote by πΓ and πC the corresponding Poisson bivectors, constructed as above. That
is, the bivectors of the JP structure induced by the local form of F around a singularity.
Outside Sing(f), there exists a Poisson bivector πF whose symplectic foliation is given
by the (regular) fibres of the F (see Proposition 2.4 from [12]). It is defined on W :=
M \

(
VΓ ∪ VC

)
. Hence, tere exist two non-vanishing smooth functions g, h with:

πΓ = g · πF on W ∩ UΓ, πC = h · πF on W ∩ UC .

Choose a connected component of W ∩ UC . Let σ be a cutt-off function on W ∩ UC .
Similarly, we may take a cutt-off function λ, defined on a chosen connected component
of W ∩ UC . On each connected component:

σ(p) =

{
1 if p /∈ UC ,
0 if p /∈ W

, λ(p) =

{
1 if p /∈ UΓ

0 if p /∈ W.

Define the function τ on W ∩ (UC ∪ UΓ):

τ(p) =

{
1 if p /∈ UC ∪ UΓ,

0 if p ∈ UC ∪ UΓ.

Additionally, these functions can be chosen so that σ + λ+ τ = 1. Then the bivector:

(14) Π = (g · σ + h · λ+ τ) πF
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defines a global Poisson structure on M , whose symplectic foliation is foliated by the
fibres of F . In these terms, M can be decomposed as

(15) M = W ∪ UC ∪ UΓ.

4. Thom class and its image in Poisson cohomology

For a vector bundle E : E → M of rank r over a closed orientable manifold of
dimension n, the complex of forms with compact support in the vertical direction is
given by:

Ω∗cv(E) := {ω ∈ Ωn(E)| ∀ compact K ⊆M , E−1(K) ∩ Supp(ω) is compact}.

The corresponding cohomology H∗cv(E), with respect to the differential of forms d, is
called the vertical cohomology of E.

Let {(Uα, ψα)}α∈I be an oriented atlas on E. Take a local trivialization (Uα, ψα), with
coordinates x = (x1, . . . , xn); and s = (s1, . . . , sr) the corresponding fiber coordinates
on E|Uα . Define a map E∗ : Ω∗cv(E)→ Ω∗−r(M) given by:

E∗(ω|E−1(Uα)) =

{
0 if ω|E−1(Uα) = E∗(ω)f(x, s)dsi1 · · · dsil , l < r

E∗(ω)
∫
Rk f(x, s)ds if ω|E−1(Uα) = E∗(ω)f(x, s)ds.

Here ds denotes the product measure form ds1 · · · dsr, and E∗(ω) the pullback under E
of differential forms. This map induces an isomorphism

F := E∗ : Ω∗cv(E)→ H∗−rdR (M)

called the Thom isomorphism. The image of 1 in H0
dR(M) determines a top cohomology

class Φ ∈ Hn
cv(E) called the Thom class. Indeed, the Thom isomorphism can be defined

by:

(16) F−1(ω) = E∗(ω) ∧ Φ.

Let S ⊂ M be a submanifold of dimension r. Consider E : NS → S the normal
bundle on S, which is a vector bundle of rank r. Let j : NS → M be the inclusion
and j∗ : H∗cv(NS) → H∗dR(M) its extension by 0. In this context, Poincaré duality
establishes the isomorphism (Hr

dR(M))∗ ' Hn−r
dR (M). The Poincaré dual of S is the

unique cohomology class [ηS] ∈ Hn−r
dR (M) such that:∫
S

i∗ω =

∫
M

ω ∧ ηS

for any ω ∈ Hr
dR(M), where i : S → M is the inclusion. Then it is known that the

Thom class of S is its Poincaré dual, in the sense that j∗(Φ) = ηS. See Section 6 in [5].

Proposition 4.1. Let M be a closed oriented smooth manifold of dimension 4 and S a
closed immersed surface of genus g. Then the Poincaré class ηS of S can be represented
by:

η̄S := f̄S dx
1 ∧ dx2.
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where

f̄ 2
S =

{
Vol(S)
Vol(M)

in S,

0 in M \ S.

