
A survey on Computations of Bredon Cohomology

Noé Bárcenas

Abstract. We present an overview of computational methods for Bredon
cohomology with a special focus on infinite groups.

1. Different meanings for Bredon Cohomology

Bredon cohomology is one of the most prominent cohomology theories for spaces
with an action of a group.

We reserve the notion of equivariant ordinary cohomology - as understood
traditionally and in this volume- for the cohomology of the Borel construction of a
space with an action of a compact Lie or finite group. We will speak, however, of
Bredon cohomology as an equivariant cohomology theory in a sense to be defined
below.

Historically, the construction of Bredon cohomology goes back to the announce-
ment [13] and the extended version [14], and it is strongly based on the notion of
a G-CW complex, which we will review in this note.

It is this relation which explains the use of Bredon cohomology in the study
of finiteness properties in group cohomology [45], [6]. We will not extend in the
discussion of this subject and rather refer to the excellent survey [48], and to [53]
specifically to the Eilenberg-Ganea problem for families which is phrased in terms
of Bredon cohomology of classifying spaces for families.

Simplicial versions of Bredon cohomology were provided by Bröcker and Illman
[15], [32], with the outcome of the posibility of considering actions of (Hausdorff,
locally compact) topological groups, based on an equivariant version of simplicial
complexes, which mimics the definition of G-CW complexes.

Homotopical versions of Bredon cohomology, which even allow a description
in the parametrized equivariant setting are described in [52] for Näıve equivariant
cohomology theories, in the sense of equivariant homotopy theory. For the specific
case of Bredon cohomology with local (twisted) coefficients in the complex twisted
representation group, a construction has been written in detail in [8], where also the
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relation to the Čech versions has been established in order to provide a description
of the Segal/Atiyah-Hirzebruch spectral sequence.

Genuine equivariant versions of Bredon cohomology have been considered in
equivariant homotopy theory [42]. Classical computations of these theories in-
clude seminal work of Gaunce Lewis [43] (atributed to unpublished work of Stong),
based on explicit cellular structures of the relevant examples, the RO(G)- graded
Künneth and universal coefficient spectral sequences [44], the implicit use of clas-
sifying spaces for families, such as the Tits building in [4], the explicit use of classi-
fying spaces for families of proper subgroups [37], and a more recent development
of a variety of tools whose interest goes back to the role of such computations in
the proof of the Kervaire invariant one problem in [27].

The methods include (without the intention to be exhaustive in their enumer-
ation) those based on the slice filtration [28], the homotopy fixed point spectral
sequences [30], often in combination with ad-hoc cellular constructions [36], as
well as parametrized homotopy theory considerations [16], and the notion of free-
ness of [29]. They are quoted here with the idea of giving a representative example
of an application of each kind of method.

Finally, a genuine proper equivariant version of Bredon cohomology has been
defined in terms of equivariant homotopy theory in example 3.2.16 in [18], where
also the relation of the extensions of the gradings from Z to the equivariant KO0-
theory of the classifying space for proper actions ( more general than RO(G) is
adressed.

We will focus on computational methods for the determination of naive versions
of Bredon cohomology, with an emphasis on infinite discrete groups, extending the
content of the lecture delivered at the AMS sectional meeting with a number of
references and additional examples expanding the exposition.
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2. Bredon Cohomology

Let G be a (possibly infinite) discrete group. A G-CW-complex is a CW-
complex with a G-action permuting the cells and such that if a cell is sent to itself,
it is done by the identity map. We call the G-action proper if all cell stabilizers are
finite subgroups of G.

Definition 2.1. Recall that a G-CW complex structure on the pair (X,A)
consists of a filtration of the G-space X = ∪−1≤nXn, X−1 = ∅,X0 = A and for
which every space Xn is inductively obtained from the previous one by attaching
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cells in pushout diagrams of the form∐
i S

n−1 ×G/Hi
//

��

Xn−1

��∐
iD

n ×G/Hi
// Xn

We say that a proper G-CW complex is finite if it consists of a finite number of
(orbits of) cells G/H ×Dn.

Example 2.2. [Examples of G-CW decompositions]

• It is a consequence of the equivariant triangulation theorem that there ex-
ists equivariant triangulations of smooth manifolds with a proper smooth
action of a lie Group. [33], [34]. Such a triangulation produces a G-
simplicial complex.

This notion is described in [34], section 5 as a triangulation of the
orbit space X/G with an extra compatibility condition with respect to
the quotient map π : X → X/G, namely: the inverse image of an n-
dimensional simplex ∆n on X/G is a standard equivariant simplex, de-
noted (∆n, H0, . . . ,Hn), which is a quotient of the product of a free G-
orbit of the standard n-dimensional simplex ∆n × G, where pairs (x, g)

and (x, g
′
) are identified if for each k = 0, . . . n x belongs to the boundary

of one of the k-dimensional simplices in ∆n, the cosets for the compact
subgroup Hk gHk and g

′
Hk agree, and the sequence of compact subgroups

satisfy Hi+1 ⊂ Hi.
Notice that the data provided by this identification is equivalent to

G-equivariant maps from orbits of i-dimensional simplices G/Hi ×∆i →
X, on which the inclusions of standard simplices ∆i ⊂ ∆i+1 are made
compatible with inclusions up to G-conjugacy Hi+1 ⊂ Hi.

Such a map ∆i × G/Hi → X can be identified with a cell. The full
details are worked out in [34], propositon 11.5, page 170.

• A G-Absolute Neighborhood Retract with a proper action of a Lie group,
or more generally, a locally compact group has the homotopy type of a
G-CW complex. This is is a consequence of the slice theorem [55].

• Equivariant cell decomposition for the action of Sl2(Z) on the hyperbolic
plane and the 1- dimensional deformation retract.

The group Sl2(Z) acts by isometries on the hyperbolic plane. The
dual of the Farey tesselation provides an example of a one- dimensional
G-CW complex (the Bass-Serre tree) for Sl2(Z)), consisting of two orbits
of zero dimensional cells of type C4, C6, and one dimensional cell of type
C2. See figure 2.2

More generally, Li, Lück and Kasprovski have constructed in [35] a
G-CW structure for the flag complex associated to a group G given as
a graph product (Examples include right angled Artin groups and right
angled Coxeter groups).

• Equivariant cell decomposition for the action of Sl3(Z) on the homoge-
neous space Sl3(R)/SO3. There exists a triangulation of the quotient of
an equivariant deformation retract of this homogeneous space described
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Figure 1. Dual of the Farey triangulation.

in [64], but also in [58], which is the main input for the computations of
twisted equivariant K-Theory and K-homology in [9], [10].

