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Abstract. We compare different algebraic structures in twisted equivariant
K-Theory for proper actions of discrete groups. After the construction of a

module structure over untwisted equivariant K-Theory, we prove a comple-

tion Theorem of Atiyah-Segal type for twisted equivariant K-Theory. Using a
Universal coefficient Theorem, we prove a cocompletion Theorem for Twisted

Borel K-Homology for discrete Groups.

The Completion Theorem in equivariant K-theory by Atiyah and Segal [6] had
a remarkable influence on the development of topological K-theory and computa-
tional methods related to it.

Twisted equivariant K-theory for proper actions of discrete groups was defined
in [9] and further computational tools, notably a version of Segal’s spectral sequence
have been developed by the authors and collaborators in [10], and [11].

In this work, we examinate Twisted equivariant K-theory with the above men-
tioned methods as a module over its untwisted version and prove a generalization
of the completion theorem by Atiyah and Segal.

It turns out that in the case of groups which admit a finite model for the clas-
sifying space for proper actions EG, the ring defined as the zeroth (Untwisted )
G-equivariant K-theory ring K0

G(EG) is Noetherian. Hence, usual commutative
algebraic methods can be applied to deal with completion problems on noetherian
modules over it, as it has been done in other contexts in the literature, [6], [21],
[14], [18].

Using a universal coefficient theorem developed in the analytical setting [23],
we prove a version of the co-completion theorem in twisted Borel Equivariant K-
homology, thus extending results in [17] to the twisted case.

This work is organized as follows:
In section 1, we collect results on the multiplicative (twist-mixing) structures

on twisted equivariant K-theory following its definition in [9]. We also recall in
this section the spectral sequence of [10] and the needed notions of Bredon-type
cohomology and G-CW complexes.

In section 2, we examine the ring Structure over the ring K0
G(EG), and estab-

lish the noetherian condition for certain relevant modules over it given by twisted
equivariant K-theory groups.

The main theorem, 3.6 is proved in section 3.

Theorem. Let G be a group which admits a finite model for EG, the classifying
space for proper actions. Let X be a finite, proper G-CW complex. Then, the
pro-homomorphism

ϕλ,p :
{
K∗G(X,P )/IG,EG

nK∗G(X,P )
}
−→

{
K∗G(X × EGn−1, p∗(P ))

}
is a pro-isomorphism. In particular, the system

{
K∗G(X×EGn−1, p∗(P ))

}
satisfies

the Mittag-Leffler condition and the lim1 term is zero.

Finally, section 4 deals with the proof of the cocompletion theorem 4.6 involving
Twisted Borel K-homology.

1
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Theorem. Let G be a discrete group. Assume that G admits a finite model for
EG. Let X be a finite G-CW complex and P ∈ H3(X×GEG,Z). Let IG,EG be the
augmentation ideal. Then, there exists a short exact sequence

colimn≥1 Ext1
Z(K∗G(X,P )/InG,EG,Z)→

K∗(X ×G EG, p∗(P ))→ colimn≥1K
∗
G(X,P )/InG,EG
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1. Preliminaries on (twisted) Equivariant K-theory for Proper and
Discrete actions

Definition 1.1. Recall that a G-CW complex structure on the pair (X,A) consists
of a filtration of the G-space X = ∪−1≤nXn with X1 = ∅, X0 = A where every
space is inductively obtained from the previous one by attaching cells in pushout
diagrams ∐

i S
n−1 ×G/Hi

//

��

Xn−1

��∐
iD

n ×G/Hi
// Xn

We say that a proper G-CW complex is finite if it is constructed out of a finite
number of cells G/H ×Dn.

We recall the notion of the classifying space for proper actions:

Definition 1.2. Let G be a discrete group. A model for the classifying space for
proper actions is a G-CW complex EG with the following properties:

• All isotropy groups are finite.
• For any proper G-CW complex X there exists up to G-homotopy a unique
G-map X → EG.

The classifying space for proper actions always exists, it is unique up to G-
homotopy and admits several models. The following list contains some examples.
We remit to [19] for further discussion.

• If G is a compact group, then the singleton space is a model for EG.
• Let G be a group acting properly and cocompactly on a Cat(0) space X.

Then X is a model for EG.
• Let G be a Coxeter group. The Davis complex is a model for EG.
• Let G be a mapping class group of a surface. The Teichmüller space is a

model for EG.

Let G be a discrete group. a model for the classifying space for free actions EG
is a free contractible G-CW complex. Given a model EG for the classifying space
for free actions, the space BG is the CW -complex EG/G.

The following result is proved in [17], lemma 26 in page 6.

Lemma 1.3. Let X be a finite proper G-CW complex. Then X×GEG is homotopy
equivalent to a CW complex of finite type.

Twisted equivariant K-Theory. Twisted Equivariant K-Theory for proper ac-
tions of discrete groups was introduced in [9]. In what follows we will recall its
definition using Fredholm bundles and its properties following the above mentioned
article. The crucial diference to [9] is the use of graded Fredholm bundles, which
are needed for the definition of the multiplicative structure.