Proof. Recall that the de Rham Cohomology of S is given by:

Hp
dR(S) =

{
R if p = 0, 2

R2g if p = 1.

Observe then that for any [β] ∈ H2
dR(M), [i∗(β)] ∈ H2

dR(S), and then [volS] = [i∗(β)],
where volS is the volume form of S. Furthermore, by definition of the Poincaré dual we
have:

Vol(S) =

∫
S

volS =

∫
S

i∗(β)

=

∫
M

β ∧ ηS

for any β ∈ Ω2(M).

By taking a Riemannian metric we may have a ?-Hodge operator. Then, in the previ-
ous calculation we may take β = ?ηS. Write ηS = fS dx

1 ∧ dx2, for fS = f(x1, x2, x3, t)
some smooth function on M . Then:∫

M

β ∧ ηS =

∫
M

?ηS ∧ ηS

=

∫
M

f 2
Sµ.

Then there exists a bump function f̄S such that

f̄ 2
S =

{
Vol(S)
Vol(M)

in S,

0 in M \ S,

and that f̄ 2
S = f 2 a.e. �

Let π a Poisson bivector on M , and suppose that S is a symplectic leaf of dimension
r. Then we may apply the Thom isomorphism at NS, which gives rise the sequence:

H∗dR(S)
∧Φ−→ H∗+n−rcv (NS)

j∗−→ H∗+n−rdR (M)
Bπ−→ H∗+n−rπ (M).

We may take η̄S as the Poincaré dual of S. Thus for any differential form ω on M :

(Bπ ◦ j∗)(ω ∧ Φ) = f̄SBπ(ω) ∧ Bπ(dx1) ∧ Bπ(dx2).

Then we may produce non-trivial Poisson cohomology classes of higher order, by
taking the image of de Rham cohomology classes of a symplectic leaf.
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4.1. Lie algebroid Thom class. M. J. Pflaum, H. Posthuma and X. Tang defined
a Thom class for Lie algebroids (see Sections 2.2 and 2.3 from [23]), determined by
analogous properties as those of the de Rham Thom class.

Recall that a Lie algebroid over a smooth manifold is a triple (A, [, ], ]) of a vector
bundle A → M over M , endowed with a bundle map ]A → TM called anchor map,
and a Lie bracket [, ] on the space of sections of A that satisfies the Leibniz rule:

[α, fβ] = ](α(f))β + f [α, β].

Example 3. The cotangent bundle T ∗M of a Poisson manifold (M,π) has a natural
structure of Lie algebroid with its anchor map Bπ : T ∗M → TM and the Lie bracket
given by:

[α, β] = d(π(α, β)) + ιBπ(α)dβ − ιBπ(β)dα.

Example 4. The tangent bundle TM with anchor map given by the identity and the
Lie bracket of vector fields gives a natural structure of Lie algebroid to TM . It is called
the tangent algebroid.

Given a Lie algebroid (A, [, ], ]) there exists a differential complex with differential
operator dA given by Cartan’s formula. The resulting cohomology is called the algebroid
cohomology. If A = TM is the tangent algebroid, then its cohomology is the de Rham
cohomology of M . For the cotangent bundle one recovers the Poisson cohomology. For
more details, see [18].

Let E : E → M be a vector bundle. The pullback Lie algebroid along E is a Lie
algebroid E !(T ∗M) over TE, given fiberwise at a point m ∈ E by

E !(T ∗M)m = {(α, ξ) ∈ T ∗f(m)M ⊕ Tm(E)| Bπ(α) = dE(ξ)},

with anchor map ρE ! , given by ρE !(α, ξ) = ξ. Alternatively, the pullback Lie algebroid
along E can be defined through a universal property:

E !(T ∗M)

ρE!

��

proj // T ∗M

ρ

��
TE

dE
// TM

where proj is the canonical projection over T ∗M . See Section 4.2 in [18] for more details.

The anchor map ρE ! induces a map at Lie algebroid cohomology level:

ρ∗E ! : H∗(T ∗M,E)→ H∗(E !(T ∗M), E∗(E)).

Definition 4.1. If Φ is the Thom class of E, the Lie algebroid Thom class is defined
by:

Thπ(E) := ρ∗E !Φ.