Let Q be the space of real, positive definite 3 × 3-square matrices.
Multiplication by positive scalars gives an action whose quotient space
Q/R+ is homotopy equivalent to the quotient Sl3(R)/SO3/SL3(Z).

We describe its orbit space. Let C be the truncated cube of R3 with
centre (0, 0, 0) and side length 2, truncated at the vertices (1, 1,−1), (1,−1, 1), (−1, 1, 1)
and (−1,−1,−1), trough the mid-points of the corresponding sides. As
stated in [64], every matrix A admits a representative of the form 2 z y

z 2 x
y x 2


which may be identified with the corresponding point (x, y, z) inside

the truncated cube. We introduce the following notation for the vertices
of the cube:

O = (0, 0, 0) Q = (1, 0, 0)
M = (1, 1, 1) N = (1, 1, 1/2)

M
′

= (1, 1, 0) N
′

= (1, 1/2,−1/2)
P = (2/3, 2/3,−2/3)
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Figure 2. Triangulation for the fundamental region.

O

Q

M

N

M'

P

N'

Note that the elements of Sl3Z

q1 =

1 0 0
0 0 −1
0 1 1

 q2 =

−1 0 0
0 1 1
0 0 −1



send the triangle (M,N,Q) to the triangle (M
′
, N
′
Q) and the quadrilat-

eral
(N,N

′
,M

′
, Q) to (N

′
, N,M

′
, Q). Thus, the following identification

must be performed in the quotient: M ∼= M
′
, N ∼= N

′
, QM ∼= QM

′
,

QN ∼= QN
′
, MN ∼= M

′
N
′ ∼= M

′
N and QMN ∼= QM

′
N ∼= QM

′
N
′
.

Following [58] we now describe the orbits of cells and corresponding
stabilizers. This can be found also in Theorem 2 of Soulé’s article [64]
(although we use a cellular structure instead of a simplicial one). We have
changed the chosen generators. We summarize the information on Table
1. We use the following notations: {1} denotes the trivial group, Cn the
cyclic group of n elements, Dn the dihedral group with 2n elements and
Sn the Symmetric group of permutations on n objects.
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vertices 2-cells
v1 O g2, g3 S4 t1 OQM g2 C2

v2 Q g4, g5 D6 t2 QM ′N g1 {1}
v3 M g6, g7 S4 t3 MN ′P g12, g14 C2 × C2

v4 N g6, g8 D4 t4 OQN ′P g5 C2

v5 P g5 , g9 S4 t5 OMM ′P g6 C2

edges 3-cells
e1 OQ g2, g5 C2 × C2 T1 g1 {1}
e2 OM g6, g10 D3

e3 OP g6, g5 D3

e4 QM g2 C2

e5 QN ′ g5 C2

e6 MN g6, g11 C2 × C2

e7 M ′P g6, g12 D4

e8 N ′P g5, g13 D4

The first column is an enumeration of equivalence classes of cells;
the second lists a representative of each class; the third column gives
generating elements for the stabilizer of the given representative; and the
last one is the isomorphism type of the stabilizer. The generating elements
referred to above are

g1 =

1 0 0
0 1 0
0 0 1

 g2 =

−1 0 0
0 0 −1
0 −1 0

 g3 =

 0 0 1
0 1 0
−1 0 0



g4 =

−1 0 0
0 1 1
0 0 −1

 g5 =

−1 0 0
0 0 1
0 1 0

 g6 =

 0 −1 0
−1 0 0
0 0 −1



g7 =

 0 0 −1
−1 0 0
1 1 1

 g8 =

−1 0 0
0 1 0
0 −1 −1

 g9 =

 0 0 −1
−1 0 −1
0 1 1



g10 =

 0 0 −1
0 −1 0
−1 0 0

 g11 =

−1 0 0
0 −1 0
1 1 1

 g12 =

 0 −1 −1
0 −1 0
−1 1 0



g13 =

0 1 1
1 0 1
0 0 −1

 g14 =

−1 0 0
−1 0 −1
1 −1 0


We fix an orientation; namely, the ordering of the vertices O < Q <

M < M ′ < N < N ′ < P induces an orientation in E and also in the
quotient BSl3Z = E/ ≡. The cells coboundaries are detemined in section
5 of [9] and include restriction of representations and signs coming from
the prescribed orientation chosen above.
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Bredon cohomology admits a description in terms of functors depending on the
orbit category of a group.

Similar to the discussion of part 1 in 2.2, the subconjugacy relations of sub-
groups, say from H to K by an element of G, denoted by g satisfying gHg−1 =
H
′ ⊂ K, has the consequence that there exists a G-equivariant map G/H → G/K

given by asigning to the coset g
′
H the coset gg

′
g−1K .

Such equivariant maps determine geometric information when considered as
part of the intrinsically given data in a G-CW structure. In particular, such maps
origin inclusions of orbits of cells in such a way that the lowest dimension of cells
is associated to the biggest groups in terms of inclusion up to G-conjugacy.

There exist two important categories associated to a group, which are relevant
to the codification of such relations among the subgroups of G, the Orbit category,
and the Conjugation homomorphism category. We will assume for the rest of this
section that the group G is discrete.

Definition 2.3 (Orbit Category). Denote by OG the orbit category of G; a
category with one object G/H for each subgroup H ⊆ G and where morphisms are
given by G-equivariant maps. There exists a morphism φ : G/H → G/K if and
only if H is conjugate in G to a subgroup of K. More generally, given a family of
subgroups F , which is closed under intersection and conjugation, we can form the
full subcategory OFG where the objects are of the form G/H with H in F .

Definition 2.4 (Conjugation Homomorphism Category). Given a Group G,
the conjugation-homomorphism category SG is the category where the objects are
subgroups of G, and the set of morphisms between two objects H and K is the
quotien, denoted by Conhom(H,K)/Inn(K) of the set conhom(H,K) of group ho-
momorphisms ϕ : H → K for which there exists an element g ∈ G such that ϕ is
given as conjugation by g, and the group Inn(K) of inner automorphisms of K acts
by composition.

There exists a projection functor pr : OG → SG, which asigns to each orbit
G/H the subgroup H and to a G- map f : G/H → G/K the homomorphism

H → K defined as conjugation by an element g satisfying gHg−1 ∼= H
′ ≤ K.

Remark 2.5. The set MorSG(H,K) is isomorphic to the quotient of the action
of the centralizer of the subgroupH inG, CG(H) = {g ∈ G | gh = hg for all h ∈ H }
on the set of G-equivariant maps MorOG

(G/H,G/K), where an element of the cen-
tralizer g ∈ CG(H) acts by composition with the right multiplication Rg−1 : G/H →
G/H, g

′
H 7→ g

′
g−1H.

The main advantage in considering this category is that the automorphism
group of a finite group H is finite.