Let H be a separable Hilbert space and

U(H) := {U : H → H | U ◦ U∗ = U∗ ◦ U = Id}
the group of unitary operators acting on H. Let End(H) denote the space of
endomorphisms of the Hilbert space and endow End(H)c.o. with the compact open
topology. Consider the inclusion

U(H)→ End(H)c.o. × End(H)c.o.

U 7→ (U,U−1)

and induce on U(H) the subspace topology. Denote the space of unitary operators
with this induced topology by U(H)c.o. and note that this is different from the usual
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compact open topology on U(H). Let U(H)c.g be the compactly generated topology
associated to the compact open topology, and topologize the group PU(H) from
the exact sequence

1→ S1 → U(H)c.g. → PU(H)→ 1.

Let H be a Hilbert space. A continuous homomorphism a defined on a Lie
group G, a : G → PU(H) is called stable if the unitary representation H induced

by the homomorphism ã : G̃ = a∗U(H) → U(H) contains each of the irreducible

representations of G̃

Definition 1.4. Let X be a proper G-CW complex. A projective unitary G-
equivariant stable bundle over X is a principal PU(H)-bundle

PU(H)→ P → X

where PU(H) acts on the right, endowed with a left G action lifting the action on
X such that:

• the left G-action commutes with the right PU(H) action, and
• for all x ∈ X there exists a G-neighborhood V of x and a Gx-contractible

slice U of x with V equivariantly homeomorphic to U ×Gx G with the
action

Gx × (U ×G)→ U ×G, k · (u, g) = (ku, gk−1),

together with a local trivialization

P |V ∼= (PU(H)× U)×Gx G
where the action of the isotropy group is:

Gx × ((PU(H)× U)×G) → (PU(H)× U)×G
(k, ((F, y), g)) 7→ ((fx(k)F, ky), gk−1)

with fx : Gx → PU(H) a fixed stable homomorphism.

Definition 1.5. Let X be a proper G-CW complex. A G-Hilbert bundle is a locally
trivial bundle E → X with fiber on a Hilbert space H and structural group the
group of unitary operators U(H) with the strong∗ operator topology. Note that in
U(H) the strong∗ operator topology and the compact open topology are the same
[25]. The Bundle of Hilbert-Schmidt operators with the strong topology between
Hilbert Bundles E and F will be denoted by LHS(E,F ).

The following result resumes some facts concerning projective unitary stable
G-equivariant bundles.

Lemma 1.6. (i) Given a projective unitary, stable G-equivariant Bundle P ,
there exists a G-Hilbert bundle E → X such that the bundle EndHS(E,E)
has an associated PU(H) principal, stable G-equivariant bundle isomorphic
to P , where PU(H) carries the *-strong topology.

(ii) Given projective unitary stable G-equivariant bundles P1 and P2, the iso-
morphism class of the PU(H) bundle associated to LHS(E∗1 , E2) does not
depend on the choice of the Hilbert bundles Ei.

Proof. (i) Given a central extension 1 → S1 → G̃ → G → 1 of G, consider

the Hilbert space L2
S1(G̃) ⊂ L2(G̃) defined as the closure of the direct sum

of all V -isotypical subspaces, where V is a G̃-representation where S1 acts
by multiplication. Form the completed sum H indexed by isomorphism

classes of S1-central extensions G̃ of G. In symbols:

H =
⊕

G̃∈Ext(G,S1)

L2
S1(G̃)⊗ l2(N),
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and consider the trivial bundle E = X × H → X. Form the Bundle of
Hilbert endomorphisms EndHS(E,E) in the ∗-strong topology [25].

The stability of the projective unitary bundle P gives a group home-
omorphism between P (U(H)c.g and the structural group of the bundle
EndHS(E,E∗), which is P (U(H)).

(ii) Follows from the reduction of the structural group U(H) in the *-strong
topology to PU(H)( in the *-strong topology, since the central S1 acts
trivially on LHS(E∗1 , E2).) The equivalence of principal bundles and as-
sociated bundles, as well as the classification of projective unitary, stable
G-equivariant bundles from [9] finish the argument.

�

Definition 1.7. Define P1 ⊗ P2 as the principal PU(H)-bundle associated to
LHS(E∗1 , E2).

In [9], Theorem 3.8, the set of isomorphism classes of projective unitary stable
G-equivariant bundles, denoted by BunGst(X,PU(H)) was seen to be in bijection
with the third Borel cohomology groups with integer coefficients H3(X ×GEG,Z).

Proposition 1.8. The map

BunGst(X,PU(H))→ H3(X ×G EG,Z)

is an abelian group isomorphism if the left hand side is furnished with the tensor
product as additive structure.