Now the objective is to compute the Lie algebroid Thom class of a symplectic leaf
S of M . The induced Lie algebroid on S is given by the restriction to the Poisson
structure at S, which is indeed determined by its symplectic form.
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Observe that S can be identified as the zero section of NS, Zo : S → NS. Then there
exists a complementary space ν, corresponding to Zo such that:

Z∗o (T ∗NS) = T ∗S ⊕ ν.

In particular, there exists a projection p : Z∗o (T ∗NS) → T ∗S such that the following
diagram commutes:

T ∗NS

ρE!
��

p // T ∗S

Bπ
��

TNS
dE

// TS

This also shows that T ∗NS satisfies the universal property of pullback Lie algebroids.
Hence, summarizing, we have proved the following:

Proposition 4.2. Let S be a symplectic leaf of dimension r > 0, of a Poisson manifold
(M,π) then the pullback Lie algebroid of T ∗S, along the normal bundle E : NS → S is:

E !(T ∗S) = T ∗NS.

whith anchor map ρE ! = Bπ.

Theorem 2. The Lie algebroid Thom class of the normal bundle of a symplectic leaf
S of a Poisson manifold (M,π) is

Thπ(NS) = Bπ(ηS).

Proof. Notice that ρ∗E ! is the induced map of the Lie algebroid cohomology of TNS and
T ∗NS. Let ω ∈ H∗cv(NS) be an arbitrary form in the vertical cohomology of NS. Denote

by ĵ∗ the extension by 0, ĵ∗ : H∗π(NS)→ H∗π(M). Then, we immediatly have:

(ĵ∗ ◦ Bπ)(ω) = Bπ ◦ j∗(ω),

which applied to the Thom class, gives the result. �

5. Poisson cohomology classes of JP structures

The Poisson cohomology groups Hk
π(M) are Casπ(M)-modules. The group H0

π(M)
are the Casimirs of the Poisson structure. By means of the Thom isomorphism we may
obtain cohomology classes in H2

π(M) and H4
π(M). The classes in each cases are obtained

by cup product with the de Rham Thom class of the inclusion of the symplectic leaf in
M . More precisely,

• H0
π(M) = Casπ(M).

• For k = 2, the sequence of mappings:

H0
dR(S)

F−1

−−→ H2
dR(NS)

j∗−→ H2
dR(M)

Bπ−→ H2
π(M)

sends the generator of H0
dR(S) to the Poisson class of the bivector

Bπ(ηS) = f̄SBπ(dx1) ∧ Bπ(dx2).
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• Similarly as in the previous, for k = 4, the sequence of mappings:

H2
dR(S)

F−1

−−→ H4
dR(NS)

j∗−→ H4
dR(M)

Bπ−→ H4
π(M)

sends volS to the Poisson class of the bivector

Bπ(volS) = f̄SBπ(dx1) ∧ Bπ(dx2) ∧ Bπ(volS).

5.1. Group H3
π(M). Action of the monodromy of a singular fibration on the Poisson

cohomology.

Let F : M → Σ be a singular fibration and G a group acting fiberwise and freely by
diffeomorpisms outside its singular locus. Then it induces a homomorphism

π1(Σ \ Sing(f))→ G,

around a singularity of F , that captures the local behavior of the action, and the
fibration itself. Then, it encloses the action G at level of Poisson cohomolgy. More
precisely, let Σg be a surface of genus g, being the general fiber. By the homothopy
lifting property, there exists a homomorphism:

(17) ρ0 : G→ Aut
(
H1
dR(Σg)

)
Assuming that ρ0 preserves the intersection form in H1

dR(M), then there exists a ho-
momorphism

ρG : H1
dR(Σg)→ H3

dR(M)

given by the G-action followed by the cup product with the Thom Class of the inclusion
Σg ↪→ M . If M is a Poisson manifold, then Σg can be regarded as a symplectic leaf.
We define:

Definition 5.1. Let (M,π) be a Poisson manifold, whose singular leaves are the same
as of a singular fibration. At the symplectic leaf S of a singularity p we define the
homomorphism:

Monπ := Bπ ◦ ρG : H1
dR(S)→ H3

π(M).

where Bπ is the Lichnerowicz homomorphism at level 3.