In the orbit category, the automorphism group of an object G/H is the quotient
of the nomalizer susbgroup in G by the subgroup H ·CH(G) consisting of elements
of the form hc, where h ∈ H, and c is an elment of the centralizer in G of H. We
will denote this group by WG(H) = NG(H)/H · CH(G).

Both the orbit category and the conjugation-homomorphism category are EI-
categories, in the sense that every endomorphism of an object is invertible.

Example 2.6. [Orbit Categories for infinite groups]

• The orbit category for the family of finite subgroups for the group Sl2(Z)
has three objects: Sl2(Z)/C6, Sl2(Z)/C4, and Sl2(Z)/C2. There exist



8 NOÉ BÁRCENAS

two G- equivariant maps Sl2(Z)/C2 → Sl2(Z)/C6 and Sl2(Z)/C2) →
Sl2(Z)/C4.

• The triangulation of the quotient of the action of Sl3(Z) on the space
constructed by Soulé and discused in 2.2, part 4, has the consequence of
a complete description of the orbit category for finite stabilizer subgroups
in the group: There exist eight maximal finite subgroups, which are the
stabilizers of the zero dimensional cells, there are as many morphisms
between them as the one dimensional cells of the triangulation having as
edges the vertices, the composition of pairs of such morphisms are related
by the obvious rule given by the two dimensional cells, and finally, there
exists a unique composition of length three in the orbit category for finite
isotropy subgroups of Sl3(Z). See the table at the end of the previous
section.

Definition 2.7. (Bredon homology) Let X be a G-CW complex. The con-
travariant functor C∗(X) : OG → Z−CHCOM assigns to every object G/H the cel-
lular Z- chain complex of theH-fixed point complex C∗(X

H) ∼= C∗(MapG(G/H,X))
with respect to the cellular boundary maps ∂∗.

We will use homological algebra to define Bredon homology and cohomology
functors.

A contravariant Bredon Module is a contravariant functor N : OFG → Z −
MODULES, where FG is the full subcategory of the orbit category of G, OG
generated by the objects G/H for a family of subgroups H ∈ FG.

Given a contravariant Bredon moduleM , the Bredon cochain complex C∗G(X;M)
is defined as the abelian group of natural transformations of functors defined on
the orbit category C∗(X)→M . In symbols,

CnG(X;M) = HomFG(Cn(X),M)

Where FG is a subcategory containing the isotropy groups of X.
Given a set {eλ} of orbit representatives of the n-cells of the G-CW complex

X, and isotropy subgroups Sλ of the cells eλ, the abelian groups CnG(X,M) satisfy:

CnG(X,M) =
⊕
λ

HomZ(Z[eλ],M(G/Sλ))

with one summand for each orbit representative eλ. They afford a differential
δn : CnG(X,M) → Cn−1

G (X,M) determined by ∂∗ and maps M(φ) : M(G/Sµ) →
M(G/Sλ) for morphisms φ : G/Sλ → G/Sµ.

For a covariant functor

N : FG → Z−MODULES,

the chain complex

COG∗ = Cn(X) ⊗
FG

N =
⊕
λ

Z[eλ]⊗N(G/Sλ)

admits differentials δ∗ = ∂∗ ⊗N(φ) for morphisms φ : G/Sλ → G/Sµ in FG.

Definition 2.8 (Bredon homology). The Bredon homology groups with coef-
ficients in N , denoted by HOG∗ (X,N). are defined as the homology groups of the
chain complex

(
COG∗ (X,N), δ∗

)
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Definition 2.9 (Bredon cohomology). The Bredon cohomology groups with
coefficients in M , denoted by H∗OG(X,M) are the cohomology groups of the cochain

complex
(
C∗G(X,M), δ∗

)
.

Remark 2.10 (Bredon cohomology in terms of the conjugation homomorphism
category). Let X be a G-CW complex with finite cell stabilizers. Consider the
contravariant functor defined on the conjugation homomorphism category SG and
taking values in the category of chain complexes, where we asign to a subgroup H
the cellular chain complex of the quotient space XH/CG(H). We will denote by
CSG∗ the obtained functor, and define for every contravariant functor defined on SG
and values on the category of R-modules the Cochain complex of natural trans-
formations from CSG∗ to M as HomSG(CSG∗ ,M). We can apply the cohomology
funtor with respect to the cellullar cochain maps and we will denote the obtained
modules by Hn

SG(CSG∗ ,M).
As a consequence of remark 2.5, the projection functor pr : OG → SG induces

for every contravariant functor M defined on the conjugation isomorphism category
and taking values in R-modules a bijective pair of natural transformations

pr∗ : pr∗M →M,

between the composition of functors, and

pr∗ : COG∗ → CSG∗

between the chain complexes, which produce an isomorphism on the level of coho-
mology groups

Hn
OG(X,pr∗M) ∼= Hn

SG(CSG∗ ,M)

Example 2.11 (Examples of Bredon Modules). We will now enumerate some
important examples of Bredon modules.

(1) Constant coefficients. Given a fixed R-Module M , we consider the con-
stant functor with value M for each orbit.

(2) Free Bredon functors. A contravariant functor defined on the orbit cate-
gory is said to be free if it is a direct sum of representable contravariant
functors; that is, there exist a number of objects G/Hα such that the
functor is given as ⊕

G/Hα

R[Mor( , G/Hα)].

Chain complexes associated to G-CW complexes provide examples of
free contravariant Bredon modules.

(3) The complex representation ring as a Bredon module.
We restrict to the family of finite subgroups of the possibly infinite

group G, and associate to the object in the orbit category G/H with a
finite subgroup H, the complex representation ring RC(H). Recall that
the subjacent abelian group is free in the set of conjugacy classes of H,
but it is not free as a functor over the orbit category as defined in the
example above.

On the complex representation ring we can consider a covariant struc-
ture, assigning to a G-map G/H → G/K the induction homomorphism
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RC(H)→ RC(K) constructed as follows. Let H
′ ≤ K be the subgroup of

K which is conjugated to H.
Let now V be a representation of H, and consider it as an H

′
- repre-

sentation. Consider now the K-representation V ⊗C C(K).
There exists a contravariant structure on the representation ring,

defined by assigning to a morphism G/H → G/K the homomorphism
RC(K)→ RC(H′ )

∼= RC(H) given by restriction.

(4) Twisted complex representation rings
Let H be a finite group and V be a complex vector space. Given a

cocycle α : H ×H → S1 representing a class in H2(H,S1) ∼= H3(H,Z),
an α-twisted representation is a function P : H → Gl(V ) satisfying:

P (e) = 1

P (x)P (y) = α(x, y)P (xy)

The isomorphism type of an α-twisted representation only depends
on the cohomology class in H2(H,S1).