Proof. In [9], a classifying G-space B, a universal projective unitary stable G-
equivariant bundle E → B, as well as a homotopy equivalence

f : Maps(X,B)G →Maps(X ×G EG,BPU(H))

were constructed in Theorem 3.8. (This was only stated for π0 there, but the
argument goes over to higher homotopy groups). On the other hand, Theorem
3.8 in [9] gives an isomorphism of sets to the equivalence classes of projective
unitary stable G-equivariant bundles BunGst(X,PU(H)). On the isomorphic sets
π0

(
Maps(X,B)G

) ∼= π0

(
Maps(X ×G EG,BPU(H))

)
define the operations

• The operation ∗, given by the unique H-space structure in BPU(H) =
K(Z, 3), and

• The operation ?, defined in π0(Maps(X,B)G) as follows. Given maps
f0 and f1 consider the projective unitary stable G-equivariant bundles
f∗i (E), where E is the universal bundle and form the classifying map ψ of
the projective unitary stable, G-equivariant bundle f∗1 (E)⊗ f∗2 (E). Define
f1 ? f2 = ψ.

The classification of bundles yields that these operations are mutually distributive
and associative, and have a common neutral element given by the constant map.
The two operations agree then because of the standard Lemma, see for example
Lemma 2.10.10, page 56 in [1].

�

Definition 1.9. Let X be a proper G-CW complex and let H be a separable
Hilbert space. The space Fred′(H) consists of pairs (A,B) of bounded operators
on H such that AB − 1 and BA− 1 are compact operators. Endow Fred′(H) with
the topology induced by the embedding

Fred′(H) → B(H)× B(H)× K(H)× K(H)

(A,B) 7→ (A,B,AB − 1, BA− 1)

where B(H) denotes the bounded operators on H with the compact open topology
and K(H) denotes the compact operators with the norm topology.
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We denote by Ĥ = H⊕H a Z2-graded, infinite dimensional Hilbert space.

Definition 1.10. Let U(Ĥ)c.g. be the group of even, unitary operators on the

Hilbert space Ĥ which are of the form(
u1 0
0 u2

)
,

where ui denotes a unitary operator in the compactly generated topology defined
as before.

We denote by PU(Ĥ) the group U(Ĥ)c.g./S
1 and recall the central extension

1→ S1 → U(Ĥ)→ PU(Ĥ)→ 1

Definition 1.11. Let X be a proper G-CW complex. The space Fred′′(Ĥ) is the

space of pairs (Â, B̂) of self-adjoint, bounded operators of degree 1 defined on Ĥ
such that ÂB̂ − I and B̂Â− I are compact.

Given a Z/2-graded, stable Hilbert space Ĥ, the space Fred′′(Ĥ) is homeomor-
phic to Fred′(H).

Definition 1.12. We denote by Fred(0)(Ĥ) the space of self-adjoint degree 1 Fred-

holm operators A in Ĥ such that A2 differs from the identity by a compact operator,
with the topology coming from the embedding A 7→ (A,A2 − I) in B(H)×K(H).

The following result was proved in [3], Proposition 3.1 :

Proposition 1.13. The space Fred(0)(Ĥ) is a deformation retract of Fred′′(Ĥ).

The above discussion can be concluded telling that Fred(0)(Ĥ) is a representing

space for K-theory. The group U(Ĥ)c.g. of degree 0 unitary operators on Ĥ with

the compactly generated topology acts continuously by conjugation on Fred(0)(Ĥ),

therefore the group PU(Ĥ) acts continuously on Fred(0)(Ĥ) by conjugation. In [9]
twisted K-theory for proper actions of discrete groups was defined using the rep-
resenting space Fred′(H), but in order to have multiplicative structure we proceed

using Fred(0)(Ĥ).
Let us choose the operator

Î =

(
0 I
I 0

)
.

as the base point in Fred(0)(Ĥ).

Choosing the identity as a base point on the space Fred
′
(H), gives a diagram of

pointed maps

Fred0(Ĥ)
i

// Fred
′′
(Ĥ)

r

��

f
// Fred

′
(H)

Fred0(Ĥ)

,

where i denotes the inclusion, r is a strong deformation retract and f is a homeo-
morphism. Moreover, the maps are compatible with the conjugation actions of the

groups U(Ĥ)c.g., U(H)c.g. and the map U(Ĥ)c.g. → U(H)c.g..
Let X be a proper compact G-ANR and let P → X be a projective unitary

stable G-equivariant bundle over X. Denote by P̂ the projective unitary stable

bundle obtained by performing the tensor product with the trivial bundle P(Ĥ),

P̂ = P ⊗ P(Ĥ).
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The space of Fredholm operators is endowed with a continuous right action of

the group PU(Ĥ) by conjugation, therefore we can take the associated bundle over
X

Fred(0)(P̂ ) := P̂ ×PU(Ĥ) Fred(0)(Ĥ),

and with the induced G action given by

g · [(λ,A))] := [(gλ,A)]

for g in G, λ in P̂ and A in Fred(0)(Ĥ).
Denote by

Γ(X; Fred(0)(P̂ ))

the space of sections of the bundle Fred(0)(P̂ ) → X and choose as base point in

this space the section which chooses the base point Î on the fibers. This section

exists because the PU(Ĥ) action on Î is trivial, and therefore

X ∼= P̂ /PU(Ĥ) ∼= P̂ ×PU(Ĥ) {Î} ⊂ Fred(0)(P̂ );

let us denote this section by s.