The objective of this section is to describe Monπ for Lefschetz and wrinkled fibra-
tions, as well as for each Lekili’s move.

Monodromy action on a singular symplectic leaf. For a given surface Σg of genus g,
Diff+(Σg) will denote the group of orientation preserving diffeomorphisms of Σg, while
Diff+

0 (Σg) is the subgroup of Diff+(Σg) consisting of the diffeomorphisms isotopic to
the identity. The mapping class group of Σg is the quotieng group

M(Σg) := Diff+(Σg)/Diff+
0 (Σg).

Its group structure is given by concatenation of paths. For brevity, we will offten write
Mg.

Let γ be a simple closed curve in Σg. A curve γ is separating if Σg \γ is disconnected,
otherwise it is nonseparating. A nonseparating curve is cohomologically non-trivial. For
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any tubular neighborhood of γ, there exists a diffeomorphism ψ : Tub(γ)→ S1× [0, 1].
Consider d : S1 × [0, 1]→ S1 × [0, 1] the twist map given by:

d(θ, t) = (θ + 2πt, t).

The Dehn twist Dγ : Σg → Σg along γ is a homeomorphism defined as

Dγ :=

{
ψ−1 ◦ d ◦ ψ in Tub(γ),

Id in Σg \ Tub(γ).

The well known Dehn-Lickorish theorem states that the mapping class group Mod(Σg)
is generated by Dehn twists around 3g − 1 nonseparating simple curves. S. Humphries
found 2g + 1 generators [15].

Let f : M → Σ be a Lefschetz fibration with genus g surfaces as fibres. Then its
singular locus is a finite set:

Sing(f) = {b1, . . . , br}.
For a fixed point xo ∈ Int(Σ) \ Sing(f), attached to the general fibre Σg, consider a

loop γ : [0, 1]→ Y \Sing(f) at xo. Idenfity f−1(xo) with Σg by an orientation preserving
diffeomorphism Φ : Σg → f−1(xo). There exists a diffeomorphism

ϕ : [0, 1]× Σg → X \ f−1(Sing(f))

that preserves orientation with ϕ(0, p) = Σp, and f(ϕ(t, p)) = γ(t).

Definition 5.2. The monodromy of γ associated with Φ is the isotopy class of Φ−1 ◦
ϕ(·, 1) : Σg → Σg. The group homomorphism

π1(Σ \ Sing(f))→Mg, γ → [Φ−1 ◦ ϕ(·, 1)]

is called the monodromy representation. It is well defined up to conjugacy by Mg.

Indeed, the monodromy representation is the induced group homomorphism by the
right action of Mg on Σg.

Y. Matsumoto showed that any two Lefschetz fibrations are isomorphic if and only if
their monodromy representations are equivalent [19]. Recall we are under the consider-
ation of mappings with fibers of genus at least 2, since for this case the space Diff+(Σg)
is contractible. When considering a BLF, one must take into account the topology
around folds.

Let f : M → Σ a BLF, suppose that it has exactly one singular circle of indefinite
folds and one Lefschetz singularity ps. Let Γ be the singular circle and pf ∈ Γ. Let c
be a path that connects a fixed regular point p to pf ; and γ a disjoint path to c that
connects p to ps. Then the tuple (c; γ) determines completely the BLF if and only if
the Dehn twist along γ, Dγ, belongs to the subgroup of Mg

{D ∈Mg| D : Σg → Σg, D(c) = c} .
More generally, given a BLF, there exists a tuple (c; γ1, . . . , γl) of simple closed non-

separating curves on Σg satisfying that the product of Dehn twists Dγ1 · · ·Dγl lies into
the subgroupMg[c] ofMg, formed by diffeomorphisms that fix c. Such a tuple is called
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a Hurwitz system. Two BLF’s are isomorphic if and only if their Hurwitz systems are
equivalent [4]. Even more, there exists a map

Φc :Mg →Mg−1

such that Dγ1 · · · γl ∈ ker(Φc), and that factors by:

Mg →Mg(Σg \Nc), and Mg(Σg \Nc)→Mg−1,

where Nc is a tubular neighborhood of c. Recall that we are assuming that there is only
one singular circle, then Nc contains no other singular circles. See [3]. Note that the
mapping and its factors describe a surgery process that is performed when crossing a
singular circle where the genus of the general fiber drops down by 1. The kernel of Φc

is generated by lifts of point pushing maps and Dc (see Lemma 3.1 of [4]). Then the
equation:

D1 · · ·Dl = ±c
determines the monodromy representation. One says that the monodromy representa-
tion is contained in a subgroup H <Mg if all D1, . . . , Dl belong to H, up to conjugacy.

Lemma 1. The subgroupMg[c] ofMg, formed by diffeomorphisms that fix c, acts freely
on the closed surface Σg−1, which is obtained from the general fiber Σg by removing a
handle along c, and gluing in two disks. Then we have a homomorphism:

ρ0 :Mg[c]→ Aut
(
H1
dR(Σg)/〈[c]〉

)
' Aut

(
H1
dR(Σg−1)

)
.

It is the induced map from the monodromy representation:

π1(Σ \ (Sing(f) ∪N))→Mg−1

Proof. The group H1
dR(Σg−1) has 2g− 2 generators, given by pairs of transversal curves

(ai, bi), i = 1, . . . , g − 1. From Σg−1 we remove two disks with centers p1, p2. Further-
more, we have a natural identification Σg−1 \ {p1, p2} with the quotient Σg/c. Then we
glue a handle, generated by c. The resulting surface adds two additional transversal
curves (ac, b1,2). The curve ac identified with c; while b1,2 with the curve that connects
p1, p2 along the attached handle. This shows that H1

dR(Σg−1) ' H1
dR(Σg/〈[c]〉. The

result follows. See Section 3.18 in [11]. �

Remark 3. If the map f : M → Σ has no indefinite folds, that is, if it is a Lefschetz
fibration, then it is determined by a Hurwitz system (1;Dγ1 , . . . , Dγl), formed by Dehn
twists along vanishing cycles at the Lefschetz singularities.

Proposition 5.1. Let f : M → Σ be a BLF, and denote by (M, {, }µ) its associated
JP structure with bivector π. Then we have:

i) In a neighborhood of a Lefschetz singularity, it is given by the monodromy rep-
resentation, Monπ = Bπ ◦ ρMg , and

ii) in a tubular neighborhood of a singular circle, it is given by Monπ = Bπ ◦ ρMg [c].

Remark 4. Observe that around a broken singularity, if the general fiber is a surface
of genus g, the monodromy is contained in the mapping class group of Σg−1.
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Definition 5.3. The Torelli group I(Σg) of Σg is the subgroup of Mg, formed of
elements that act trivially on H1

dR(Σg).

Example 5. Simple closed curves on Σg that are homotopic to a point are zero elements
in π1(Σ) \ Sing(f). Then they act trivially on H1

dR(M), and so the corresponding Dehn
twists belongs to I(Σg). If γ1 and γ2 are homotophic equivalent curves, then Dγ1D

−1
γ2

is also an element of I(Σg).

Definition 5.4. A hyperelliptic surface is a pair (Σ, v) of a surface Σ and diffeomor-
phism v ∈ Diff+(Σ) such that v2 = IdΣ and the quotient surface Σ/v has genus 0.

The involution associated to a hyperelliptic surface gives an action by −I on H1
dR(M).

Example 6. A sphere is a hyperelliptic surface, and a torus under a rotation by π
along a meridian, are examples of hyperelliptic surfaces.

Definition 5.5. The hyperelliptic mapping class group or the hyperelliptic group of a
hyperelliptic surface (Σ, v), for short, is the centralizer of v in Mg. It will be denoted
by H(Σg).

It is known that there exists BLF’s whose monodromy is contained neither in the
Torelli group nor the the Hyperelliptic group. See for instance constructions from [1]
and [4]. :

Theorem 3. Let M be a JP manifold with generic singularities. Then the homomor-
phism Monπ at a symplectic leaf is determined by the action of Dehn twists on H1

dR(Σg)
or Dehn twists on H1

dR(Σg−1). It gives non-trivial classes in H3
π(M).