Definition 2.12. Let H be a finite group and α : H × H → S1 be
a cocycle representing a class in H2(H,S1) ∼= H3(H,Z). The α-twisted
representation group of H, denoted by αR(H) is the Grothendieck group
of isomorphism classes of complex, α-twisted representations with direct
sum as binary operation.

Let H be a finite group. Given a cocycle α ∈ H2(H,S1) representing
a torsion class of order n, the normalization procedure gives a cocycle β
cohomologous to α such that β : H×H → S1 takes values in the subgroup
Z/n ⊂ S1 generated by a primitive n-th rooth of unity η. Associated to
a normalized cocycle, there exists a central extension

1→ Z/n→ H∗ → H → 1

with the property that any twisted representation of H is a linear represen-
tation of H∗, with the additional property that Z/n acts by multiplication
with η. Such a group is called a Schur covering group for H.

(5) Burnside Ring. We restrict again to the family of finite groups for the
isotropy of objects in the orbit category. Given a finite group H, the
Burnside ring A(H) is defined to be the Grothendieck ring of the set of
isomorphism classes of finite sets with an action of H.

Similar to the representation ring, there exist two structures on the
Burnside Ring: one covariant, given by induction of actions, and a con-
travariant one, which is defined by restriction.

Example 2.13 ( Computation of Bredon homology of Sl2(Z) from the defini-
tion.). Let us consider the complex representation ring as Bredon module. We will
restrict to the family of finite subgroups here. Directly from the 1- dimensional
cellular structure for the (Bass Serre) graph given as de dual of the Farey trian-
gulation, we obtain a Chain complex computing the Bredon homology where the
depicted map is d1.

0→ R(C2)

(
ind

C6
C2

),−ind
C4
C2

)
→ R(C6)⊕R(C4)→ 0.
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Notice that the rank of the abelian group on the left is 2, the rank of the group
on the right is 6+4=10, and the map is injective.

Thus, if we denote by T the 1-dimensional Sl2(Z)- complex obtained.

H0OSl2(Z)(T,R) = Z8,

and all other Bredon homology groups are zero.

Remark 2.14 (Further accesible examples of low dimension). We mention for
the sake of utility the following illustrative examples of computations of Bredon
cohomology in low dimension: [23], [22].

Remark 2.15 (Computations for SL3(Z) based on the CW decomposition.).
The triangulation proposed by Soulé has been extensively exploited for computa-
tions of Bredon cohomology.

The first computation of the Bredon chain and cochain complex was done in
[58]. In detail, he determination of stabilizers, and conjugacy relations, as well as
the differentials have been used as input for computations of Bredon cohomology
with coefficients in complex representations in [58], for coefficients in twisted rep-
resentations in [9], [10], and more recently, with the coefficients of equivariant real
K- Theory in [31].

The output is that the spectral sequence of Atiyah-Hirzebruch type collapses,
and the computation amounts to a computation of the left hand side of the Baum-
Connes conjecture.

Remark 2.16 (Equivariant Obstruction Theory on G-CW complexes and Bre-
don cohomology). One of the first succeses of Bredon cohomology was the develop-
ment of equivariant Obstrution Theory. Consider the equivariant version of the Ob-
struction problem: Given G-Cw complexes X and Y , and a G-map f : Xn−1 → Y
defined on the n− 1- skeleton, the main theorem states that f can be redefined to
be G- homotopic over the n − 2 skeleton to a map which extends over an n + 1-
dimensional additional orbit of a cell G/H ×Dn+1 if an obstruction class vanishes

o(f) ∈ Hn
OG(X,πn+1(Y H)).

See [14] Chapter II and [12] for the use in combinatorial geometry in the specific
case of free actions.

Remark 2.17 (Bredon cohomology in Topological complexity). Lower bounds
for topological complexity of Eilenberg-Maclane spaces have been obtained with
computations of Bredon cohomology in [21].

Remark 2.18 (Hecke Operators and Bredon cohomology). There exists a
framework for the study of Hecke operators actng on the Bredon cohomology to
obtain a Hecke action on the reduced C∗ algebra of the group in [51].

Remark 2.19 (Motivic Version of Bredon cohomology). There exists a com-
putation of a motivic version of Bredon Cohomology in [26].

Remark 2.20 (Algebraic properties of the Abelian Category of Bredon Modules
and its objects). We briefly mentioned in the previous example that (by definition
of free object) the chain complex associated to a G-CW complex provides an ex-
ample of a free functor over the orbit category. We will examinate some algebraic
properties of the categories of modules and chain categories.
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The category where the objects are functors on the orbit category in a category
of Modules is an abelian category, where a morphism is a natural transformation
between them. A pais of consecutive morphisms is said to be exact if it is exact on
every object.

The notions of projective and injective module can be given as usual in terms
of Hom functors, and free and projective resolutions exist as a consequence of the
Yoneda Lemma.

See [53] for an introduction to Bredon homological algebra in connection with
group cohomology, and specifically finiteness properties.

Remark 2.21 (Computation of Bredon cohomology in practice). The coeffi-
cient systems considered in this note yield chain complexes, respectively cochain
complexes of free abelian groups with preferred bases to compute both Bredon
homology and cohomology.

Notice that if we have a complex of free abelian groups

· · · → Z⊕n f−→ Z⊕m g−→ Z⊕k → · · ·
with f and g represented by matrices A and B for some fixed basis, then the
homology at Z⊕m is

ker(g)/im(f) ∼= Z/d1Z⊕ · · · ⊕ Z/dsZ⊕ Z⊕(m−s−r),

where r = rank(B) and d1, . . . , ds are the elementary divisors of A.
This has a consecuence the Torsion Freeness chriterion for Bredon homology,

see Theorem 5.2 in page 1496 of [41].
Effective approaches for implementing Bredon cohomology in computations

(mainly in GAP) include [60], [56].

2.1. Comparison to other constructions. While the simplicial and cellular
versions of Bredon cohomology are compared by Illman in [32], the Čech versions
is seen to agree for a proper G-ANR with the naive-homotopical versions of Bredon
cohomology in the more general parametrized setting in Theorem 5.3 of [8]. The
theorem is phrased for the specific example of (twisted) complex representation
ring, but the argument holds for any Bredon module.

Remark 2.22 (Contrast to genuine equivariant homotopical versions of Bredon
cohomology). There exist versions of Bredon cohomology obtained by considering
a genuine equivariant version of the Eilenberg Maclane spectrum in a category of
equivariant spectra.

Some examples of these computations include [44], [4] [37] [27], [28], [30] [36],
[16].

We refer to example 3.2.16 in [18] for the relation of naive graded equivari-
ant cohomology theories to extensions of them to genuine ones, which apply in
particular to Bredon cohomology.