Definition 1.14. Let X be a connected G-space and P a projective unitary stable
G-equivariant bundle over X. The Twisted G-equivariant K-theory groups of X
twisted by P are defined as the homotopy groups of the G-equivariant sections

K−pG (X;P ) := πp

(
Γ(X; Fred(0)(P̂ ))G, s

)
where the base point s = Î is the section previously constructed.

1.1. Topologies on the space of Fredholm Operators. In [24] a Fredholm
picture of twisted K-theory is introduced, using the strong-* operator topology on
the space of Fredholm Operators. For the sake of completness, we establish here the
isomorphism of these twisted equivariant K-theory groups with the ones described
here.

Denote by Fred′(H)s∗ the space whose elements are the same as Fred′(H) but
with the strong ∗-topology on B(H).

Definition 1.15. [24, Thm. 3.15] Let X be a connected G-space and P a pro-
jective unitary stable G-equivariant bundle over X. The Twisted G-equivariant
K-theory groups of X (in the sense of Tu-Xu-Laurent) twisted by P are defined as
the homotopy groups of the G-equivariant strong∗-continuous sections

K−pG (X;P ) := πp
(
Γ(X; Fred′(P )s∗)

G, s
)
.

The bundle Fred′(P )s∗ is defined in a similar way as Fred′(P ).

We will prove that the functors K∗G(−, P ) and K∗G(−, P ) are naturally equivalent.

Lemma 1.16. The spaces Fred′(H) and Fred′(H)s∗ are PU(H)-weakly homotopy
equivalent.

Proof. The strategy is to prove that Fred′(H)s∗ is a representing of equivariant
K-theory. The same proof for Fred′(H) in [3, Prop. A.22] applies. In particular
GL(H)s∗ is G-contractible because the homotopy ht constructed in [3, Prop. A.21]
is continuous in the strong∗-topology and then the proof applies. �

Using the above lemma one can prove that the identity map defines an equiv-
alence between (twisted) cohomology theories K∗G(−, P ) and K∗G(−, P ). Then we
have that the both definitions of twisted K-theory are equivalents. Summarizing
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Theorem 1.17. For every proper G-CW-complex X and every projective unitary
stable G-equivariant bundle over X. We have an isomorphism

K−pG (X;P ) ∼= K−pG (X;P ).

Remark 1.18. In order to simplify the notation from now on we denote by H a Z2-

graded separable Hilbert space and we denote by Fred(0)(P ) the bundle Fred(0)(P̂ ).

1.2. Additive structure. There exists a natural map

Γ(X; Fred(0)(P̂ ))G × Γ(X; Fred(0)(P̂ ))G → Γ(X; Fred(0)(P̂ ))G,

inducing an abelian group structure on the twisted equivariant K- theory groups,
which we will define below. Consider for this the following commutative diagram.

Fred(0)(Ĥ)× Fred(0)(Ĥ)
f◦i

// Fred
′
(Ĥ)× Fred

′
(Ĥ)

◦
��

Fred(0)(Ĥ) Fred
′
(Ĥ)

f−1◦r
oo

where the vertical map denotes composition. As the maps involved in the diagram

are compatible with the conjugation actions of the groups U(Ĥ)c.g, respectively
U(H)c.g and G, for any projective unitary, stable G-equivariant bundle P , this
induces a pointed map

Γ(X; Fred(0)(P̂ ))G, s)× (Γ(X; Fred(0)(P̂ ))G, s)→ (Γ(X; Fred(0)(P̂ ))G, s).

Which defines an additive structure in K−pG (X;P ).

1.3. Multiplicative structure. We define an associative product on twisted K-
theory.

K−pG (X;P )×K−qG (X;P ′)→ K
−(p+q)
G (X;P ⊗ P ′)

Induced by the map

(A,A′) 7→ A⊗̂I + I⊗̂A′

defined in Fred0(Ĥ), and ⊗̂ denotes the graded tensor product, see [7] in pages
24-25 for more details. We denote this product by •.

Let 0 be the projective unitary, stable G-equivariant bundle associated to the
neutral element in H3(X×GEG,Z). The groups π∗

(
ΓG(Fred(0)

)
define untwisted,

equivariant, representable K-Theory in negative degree for proper actions. The ex-
tended version via Bott periodicity agrees with the usual definitions of untwisted,
equivariant K-theory groups for compact G-CW complexes [22], [21] as a conse-
quence of Theorem 3.8, pages 8-9 in [16].

Bredon Cohomology and its Čech Version. (Untwisted) Bredon cohomology
has been an useful tool to approximate equivariant cohomology theories with the
use of spectral sequences of Atiyah-Hirzebruch type [15], [10].

We will recall a version of Bredon cohomology with local coefficients which was
introduced in [10] and compared there to other approaches. These approaches fit
all into the general approach of spaces over a category [15], [8].