5.2. Lekili’s moves and their monodromies. Summarizing, a wrinkling fibration
may have cusps, indefinite folds or broken singularities as critical points. The effect
of the monodromy in the Poisson manifold around indefinite folds is determined by a
homomorphism Φc : Mg → Mg−1 which induces a homomorphism Φ̃c : H1

dR(Σg) →
H1
dR(Σg−1), for a nonseparating curve c, and then by composing with the Lichnerowicz

homorphism. At broken singularities, the effect is given by Dehn twists along vanishing
cycles. While in the case of a cusp, when one approaches to a cusp, the general fiber
increases its genus by 1. In the reverse process, the Lefschetz singularity is replaced by
three cusps.

Birth. bs(x, y, z, t) = (t, x3 − 3x(t2 − s) + y2 − z2).

The only values of the parameter s at which a birth mapping produces singularities
are when s = 0 or s > 0. In the first case, there is only one singularity at origin, which
is a cusp. In fact, as was described by Lekili, this move substitutes this cusp singularity
by a Lefschetz singularity, said otherwise, one obtains a Morse function.

For the second case, the singular locus is the circle {x2 + t2 = s, y = z = 0}, obtained
by gluing two cusps. The critical value set is the union of the lines {x = 1, y = z = 0}
and {x = −1, y = z = 0}. Let L be a segment joinging these lines. Then, along L the
fiber degenerates by increasing its genus by 1. Thus, when a birth of a cusp singularity
occurs, there exists a homomorphism

Φ̂c :Mg →Mg+1
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describing the attaching of a handle. Analogously as before, one has a homomorphism
H1
dR(Σg)→ H1

dR(Σg+1), by the homotopy invariance property of the de Rham cohomol-
ogy. It determines the homomorphism Monπ for this case.

Merging. ms(x, y, z, t) = (t, x3 − 3x(s− t2) + y2 − z2).

This move describes the gluing of two singular circles. Recall that the monodromy
around a singular circle is given by a homomorphism Φc. In fact, if s > 0 we have a
wrinkled map whose singular locus is the gluing of two cusps. For s > 0 we have a cusp
singularity. For s = 0 is similar as in the previous one.

Flipping. fs(x, y, z, t) = (t, x4 − x2s+ xt+ y2 − z2)..

For s < 0 the singular locus is a simple curve (with no cusps). Along the singular
locus the genus of the general fiber increases by 1. For s = 0 one have a higher order
singularity, with a similar behavior. For s > 0, a flipping behavior happens. Let a a
separating curve at the general fiber. Then the monodromy is given by a Dehn twist
around a nonseparating curve. The resulting map Φa :Mg →Mg preserves the genus
of the fiber, but it factors via removing tubular neighborhood of a nonseparating curve
a and a pushing map along a curve b, regarding a and b as generators in cohomology.

Wrinkling. ws(x, y, z, t) = (t2 − x2 + y2 − z2 + st, 2tx+ 2yz).

In this case, for each parameter s, the singular locus is given by {(t, x, y, z)| x2 + t2 +
st = 0, y = z = 0}. It is a curve with 3 cusps.

We also refer the reader to [14], where the K. Hayano described the change of mon-
odromy for wrinkled fibrations, in terms of vanishing cycles.

5.3. The modular class.

Definition 5.6. The modular class [Zπ] of an oriented Poisson manifold (M, {, }µ) is
the Poisson cohomology class in H1

π(M) represented by the (global) vector field Zπ
defined by:

Zπ(f) := divµ(Bπ(df))

where divµ is the divergence with respect to µ. The vector field Zπ(f) is called the
modular vector field. If Zπ(f) vanishes everywhere, then π is called unimodular.

The JP structures are unimodular [25]. Then the cohomology spaces can be com-
puted through the formulas for Sklyanin algebras [22]. The respective computations
were made by P. Batiakidis and R. Vera for Lefschetz fibrations [2]. In fact, they
computed the differential operators for any JP structure. See Proposition 4.1 in [2].