2.2. Computations based on the algebraic properties of the Category
of Mackey functors. We will present now a decomposition of Bredon cohomology
in terms of information concerning automorphism groups of each object for the
Bredon module. The relation is crucial to decompositions which refine equivariant
cohomological Chern characters.

References for this section are [63], [47], [46], from where the totality of argu-
ments and definitions are extracted with no claim of originality.



A SURVEY ON COMPUTATIONS OF BREDON COHOMOLOGY 13

It turns out that there exists a close relation between the algebraic properties of
being injective in the category of functors over the orbit category, and the possibility
of the decomposition in terms of the stabiizer groups associated to the isomorphism
classes of objects.

Consider for this, in order to fix notation, the inclusion of an object in the orbit
category iG/H : G/H → OG, and recall that the automorphism group is WH(G).

There is the restriction functor i∗ which restricts a contravariant module M to
the R- Module i∗(M) = M(G/H), and which gives an R[WG(H)]-module structure
by considering theautomorphisms of G/H.

Given an R[WH(G)]- module N , the induced module i∗N , is the OG- R module
defined as quotient of the tensor with the contravariant free object

G/K 7→ N(G/H)⊗R[Mor(G/K,G/H)],

where we declare equivalent to zero the submodule ofM(G/H)⊗R[Mor(G/K,G/H)]
generated by elements of the form m⊗ f∗(x)− f∗m⊗ x, for all f ∈WG(H).

Given a R[WG(H)]- module N , the coinduction functor assigns (contravari-
antly!) to an object in the orbit categrory G/K the R-module

iG/H !
= HomR[WH(G)]R[morOG(G/H,G/K)], N)]

Notice the adjunctions for every pair consisting of an OG- functor M and N a
R[WG(H)]-module.

homR[WG(H)](iG/H
∗M,N) ∼= homOG(M, iG/H !

N)

homOG(iG/H∗N,M) ∼= homR[WH(G)](N, i
∗
G/H(M)).

Definition 2.23 (Projective and Injective Splitting functors). Let G/H be an
object in the Orbit category.

(1) The projective splitting functor SG/H associates to a contravariant functor
defined over the orbit category M , the R[WG(H)] module defined as the
cokernel of the map∏

f :G/H→G/K
f not an isomorphism

M(G/K)→M(G/H).

(2) The injective splitting functor TG/H associates to a covariant functor de-
fined over the orbit category N , the R[WG(H)]- module defined as the
kernel of the map ⊕

f :G/H→G/K
f not an isomorphism

N(G/H)→ N(G/K).

The projective splitting functor comes with a canonical projection M(G/H)→
SG/H(M). Given any R[WG(H)]- section, the inclusion of the object G/H into the
orbit category produces a natural transformation i(G/H)∗SG/H(M) → iG/H∗(M).
Dually, the projective splitting functor comes with a canonical injection TG/HM →
M(G/H), an any WG(H)- retraction M(G/H) → TG/HM produces a natural
transformation

iG/H !
M(G/H)→ iG/H∗TG/HM.
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For an object G/H in either one of the categories WG(H) or OG, the length
of an object G/H is the supremum of all l for which there exists a sequence of
morphisms G/H0 → G/H1 . . . G/Hl with G/Hl = G/H and none of the morphism
is an isomorphism, dually, the colength is the supremum over all l for which there
exists a sequence G/H0 → G/H1 → . . . G/Hl with G/H0 = G/H, and none of
the morphisms is an isomorphism. A category has finite length, respectively finite
colength, if each object has finite length or colengt.

The Structure Theorem [47], 2.2 in page 1035 reads as follows:

Theorem 2.24. (1) Suppose that OG has finite colength, and that M is
a covariant Bredon functor with the property that SG/HM is a projective
RWH(G)]- module for each object G/H. Let σG/H : SG/HM → M be an
R[WH(G)]- section for the canonical projection, and consider the map of
Bredon functors

µ(M) :
⊕

G/H∈Iso(OG)

iG/H∗SG/HM

⊕
iG/H∗σG/HM
G/H∈Iso(OG)

−→ iG/H∗M(G/H)

⊕
αG/H

G/H∈Iso(OG)

−→ M.

Where α : iG/H∗M(G/H) = iG/H∗i
∗
G/HM → M is the adjoint of the

identity.
The map is always surjective. It is bijective if and only if M is a

projective Bredon module.
(2) Suppose that OG has finite length. Let M be a contravariant ROG-module

such that the R[WG(H)]- module M(G/H) is injective for every G/H. Let
ρG/K : M(G/K)→ TG/KM be an R[WG(H)]- retraction of the canonical
injection TG/HM →M and consider the natural transformation

ν(M) : M

∏
G/K∈Iso(OG) βG/K−→

∏
G/K∈Iso(OG)

iG/H !
M(G/K)

∏
G/K∈Iso(OG)

iG/K !
ρG/K

−→ iG/K∗TG/KM.

The map is always injective. It is bijective if M is an injective Bredon
module.

In the important example of complex representation rings, we noticed the fact
that there exists a covariant and contravariant structure on fuctors which agree on
objects.

On the other hand side, the second part of Theorem 2.24, a condition appears
as for the map νG/H to be surjective, which is equivalent to the fact that the Bredon
module is injective.. This has the consequence for a contravariant functor M that
the composition with the projection functor to the conjugation homomomorphism
category pr∗(M) : SG gives an injective R- module after evaluation on each object.

The following notion is an equivalent characterizetion of this property, which
and will be the most relevant algebraic tool to the rational computation of Bredon
cohomology.

Definition 2.25. Let FGINJ be the category of finitely generated groups and
injective group homomorphisms. Let M∗,M∗ be a bifunctor to the category of
R-modules; that is, a pair consisting of a contravariant functor M∗ and a covariant
functor M∗ agreeeing on objects. We will denote by indf the covariantly induced
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homomorphism, and by resf the contravariantly induced homomorphism. For in-
clusions of a subgroup H → G, we will write resHG and indGH .

M is said to be a Mackey functor if

• For an inner automorphism c(g) : G → G, we have M∗(cg) : M(G) →
M(G) is the identity.

• For an isomorphism of groups f : G
∼=→ H, the composites resf ◦ indf and

indf ◦ resf are the identity.
• Double coset formula. For two subgroups H,K ⊂ G,

resKG ◦ indGH =
∑

KgH∈G/H/K

indcg :H∩g−1Kg→K ◦ resH∩g
−1Kg

H ,

where cg denotes conjugation with g.

The following result was proved in [47], Theorem 5.2 in page 1046.

Theorem 2.26 (Injectivity and Mackey functors). Let G be a Group and let
R be a commutative ring such that the order of every finite subgroup is invertible
in R. Assume that M is a mackey functor.