Let U = {Uσ | σ ∈ I} be an open cover of the proper G-CW complex X
which is closed under intersections and has the property that each open set Uσ is
G-equivariantly homotopic to an orbit G/Hσ ⊂ Uσ for a finite subgroup Hσ. The
existence of such a cover, sometimes known as contractible slice cover, is guaranteed
for proper G-ANR’s by an appropriate version of the slice Theorem (see [2]).
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Definition 1.19. Denote by NGU the category with objects U and where a mor-
phism is given by an inclusion Uσ → Uτ . A twisted coefficient system with values
on R-Modules is a contravariant functor NGU → R−Mod.

Definition 1.20. Let X be a proper G-space with a contractible slice cover U ,
and let M be a twisted coefficient system. Define the Bredon equivariant homol-
ogy groups with respect to U as the homology groups of the category NGU with
coefficients in M ,

Hn
G(X,U ;M) := Hn(NGU ,M).

These are the homology groups of the chain complex defined as the R-module

CZ
∗ (NGU)⊗NGU M,

given as the balanced tensor product of the contravariant, free ZNGU-chain
complex CZ

∗ (NGU) and M . This is the R-module⊕
Uσ∈NGU

R⊗RM(Uσ)/K

where K is the R-module generated by elements

r ⊗ x− r ⊗ i∗(x),

for an inclusion i : Uσ → Uτ .

Remark 1.21 (Coefficients of twisted equivariant K-Theory on contractible Cov-
ers). Let iσ : G/Hσ → Uσ → X be the inclusion of a G-orbit into X and consider
the Borel cohomology group H3(EG×G G/Hσ,Z). Given a class P ∈ H3(EG×G
X,Z), we will denote by H̃Pσ the central extension 1 → S1 → H̃Pσ → Hσ → 1
associated to the class given by the image of P under the maps

ωσ : H3(EG×X,Z)
i∗σ→ H3(EG×G G/Hσ,Z)

∼=→ H3(BHσ,Z)
∼=→ H2(BHσ, S

1).

Restricting the functors K0
G(X,P ) and K1

G(X,P ) to the subsets Uσ gives con-
travariant functors defined on the category NGU .

As abelian groups, the functors K∗G(X,P ) satisfy:

K∗G(Uσ, P ) =

{
RS1(H̃Pσ ) If j = 0

0 If j = 1

The Symbol RS1(H̃Pσ ) denotes the subgroup of the abelian group of isomor-

phisms classes of complex H̃Pσ -representations, where S1 acts by complex multi-
plication.

We recall the key result from [10], proposition 4.2

Proposition 1.22. spectral sequence associated to the locally finite and equivari-
antly contractible cover U and converging to K∗G(X,P ), has for second page Ep,q2

the cohomology of NGU with coefficients in the functor K0
G(?, P |?) whenever q is

even, i.e.

(1.23) Ep,q2 := Hp
G(X,U ;K0

G(?, P |?))

and is trivial if q is odd. Its higher differentials

dr : Ep,qr → Ep+r,q−r+1
r

vanish for r even.
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2. Module Structure for twisted Equivariant K-theory

Let X be a proper G-CW complex, and let P be a stable projective unitary G-
equivariant bundle over X. Recall that up to G-equivariant homotopy, there exists
a unique map λ : X → EG. The map λ together with the multiplicative structure
give an abelian group homomorphism

K0
G(EG)→ K0

G(X,P ),

which gives K0
G(X,P ) the structure of a module over the ring K0

G(EG).
We will analyze the structure of K0

G(EG) as a ring. The results in the following
lemma are proved inside the proofs of Theorem 4.3, page 610 in [21], and Theorem
6.5, page 21 in [20].

Proposition 2.1. Let G be a group which admits a finite model for the classifying
space for proper actions EG. Then,

• K0
G(EG) is isomorphic to the Grothendieck Group of G-equivariant, finite

dimensional complex vector bundles.
• The ring K0

G(EG) is noetherian
• Let OrFIN (G) be the orbit category consisting of homogeneous spaces G/H

with H finite and G-equivariant maps. Denote by R(?) the contravariant
OrFIN (G)-module given by assigning to an object G/H the complex rep-
resentation ring R(H) and to a morphism G/H → G/K the restriction
R(K)→ R(H). Then, there exists a ring homomorphism

K0
G(EG)→ lim

OrFIN (G)
R(?)

which has nilpotent kernel and cokernel.
• Given a prime number p, there exists a vector bundle E of dimension

prime to p, such that for every point x ∈ EG, the character of the Gx
representation E |x evaluated on an element of order not a power of p is
0.

Proof. • This is proved in [21], [22], [16], 3.8 in pages 8-9.
• Given a finite properG-CW complexX, there exists an equivariant Atiyah-

Hirzebruch spectral sequence abutting to K∗G(X) with E2 term given by
Ep,q2 = Hp

ZOrFIN (G)(X,K
q(G/?)), where the right hand side denotes un-

twisted Bredon cohomology, defined over the Orbit Category OrFIN (G)
rather than over the category NGU .