Lemma 2. Consider a Poisson bivector on R4 given by:

π(p) = k ·
[
A1

∂

∂y
∧ ∂

∂z
+ A2

∂

∂z
∧ ∂

∂x
+ A3

∂

∂x
∧ ∂

∂y

]
.

with smooth functions k,Ai : R4 → R, i = 1, . . . , 4, being k non-vanishing. Then the
modular vector field with respect to the volume form is given by:

Zπ =

〈
rot [A1, A2, A3] ,

(
∂

∂x
,
∂

∂y
,
∂

∂z

)〉
− Bπ(d log(|k|)).
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Here rot and 〈, 〉 denote the rotational operator and the euclidean inner product in R3,
respectively.

Proof. Consider (x1, x2, x3, x4) := (t, x, y, z), and ζi := ∂
∂xi

. Then if we represent the
wedge product as a mutiplication on the variables ζi, they commute with the variables
xi but anti-commute among themselves. In these terms, it is known that in a local
system of coordinates (t, x, y, z) the modular class can also be written as:

Zπ =
4∑
i=1

∂2π

∂xi∂ζi
.

See formula (2.89) in [9]. The differentiation rule is:

∂ζi1 · · · ζip
∂ζik

= (−1)p−kζi1 · · · ζ̂ik · · · ζip ,

where ζ̂ik denotes that the term ζik is missing, for 1 ≤ k ≤ p. Then Poisson bivector
under consideration can be written locally as:

π = k · [A1ζ3 · ζ4 + A2ζ4 · ζ2 + A3ζ2 · ζ3]

Assume for a moment that k = 1. Then we have:

∂

∂x1

(
∂π

∂ζ1

)
= 0

∂

∂x2

(
∂π

∂ζ2

)
=

∂

∂x2

(A2ζ4 − A3ζ3) =
∂A2

∂x2

ζ4 −
∂A3

∂x2

ζ3

∂

∂x3

(
∂π

∂ζ3

)
=

∂

∂x3

(A3ζ2 − A1ζ4) =
∂A3

∂x3

ζ2 −
∂A1

∂x3

ζ4

∂

∂x4

=

(
∂π

∂ζ4

)
=

∂

∂x4

(A1ζ3 − A2ζ2) =
∂A1

∂x4

ζ3 −
∂A2

∂x4

ζ2.

Therefore:

Zπ =

〈
rot [A1, A2, A3] ,

(
∂

∂x
,
∂

∂y
,
∂

∂z

)〉
.

By Proposition 2.6.5 in [9], by our choice of the volume form, we have that for any
non-vanishing function k,

Zπ =

〈
rot [A1, A2, A3] ,

(
∂

∂x
,
∂

∂y
,
∂

∂z

)〉
− Bπ(d log(|k|)).

�

The lemma above also gives a local expression for the modular vector field for those
Poisson bivectors considered by Pichereau [24], in R3. It directly implies that those
structures are unimodular. If (M, {, }µ) has generic singularities we may then give the
modular vector field in a short nice form.

Theorem 4. Any JP manifold (M, {, }µ) is unimodular. If it has generic singularities,
its modular class is given locally by the modular vector field:

Zπ =

〈
rot

[
∂ψ

∂x
,−∂ψ

∂y
,
∂ψ

∂z

]
,

(
∂

∂x
,
∂

∂y
,
∂

∂z

)〉
.
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Global cohomology classes. The Poisson cohomology version of the Mayer-Vietoris se-
quence establishes that for every open subsets (U, V ) in a Poisson manifold M , the
sequence:

· · · → H∗π(U ∪ V )→ H∗π(U)⊕H∗π(V )→ H∗π(U ∩ V )→ H∗+1
π (U ∪ V )→ · · ·

is exact. Then in terms of the global decomposition of a JP manifold 15

M = W ∪ UC ∪ UΓ,

where W ∩ UC 6= ∅, W ∩ UΓ 6= ∅ and UC ∩ UΓ = ∅. Thus one obtains that the Poisson
cohomology splits as

H∗π(M) = H∗dR
c(W \ (UC ∪ UΓ))⊕H∗π(UC)⊕H∗π(UΓ).

Here we denote by H∗dR
c the complactly supported de Rham cohomology.
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