Suppose that the R[WG(H)]-module TG/HM is injective as a R[WG(H)]- mod-
ule for each object. Then, M is injective as a SG- module, and the map ν is
bijective.

A finer structure occurs for cohomology with coefficients in modules over the
Green functor of the rational representation ring. The following corollary is even
true for Bredon cohomology with coefficients in such modules. See [46], sections 6
and 7.

The following theorem was proved as 6.3 in [46], page 221 for Bredon homology

Theorem 2.27. Let (X,A) be a proper G-CW pair. Let M be a Mackey functor
with module structure over the Green ring of rational representations. Then, there
exists a decomposition

HOGp (X,A) ∼=
⊕
H∈I

Hp(X
H , AH/CG(H))⊗R[WG(H)] SG/HM,

where I denotes the set of conjugacy classes of finite subgroups.

We quote now the most complete result which uses the Module structure over
the Green Ring of the rational representation ring. This appeared as Theorem 0.2
in [46].

Theorem 2.28. Let M be a Mackey functor which admits a module structure
over the Green functor of rational representations. For any group and any G-CW
pair (X,A) there exists a direct sum decomposition

HOGp (X,A) ∼=
⊕
H∈I

Hp((X
C , AC)/CG(H))⊗R[WG(C)]θCCM).

Here θCCM denotes mutiplication with an idempotent in the rational represen-
tation ring, and this image equals:

coker
⊕
D(C

M(D)
indCD→ M(C).

The explicit use of such idempotents plays a role in delocalized Chern charac-
ters.
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2.3. Computations based on elementary homological algebra over the
orbit category. The fact that Bredon cohomology can be defined as a Hom con-
struction (limit) obtaining a cochain complex from which Bredon cohomology is
obtained as usual homology allows that usual constructions (based on the existence
of resolutions and the concept of derived functor) in homological algebra often have
a generalization to Bredon versions.

We present two instances of these constructions: the Universal Coefficient The-
orem for Bredon cohomology of [9] and the Künneth theorem of [59].

The following result appeared in [59], Theorem 3.1 in page 776. The main
hypothesis asks for the property that the evaluations of the Bredon Module are
free modules over a commutative ring. Notice that this does not mean that the
funtor is free in the sense defined above.

Theorem 2.29 (Künneth Theorem for Bredon cohomology). Let X be a G-

CW complex and let Y be an H-CW complex. Let F and F
′

be families of subgroups
of G and Y containing the isotropy groups of cells in X, respectively Y . Assume
that M and N are covariant Bredon functors defined on the orbit categories OG,
respectively OH , with the property that M(G/G

′
), respectively N(H/H

′
) are free

modules for each pair of objects G/G
′
, H/H

′
. Denote by F × F

′
the family of

subgroups of the product which is given as products of subgroups of G and H, and
let M ⊗N be the Bredon module defined in this category.

Then the product X×Y with the diagonal action is a G×H-CW complex, and
there exists a short exact sequence

0→
⊕
i+j=n

H
OF

i (X)⊗H
O

F
′

j (Y )

→ HF×F
′

n (X × Y,M ⊗N)→
⊕
i+j=n

Tor(H
OF

i (X), H
O

F
′

j (Y ))→ 0.

For the Universal Coefficient Theorem for Bredon cohomology, in addition to
the freenes of the evaluation of the functor on each object, there is a requirement
of a basis compatibility in a dual basis which is a direct consequence of Frobenius
reciprocity for the complex representation ring with the characters as basis. We
give the definition below.

Condition 2.30. Let G be a discrete group, Let M? and M? be covariant, res-
pectively contravariant functors defined on a subcategory FG of the orbit category
O agreeing on objects. Suppose that

• There exists for every object G/H a choice of a finite basis {βiH} express-
ing M?(G/H) = M?(G/H) as the finitely generated, free abelian group on

{βiH} and isomorphisms aH : M?(G/H)
∼=→ Z[{βiH}]

∼=←M?(G/H) : bH .

• For the covariant functor M̂ := HomZ(M?( ),Z), the dual basis {β̂iH}
of HomZ(Z[{βiH}],Z) and the isomorphisms aH and bH , the following
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diagram is commutative:

M̂(G/H)

M̂(φ)
��

M̂(G/K)

Z[{β̂iH}]
âH //

Z[{β̂jK}]
âK

//

Z[{βiH}]
DH //

Z[{βjK}] DK

//

M?(G/H)

M?(φ)

��

bH //

M?(G/K)
bK

//

Where DH , DK are the duality isomorphisms associated to the bases
and φ : G/H → G/K is a morphism in the orbit category.

Conditions 2.30 are satisfied in some cases:

• Constant coefficients Z.
• The complex representation ring functors defined on the family FIN of

finite subgroups, R?, R?. A computation using characters as bases and
Frobenius reciprocity yields conditions 2.30.

• Consider a discrete group G and a normalized torsion cocycle

α ∈ Z2(G,S1),

take the α- and α−1 twisted representation ring functors Rα? Rα? de-
fined on the objects G/H, where H belongs to the family FIN of finite
subgroups. Consider for every object G/H the cocycles i∗H(α), where
iH : H → G is the inclusion, and assume without loss of generality that
they are normalized and correspond to a family of Schur covering groups
in central extensions 1→ Z/nH → H∗ → H → 1.

We select the set {βH} given as the set of characters of irreducible
representations of H∗ where Z/nH acts by multiplication with a primitive
nH -th root of unity. Given a choice of sections for the quotient maps

H∗ → H, one can construct isomorphisms i
∗(α)R(G/H)

∼=→ Z[{βH}]. The
orthogonality relations and Frobenius reciprocity for their twisted char-
acters guarantee that conditions 2.30 yield.

Theorem 2.31 (Universal Coefficient Theorem for Bredon Cohomology). Let
X be a proper, finite G-CW complex. Let M? and M? be a pair of functors satisfying
conditions 2.30. Then, there exists a short exact sequence of abelian groups

0→ ExtZ(HOGn−1(X,M?),Z)→ Hn
OG(X,M?)→ HomZ(HOGn (X,M?),Z)→ 0

2.4. Computations based on structural properties of orbit categories
of groups. There exist examples of conditions on a group which have consequences
on the particular shape that an orbit category might take.

We give for this the example of the family of finite groups of a group which is
a central extension by a finite cyclic group of a discrete group which is classified by
a second degree cohomology class with coefficients on the finite cyclic group.

Under this condition, there exists a bijective correspondence between finite
subgroups of the central extensions and inverse images of finite subgroups in the
original group.