The group Ep,q2 can be identified with Bredon cohomology with coeffi-
cients on the representation ring if q is even and is zero otherwise.

Since the Bredon cohomology groups of the spectral sequence are finitely
generated if EG is a finite G-CW complex, this proves the first assumption

• The edge homomorphism of the Atiyah-Hirzebruch spectral sequence of
[15] gives a ring homomorphism K0

G(X)→ H0
ZOrFIN (G)(X,R

?). The right

hand side can be identified with the ring limOrFIN (G)R(?). The rational
collapse of the equivariant Atiyah-Hirzebruch spectral sequence gives the
second part.

• Let m be the least common multiple of the orders of isotropy groups H in
EG. For any finite subgroup H, pick up a homomorphism αH : H → Σm
corresponding to a free action of H on {1, . . .m}. Let n be the order
of the group Σm/Sylp(Σm) and let ρ : Σm → U(n) be the permutation
representation. Consider the element {VH} = {Cn[ρ ◦ αH ]} in the inverse
limit limOrFIN (G)R(?). According to the second part, there exists a vector

bundle E which is mapped to some power {VH⊗
k

}. The Vector bundle
satisfies the required properties.
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�

Lemma 2.2. Let G be a discrete group admiting a finite model for EG and P
be a stable projective unitary G-bundle over a finite G-CW complex X. Then, the
K0
G(EG)-modules Ki

G(X,P ) are noetherian for i = 0, 1.

Proof. There exists [10]( Theorem 4.9 in page 14), a spectral sequence abutting
to K∗G(X,P ). Its E2 term consists of groups Ep,q2 , which can be identified with a
version of Bredon cohomology associated to an open, G-invariant cover U consisting
of open sets wich are G-homotopy equivalent to proper orbits.

These groups are denoted by Hp
ZNGU (X,Kq

G(U)) and are zero if q is odd. Since
X is a proper, compact G-CW complex, the cover can be assumed to be finite.
Given an element of the cover U , The group K0

G(U) is a finitely generated, free
abelian group, as it is seen from A.3.4, page 40 in [9], where the groups K0

G(U) are
identified with groups of projective complex representations. Compare also remark
1.21.

In particular the groups Hp
ZNGU (X,Kq

G(U) in the spectral sequence abutting
to K∗G(X,P ) are finitely generated. By induction, the groups Ep,qr are finitely
generated for all r and hence the term E∞. Hence Ki

G(X,P ) is it for i = 0, 1.
Since K0

G(EG) is a noetherian ring, the result follows. �

3. The completion Theorem

Definition 3.1 (Augmentation ideal). Let G be a discrete group. Given a proper
G-CW complex, the augmentation ideal IG,X ⊂ K0

G(X) is defined to be the kernel
of the homomorphism

KG
0 (X)→ K0

G(X0)→ K0
{e}(X0)

defined by restricting to the zeroth skeleton and restricting the acting group to the
trivial group.

Proposition 3.2. Let X be an n-dimensional proper G-CW complex. Then, any
product of n+1 elements in IG,X is zero.

Proof. This is proved in [21], lemma 4.2 in page 609. �

We fix now our notations concerning pro-modules and pro-homomorphisms.
Let R be a ring. A pro-module indexed by the integers is an inverse system of

R-modules.

M0
α1←M1

α2←M2
α3←M3, . . .

We write αmn = αm+1 ◦ . . . ◦ αn : Mn →Mm for n > m and put αnn = idMn .
A strict pro-homomorphism {Mn, αn} → {Nn, βn} consists of a collection of

homomorphisms {fn : Mn → Nn} such that βn ◦ fn = fn−1 ◦ αn holds for each
n ≥ 2. A pro R-module {Mn, αn} is called pro-trivial if for each m ≥ 1 there is
some n ≥ m such that αmn = 0. A strict homomorphism f as above is called a
pro isomorphism if ker(f) and coker(f) are both pro-trivial. A sequence of strict
homomorphisms

{Mn, αn}
{fn}→ {M

′

n, α
′

n}
{gn}→ {M

′′

n , α
′′

n}
is called pro-exact if gn◦fn = 0 holds for n ≥ 1 and the pro-R-module {ker(gn)/im(fn)}
is pro-trivial. The following lemmas are proved in [5], Chapter 10, section 2, see
also [21]:

Lemma 3.3. Let 0 → {M ′
, α
′

n} → {Mn, αn} → {M
′′

n , α
′′

n} → 0 be a pro-exact
sequence of pro-R-modules. Then there is a natural exact sequence
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0→ invlimM
′

n
invlimfn−→ invlimMn

invlimgn−→ invlimM
′′

n
δ→

invlim1M
′

n
invlim1fn−→ invlim1Mn

invlim1gn−→ invlim1M
′′

n

In particular, a pro-isomorphism {fn} : {Mn, αn} → {Nn, βn} induces isomor-
phisms

invlimn≥1fn : invlimn≥1

∼=→ invlimn≥1Nn

invlim1
n≥1fn : invlim1

n≥1

∼=→ invlim1
n≥1Nn

Lemma 3.4. Fix any commutative noetherian ring R and any ideal I ⊂ R. Then,
for any exact sequence M

′ → M → M
′′

of finitely generated R-modules, the se-
quence

{M
′
/InM

′
} → {M/InM} → {M

′′
/InM

′′
}

of pro-R-modules is pro-exact.