Having the aim of computing Bredon cohomology with coefficients in twisted
complex representations, there exist an untwisting procedure to change twisted co-
efficients in favor of the extension group, and a certain class of representations. Let
us recall the needed definitions.
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Definition 2.32. Let 1 → Z/nZ → H̃ → H → 1 be a central extension. Let
k be a natural number with 0 ≤ k ≤ n. Let V be a complex vector space. A k-
central representation of H̃ is a homomorphism H̃ → GL(V ), where the generator
t ∈ Z/nZ acts by multiplication by e2πik/n.

Definition 2.33. The k-central representation group of H̃, denoted by Rk(H̃),

is the Grothendieck group of isomorphism classes of k-central representations of H̃.

The k-central representation group is a contravariant coefficient system. Given
a central extension of discrete groups, 1→ Z/nZ→ G̃→ H → 1, we denote by R?

the functor

R? : OrFIN (G̃)→ Z - MODULES

G̃/H̃ 7→ Rk(H̃).

The following theorem appeared as 4.4 in page 57 of [10]. It was originally
stated for the classifying space for proper actions, but it holds for any proper G-
CW complex.

It is the main input for the untwisting argument for twisted equivariant K-
Theory of discrete torsion twists described below.

Theorem 2.34. Let G be a discrete group and let α ∈ Z2(G;S1) be a cocycle
taking values in Z/nZ ⊆ S1. Consider the extension associated to α

1 // Z/nZ // Gα
ρ // G // 1.

Denote by X a G-CW complex with finite groups as cell stabilizers.
Then, the map ρ gives an isomorphism of abelian groups between the Bredon

cohomology groups of X with coefficients in the α-twisted representation group and
the Gα- equivariant Bredon cohomology groups of X with coefficients in the so-
called 1-central group representation Bredon module (defined in 2.33). In symbols,

H∗OG(X;RGα )
ρ∗−→ H∗OGα (X;RGα1 )

is an isomorphism.

Further instances of computations based on knowledge about the orbit category
of specific examples are often stated in terms of the existence of particular model
for classifying spaces.

These computations hold more generally, for any equivariant cohomology or
homology theory, including Bredon cohomology, and we mention the following in-
stances:

• Conditions M and NM of page 294 in [45], which hold together for Fuch-
sian groups, One relator groups, and extensions 1 → Zn → G → F for
finite F acting freely outside 0.

• The computation of equivariant homology theories for classifying spaces
of families of Graph product groups of [35].

• Condition C of [3].
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3. Bredon Co-homology as recipient for equivariant Chern Characters

An equivariant Chern Character is a natural transformation between equivari-
ant cohomology theories. Let us briefly recall the notion of an equivariant coho-
mology theory. We stress that the equivariant cohomology theories considered here
are naive, and remit to [18],

Definition 3.1. Let G be a group and fix an associative ring with unit R.
A G-Cohomology Theory with values in R-modules is a collection of contravariant
functors HnG indexed by the integer numbers Z from the category of G-CW pairs

together with natural transformations ∂nG : HnG(A) := HnG(A, ∅) → Hn+1
G (X,A),

such that the following axioms are satisfied:

(1) If f0 and f1 are G-homotopic maps (X,A)→ (Y,B) of G-CW pairs, then
HnG(f0) = HnG(f1) for all n.

(2) Given a pair (X,A) of G-CW complexes, there is a long exact sequence

. . .
Hn−1
G (i)
→ Hn−1

G (A)
∂n−1
G→ HnG(X,A)

HnG(j)→ HnG(X)

HnG(i)→ HnG(A)
∂nG→ Hn+1

G (X,A)
Hn+1(j)→ . . .

where i : A→ X and j : X → (X,A) are the inclusions.
(3) Let (X,A) be a G-CW pair and f : A → B be a cellular map. The

canonical map (F, f) : (X,A)→ (X ∪f B,B) induces an isomorphism

HnG(X ∪f B,B)
∼=→ HnG(X,A)

(4) Let {Xi | i ∈ I} be a family of G-CW -complexes and denote by ji : Xi →∐
i∈I Xi the inclusion map. Then the map

Πi∈IHnG(ji) : HnG(
∐
i

Xi)
∼=→ Πi∈IHnG(Xi)

is bijective for each n ∈ Z.

A G-Cohomology Theory is said to have a multiplicative structure if there exist
natural, graded commutative ∪- products

HnG(X,A)⊗HmG (X,A)→ Hn+m
G (X,A)

Let α : H → G be a group homomorphism and X be a H-CW complex. The
induced space indαX, is defined to be the G-CW complex defined as the quotient
space G×X by the right H-action given by (g, x) · h = (gα(h), h−1x).

An Equivariant Cohomology Theory consists of a family of G-Cohomology The-
ories H∗G together with an induction structure determined by graded ring homo-
morphisms

HnG(indα(X,A))→ HnH(X,A)

which are isomorphisms for group homomorphisms α : H → G whose kernel acts
freely on X satisfying the following conditions:

(1) For any n, ∂nH ◦ indα = indα ◦ ∂nG.
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(2) For any group homomorphism β : G → K such that kerβ ◦ α acts freely
on X, one has

indα◦β = HnK(f1 ◦ indβ ◦ indα) : HnK(indβ◦α(X,A))→ HnH(X,A)

where f1 : indβ indα → indβ◦α is the canonical G-homeomorphism.
(3) For any n ∈ Z, any g ∈ G , the homomorphism

indc(g):G→G : HnG(ind)c(g):G→G(X,A))→ Hn
G(X,A)

agrees with the map HnG(f2), where f2 : (X,A) → indc(g):G→G sends

x to (1, g−1x) and c(g) is the conjugation isomorphism in G.

Example 3.2 (Examples of equivariant cohomology theories). We now describe
the cohomology theories which will be relevant for the computations below.

(1) Complex Equivariant K-theory was defined via vector bundles for finite
proper G-CW complexes in [49]. For any proper orbit G/H one has

KU∗(G/H) =

{
RC(H) ∗ = 2k

0∗ = 2k + 1
.

(2) Complex, twisted equivariant K-Theory with a twist given by a torsion
element in H3(BG,Z) was defined in [20]. This is an equivariant coho-
mology theory which is a submodule over untwisted, complex K- theory
in the sense of Oliver and Lück described above.

Twisted equivariant K- Theory for any twist in H3(EG ×G X,Z)
was defined in the Fredholm picture in [7]. The aproppriate axiomatic
for twisted equivariant K-theory for any third cohomology twist is that
of parametrized cohomology theories [8] and are more general than the
viewpoint adopted here. The equivariant Chern Character, however, is
not a rational isomorphism in the twited case.

3.1. The Atiyah-Hirzebruch Spectral Sequence. The Atiyah-Hirzebruch
spectral sequence for equivariant cohomology theories was developed by Davis and
Lück in [17]. A detailed deduction and a presentation of the relevant details is
available in [18], page 108 construction 3.214.

Theorem 3.3. Let H∗ be an equivariant cohomology theory. Then, there exists
a spectral sequence which has E2-term Bredon cohomology with coefficients in the
functor

Hq : G/H 7→ HqG(G/H)

Ep,q2 = Hq
OG(X,Hq),

which converges contidionally to the equivariant cohomology theory modules

H∗G(X).

It is a consequence of the existence of the equivariant Chern character, that
the Atiyah-Hirzebruch spectral sequence rationally collapses.

Remark 3.4 (The RO(G)-graded Atiyah-Hirzebruch spectral sequence). There
is a discussion of a spectral sequence to compute RO(G)- graded cohomology the-
ories out of RO(G)-graded Bredon cohomology in [38].
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Remark 3.5 (Third differential of the equivariant Atiyah Hirzebruch spectral
sequence for Equivariant complex K-Theory). Let us restrict to complex equivari-
ant K- theory. While the equivariant Atiyah-Hirzebruch spectral sequence ratio-
nally collapses, and for non-equivariant complex K-theory there exist closed for-
mulas for the first non-vanishing differential, d3 (and even for higher degree ones,
in terms of secondary cohomology operations), as of 2022 there exists no closed
formula for the third differential

d3 : Hp
OG(X,RC)→ Hp+3

OG (X,RC).

See [19] for a discussion of the failure of the integral differential to be an
isomorphism.

Work by Uribe and Gómez [25] introduced a decomposition of (non twisted
) equivariant complex K- theory of finite groups G which have a normal abelian
subgroup A which acts trivially on a finite G-CW complex X in summands of
twisted equivariant K- Theory corresponding to a number of twists corresponding
to irreducible representations of A.

The outcome is that they are able to identify the third differential of the (un-
twisted) equivairiant Atiyah-Hirzebruch spectral sequence with a special instance
of the third differential of the twisted Segal spectral sequence constructed in [8].

While the differentials of the equivariant Atiyah -Hirzebruch spectral sequence
are a natural transformation, and even in the parametrized setting they are identi-
fied by Theorem 5.7 in [5] in homotopy theoretical terms as maps between classify-
ing spectra for Bredon cohomology, and there exist constructions of the cohomology
operations in [24], it has not been possible to give a complete list of candidates for
the relevant cohomological operations between Bredon cohomology groups.

In the RO(G)-graded setting, the definition of the adequate version of the
Steenrod Algebra goes back to Oruç [54], and efforts to address the analogous
problem of determining the possible operations are [57], and [61].

3.2. Equivariant cohomological Chern Characters. The equivariant Chern
character for was addressed first by Slominska for equivariant K-Theory of finite
groups in [62].

In the context of the Baum-Connes conjecture, the need for decomposition
of equivariant K-homology into informations of fixed point sets of finite cyclic
grubgroups led to a specific construction, named the delocalized Chern character
in [11], and the formalization in the terms refered here was done by Lück mainly
in the articles [46], [47].

The following result was proved as Theorem 4.2 in page 1041 of [47].

Theorem 3.6 (The equivariant Chern Character). Let R be a ring containing
the Rational numbers. Let H∗ be a proper equivariant cohomology theory with valuer
in R-modules. Suppose that the SG- module Hq ◦ pr is injective as SG-module for
every group G and every q ∈ Z. Then, we obtain a transformation of proper
equivariant cohomology theories

chn : Hn? :
∏

p+q=n

Hp
SG(X,Hq).

The R- map is bijective for all proper relatively finite G-CW pairs (X,A). if H∗
satisfies the disjoint union axiom, then the R- map is bijective for all proper G-CW
pairs (X,A).
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The natural transformation is constructed using a composition of eight different
construction in page 1040 of Lück, to where we refer for further details.

Remark 3.7 (Orbifold versions). Adem and Ruan introduced an orbifold ber-
sion of both twisted complexK-theory and Bredon cohomology for a discrete torsion
twist.

The latter one turns out to be isomorphic to Chen-Ruan cohomology of orb-
ifolds in [2]. See [1], 3.3 and 3.10 in pages 60 and 77, and for a more detailed
exposition.

Remark 3.8 (Delocalized versions). In connection with the rationalized Baum-
Connes assembly map, delocalization refers to modified versions of the eqivariant
Chern character, which within a geometric setting can be thought of being de-
fined before inverting the Thom class of normal bundles of inclusions of fixed point
sets, [11], paragraph 9. A good discussion of these versions of the Chern Charac-
ter,including the relation to the equivariant Chern character presented here is given
in [50].

Remark 3.9 (Homotopy theoretical refinements). As of 2022, the most refined
homotopy theoretical versions of the Chern Character are presented in [39]. The
results initiated in the Author’s Ph. D Thesis and include a study of external
duality, and a homology representation theorem. See also [40].
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32. Sören Illman, Equivariant singular homology and cohomology, Bull. Amer. Math. Soc. 79
(1973), 188–192. MR 307220

33. , Existence and uniqueness of equivariant triangulations of smooth proper G-manifolds
with some applications to equivariant Whitehead torsion, J. Reine Angew. Math. 524 (2000),

129–183. MR 1770606

34. , Existence and uniqueness of equivariant triangulations of smooth proper G-manifolds
with some applications to equivariant Whitehead torsion, J. Reine Angew. Math. 524 (2000),

129–183. MR 1770606

35. Daniel Kasprowski, Kevin Li, and Wolfgang Lück, K- and L-theory of graph products of
groups, Groups Geom. Dyn. 15 (2021), no. 1, 269–311. MR 4235754

36. Igor Kriz and Yunze Lu, On the RO(G)-graded coefficients of dihedral equivariant cohomology,
Math. Res. Lett. 27 (2020), no. 4, 1109–1128. MR 4216581

37. Sophie Kriz, Notes on equivariant homology with constant coefficients, Pacific J. Math. 309

(2020), no. 2, 381–399. MR 4202017

38. William C. Kronholm, The RO(G)-graded Serre spectral sequence, Homology Homotopy Appl.
12 (2010), no. 1, 75–92. MR 2607411

39. Malte Lackmann, External spanier-whitehead duality and homology representation theorems
for diagram spaces, https://arxiv.org/abs/1908.09553, 2019.

40. Malte Lackmann and Liping Li, Sufficient and necessary conditions for hereditarity of infinite

category algebras, J. Algebra 602 (2022), 322–351. MR 4404525
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58. Rubén Sánchez-Garćıa, Bredon homology and equivariant K-homology of SL(3,Z), J. Pure
Appl. Algebra 212 (2008), no. 5, 1046–1059. MR 2387584
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62. J. S l omińska, On the equivariant Chern homomorphism, Bull. Acad. Polon. Sci. Sér. Sci.

Math. Astronom. Phys. 24 (1976), no. 10, 909–913. MR 461489
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