Definition 3.5 (Completion Map). Let X be a proper G-CW complex. Let p : X×
EG→ X be the projection to the first coordinate. The up to G-homotopy unique
map λ : X → EG, combined with Proposition 3.2 defines a pro-homomorphism

ϕλ,p :

{
K∗G(X,P )/IG,EG

nK∗G(X,P )

}
−→

{
K∗G(X × EGn−1, p∗(P ))

}
Theorem 3.6. Let G be a group which admits a finite model for EG, the classifying
space for proper actions. Let X be a finite, proper G-CW complex. Then, the pro-
homomorphism

ϕλ,p :
{
K∗G(X,P )/IG,EG

nK∗G(X,P )
}
−→

{
K∗G(X × EGn−1, p∗(P ))

}
is a pro-isomorphism. In particular, the system

{
K∗G(X×EGn−1, p∗(P ))

}
satisfies

the Mittag-Leffler condition and the lim1 term is zero.

Proof. Due to propositions 2.1 and 2.2, we are dealing with a noetherian ring
K0
G(EG) and the noetherian modules K∗G(X,P ) over it. Hence, we can use lemmas

3.4 and 3.3, and the 5-lemma for pro-modules and pro-homomorphisms to prove
the result by induction on the dimension of X and the number of cells in each
dimension.

Assume that X = G/H for a finite group H. Then, the completion map fits in
the following diagram{

K∗G(G/H,P )/InG,EG

}
//

indH→G ∼=
��

{
K0
G(G/H × EGn−1, p∗(P ))

}
indH→G∼=

��{
K∗H({•}, P |eH)/Jn

}

��

{
K∗H(EHn−1, p∗(P ))

}
=

��{
K∗H({•}, P |eH)/InH,{•}

}
//

{
K∗H(EHn−1, p∗(P ))

}

.

The higher vertical maps are induction isomorphisms, and the ideal J is gener-
ated by the image of IG,EG under the map indH→G ◦λ. The lower horizontal map
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is a pro-isomorphism as a consequence of the Atiyah-Segal Completion Theorem
for Twisted Equivariant K-theory of finite groups, Theorem 1, page 1925 in [18],
where it is proved even for compact Lie groups. We will analyze now the lower
vertical map and verify that it is a pro-isomorphism of pro-modules. This amounts
to prove that IH,{•}/J is nilpotent. Since the representation ring of H, R(H) is
noetherian, this holds if every prime ideal which contains J also contains IH,{•}.
For an element v ∈ H, denote by χv the characteristic funcion of the conjugacy
class of v. Let H be a finite group. Let ζ be the primitive |H|-root of unity given

by e
2πi
|H| . Put A = Z[ζ].

Recall [4], lemma 6.4 in page 63, that given a finite group H, and a prime ideal
of the representation ring P, there exists a prime ideal p ⊂ A an an element in H,
v such that P = χ−1

v (p).
Let P be a prime ideal containing J . We can assume that there exist s, t ∈ H

with χ−1
s (t) ∈ p and such that if p is the characteristic of the field A/p, then the

order of s is prime to p.
According to part 3 of proposition 2.1, there exists a complex vector bundle

E over EG such that p is prime to dimCE, and the character χE|x is zero after

evaluation at the conjugacy class of s. Let k = dimE. Then, Ck − E |λ(G/H) is in
IH,{•}. It follows that P contains IH,{•}.

This proves that the lower horizontal arrow is a pro-isomorphism, the lim1 term
is zero, and the theorem holds for 0-dimensional G-CW complexes X. Assume that
the theorem holds for all n− 1-dimensional, finite proper G-CW complexes. Given
a k-dimensional, finite, proper G-CW complex, X there exists a pushout∐

α S
k−1 ×G/H

��

//
∐
αD

k ×G/H

��

Y // X

where Y is a k-dimensional, finite proper G-CW complex. The Mayer-Vietoris
sequence for twisted equivariant K-theory gives pro-homomorphisms

. . .

{
K∗G(X,P )/IG,EG

n

}
−→{

K∗G(Y, P )/IG,EG
n

}⊕⊕
α

{
K∗G(Dk ×G/H,P )/IG,EG

n

}
−→

⊕
α

{
K∗G(Sk−1 ×G/H,P )/IG,EG

n

}
−→ {K∗+1

G (X,P )/IG,EG
n

}
. . .

By induction, the completion maps for the n− 1-dimensional G-CW complexes
are isomorphisms. By the 5-lemma for pro-groups, the completion map for X is an
isomorphism.

�

Corollary 3.7. Let G be a discrete group with a finite model for EG. Let P ∈
H3(BG,Z) ∼= H3(EG ×G EG,Z) be a discrete torsion twisting. Consider I =
IG(EG) Then ,

K∗(BG, p∗(P )) ∼= K∗G(EG,P )Î

4. The cocompletion Theorem

Given a CW complex X, and a class P ∈ H3(X,Z), the twisted K-homology
groups are defined in terms of Kasparov bivariant groups involving continuous trace
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algebras. We remit the reader for preliminaries on Kasparov KK-Theory and its
relation to K-homology and Brown-Douglas-Fillmore Theory of extensions to [12],
Chapter VII.

Let H be a separable Hilbert space. Let K be the C∗-algebra of compact op-
erators in H. Recall that the automorphism group of the C∗-algebra K consists
of the unitary operators with the norm topology U(H) and the inner automor-
phisms can be identified with the central S1. Hence, there is an action of the group
PU(H) = U(H) on the algebra K.

Remark 4.1. The norm topology and the compactly generated topology agree on
compact operators, hence, there is also a conjugation action of the group U(H)c.g
of unitary operators in the compactly generated topology, as well as a group homo-
morphism PU(H) → out(K) to the outer automorphism group of the C∗-algebra
algebra of compact operators.

Definition 4.2 (Continuous trace Algebras). Let X be a CW complex. Given
a cohomology class in the third cohomology group, H3(X,Z), represented by a
principal projective unitary bundle P : E → X , the continuous trace algebra
associated to P is the algebra AP of continuous sections of the bundle K×PU(H)E →
X.

Definition 4.3 (KK-picture of twisted K-homology). Let X be a locally compact
space and P be a P (U(H))-principal bundle. The twisted equivariant K-homology
groups associated to the projective unitary principal bundle P are defined as the
KK-groups

K∗(X,P ) = KK∗(AP ,C)

Continuous trace algebras, used in the operator theoretical definition of twisted
K-theory and K-homology belong to the Bootstrap class [13] Proposition IV.1.4.16,
in page 334. Hence, the following form of the Universal Coefficient Theorem for
KK-Groups holds. It was proved in [23], page 439, Theorem 1.17:

Theorem 4.4 (Universal coefficient Theorem for Kasparok KK-Theory). Let A
be a C∗-algebra belonging to the smallest full subcategory of separable nuclear C∗

algebras and which is closed under strong Morita equivalence, inductive limits, ex-
tensions, ideals, and crossed products by R and Z. Then, there is an exact sequence

0→ ExtZ(K∗(A),K∗(B))→ KK∗(A,B)→ HomZ(K∗(A),K∗(B))→ 0

Where K∗ denotes the topological K-theory groups for C∗-algebras.

Specializing to the algebras AP one has:

Theorem 4.5. Let X be a locally compact space and P be a P (U(H))-principal
bundle. Then, there is an exact sequence

0→ ExtZ(K∗−1(X,P ),Z)→ K∗(X,P )→ HomZ(K∗(X,P ),Z)→ 0

We will prove the following cocompletion Theorem, inspired by the methods and
results of [17].

Theorem 4.6. Let G be a discrete group. Assume that G admits a finite model
for EG. Let X be a finite G-CW complex and P ∈ H3(X ×G EG,Z). Let IG,EG
be the augmentation ideal. Then, there exists a short exact sequence

colimn≥1 Ext1
Z(K∗G(X,P )/InG,EG,Z)→

K∗(X ×G EG, p∗(P ))→ colimn≥1K
∗
G(X,P )/InG,EG
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Proof. Choose a CW complex Y of finite type and a cellular homotopy equivalence
f : Y → X ×G EG. Let fn : Y n → X ×G EGn be the map restricted to the
skeletons. The pro-homomorphisms{

K∗(X ×G EGn, p∗(P ))

}
−→

{
K∗(Y n, p∗(P ) | Yn)

}
are a pro-isomorphism of abelian pro-groups. On the other hand, due to the com-
pletion theorem, 3.6, there is a pro-isomorphism

ϕλ,p :

{
K∗G(X,P )/IG,EG

nK∗G(X,P )

}
−→

{
K∗G(X ×G EGn−1, p∗(P ))

}
Using 4.5, one gets the exact sequence
0→ ExtZ(K∗−1(Y, p∗(P )),Z)→ K∗(Y, p∗(P ))→ HomZ(K∗(Y, p

∗(P )),Z)→ 0.
Combining this exact sequence with the pro-isomorphisms given previously, one

has the exact sequence

colimn≥1 Ext1
Z(K∗G(X,P )/InG,EG,Z)→

K∗(X ×G EG, p∗(P ))→ colimn≥1K
∗
G(X,P )/InG,EG

�
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Sci. École Norm. Sup. (4), 37(6):841–910, 2004.
[25] B. Uribe and J. Espinoza. Topological properties of the unitary group. ArXiv:1407.1869, 2014.
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