MOUNTAIN PASS THEOREM WITH INFINITE DISCRETE
SYMMETRY

NOE BARCENAS

ABSTRACT. We extend an equivariant Mountain Pass Theorem, due to Bartsch,
Clapp and Puppe for compact Lie groups to the setting of infinite discrete
groups satisfying a maximality condition on their finite subgroups.

Symmetries play a fundamental role in the analysis of critical points and sets
of functionals [2], [20], [I2]. The development of Equivariant Algebraic Topology,
particularly Equivariant Homotopy Theory, has given a number of tools to conclude
the existence of critical points in problems which are invariant under the action of
a compact Lie group, as investigated in [I1].

In this work we discuss extensions of methods of Equivariant Algebraic Topology
to the setting of actions of infinite groups. The main result of this note is the
modification of a result by Bartsch, Clapp and Puppe originally proved for actions
of compact Lie groups, to infinite discrete groups with appropriate families of finite
subgroups inside them.

Theorem 1.1 (Mountain Pass Theorem). Let G be an infinite discrete group acting
by bounded linear operators on a real Banach space E of infinite dimension. Suppose
that G satisfies the maximality condition and that the linear action is proper
outside 0. Let ¢ : E — R be a G-invariant functional of class C*>~. For any value
a € R, define the sublevel set ¢* = {x € E | ¢(z) < a} and the critical set K =
Ueer K., where K, is the critical set at level ¢, Ko = {u | ¢ (w)]| = 0 ¢(u) = ¢}.
Suppose that
e $(0) < a and there exists a linear subspace ECE of finite codimension
such that EN¢® is the disjoint union of two closed subspaces, one of which
is bounded and contains 0.
e The functional ¢ satisfies the Orbitwise Palais-Smale condition [I.3
e The group G satisfies the mazimal finite subgroups condition [1.2

Then, the equivariant Lusternik-Schnirelmann category of E relative to ¢%, G —
cat(E, ¢%) is infinite. If moreover, the critical sets K. are cocompact under the
group action, meaning that the quotient spaces G\ K. are compact, then ¢(K) is
unbounded above.

Recall that given a natural number r, the class C"~ denotes the class of functions
whose derivatives up to order r exist and are locally Lipschitz.
Condition [1.2| restricts maximal finite subgroups and their conjugacy relations.

Condition 1.2. Let G be a discrete group and MAX be a subset of finite sub-
groups. G satisfies the maximality condition if
e There exists a prime number p such that every nontrivial finite subgroup
is contained in a unique maximal p-group M € MAX.
e M € MAX — N¢g(M) = M, where Ng(M) denotes the normalizer of
M in G.

Key words and phrases. Mountain Pass Theorem, Critical point theory, Equivariant cohomo-
topy. 2010 Mathematics Classification: 58E40 55P91 .
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Notice that in particular, the finite subgroups of G are all finite p- groups.

These conditions are satisfied in several cases. Among them:

(i) Extensions 1 — Z" — G — K — 1 by a finite p-group given by a repre-
sentation K — Gl,,(Z) acting freely outside from the origin [30], Lemma
6.3.

(ii) Fuchsian groups, more generally NEC (non-euclidean crystallographic
groups) for which the isotropy consists only of p-groups. [30].

(iii) One relator groups G = (g; | r) for which the family of finite subgroups
consists of p-groups. See [31], Propositions 5.17, 5.18, 5.19. in pages 107
and 108.

The Orbitwise Palais-Smale condition was formulated by Ayala-Lasheras-Quintero
in [6] for complete riemannian manifolds with a proper action of a Lie Group. For
our purposes, the following notion is more adequate.

Condition 1.3. Let G be a discrete group. Let M be a C?>~ Hilbert manifold
with a G-action by C!~ diffeomorphisms which is proper. Assume that M has a
G-invariant C!~ Riemannian Metric. The G-invariant functional ® of class C?~
satisfies the orbitwise Palais-Smale condition if given a sequence {z,} C M such
that | f(zy) | is bounded and V®(z,) converges to 0, then the sequence of orbits
Gz, contains a convergent subsequence in the orbit space M/G.

This paper is organized as follows: in the second section , the usual facts con-
cerning the relation between critical points, Lusternik-Schnirelmann category and
equivariant deformation theorems are stated, being modified slightly from [6] and
[15].

In the third section, we introduce the notion of Universal Proper Length related
to a family of subgroups.

In the third section, we use some algebraic properties of the classifying space for
proper actions of groups with an appropriate family of maximal finite subgroups in
order to conclude the unboundedness of critical values.

This is done in the fourth section adapting a construction of elements in the
Burnside Ring of a finite group, originally due to Bartsch, Clapp and Puppe [12] to
the infinite group setting, using the Atiyah-Hirzebruch spectral sequence, as well as
a version of the Segal Conjecture for families of finite groups inside discrete groups
23], [7.

This work was financially supported by the Hausdorff Center for Mathematics
at the University of Bonn, Wolfgang Liick’s Leibnizpreis and a CONACYT post-
doctoral fellowship. The author thanks the comments of an anonymous referee.

2. PROPER LUSTERNIK-SCHNIRELMANN CATEGORY AND CRITICAL POINTS

The notion of a proper G-space provides an adequate setting for the study of
non-compact transformation groups.

Definition 2.1. Let G be a second countable, Hausdorff locally compact group.
Let X be a second countable, locally Hausdorff space. Recall that a G-action is
proper if the map
GxX—=>XxX
6

X
(g,2)—(z,97)
is proper.
Ayala-Lasheras-Quintero [6] introduced the notion of equivariant Lusternik-Schni-

relman category for proper actions of Lie Groups, extending previous work by
Marzantowicz [32] for compact Lie groups.
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Definition 2.2. Let X C X be paracompact proper G-spaces. The relative G-
category of (X, X ), denoted by G-cat(X, Xl) is the smallest number k such that X
can be covered by k+1 open G-subsets Xg, X1, ..., X; with the following properties:

e X' C X, and there is a homotopy H : (Xo, X ) x I — (Xo,X) starting
with the inclusion and H(z,1) € X'

e For every i € {1,...,k} there exist G-maps «; : X; —» A; and 3;: A; =Y
with A; a G-orbit G/H; such that the restriction of f to X; is the is
G-homotopic to the composition 3; o o

If no such a number exists, then we write G-cat(X, X') = co.

The Lusternik-Schnirelman Method can be extended to functionals which are
invariant under proper actions.

Lemma 2.3 (Equivariant Deformation). Let G be a discrete group acting properly
on a Hilbert manifold of class C*>~. Let ® : X — R be a G- invariant C>~ -functional,
ceK,={zeX|® (x)=08(x)=c}. Foreveryc>a, every 0 <3 < ¢ —a and
every G-neighborhood U of K., there is an € > 0 and a homotopy n : ®T¢ x [ —
O°€ which is the identity on ®¢0 x I.

Proof. The Gradient field —V® is locally Lipschitz by assumption. The usual
deformation method [35] works G-equivariantly. See [6], lemma 5.4 in page 1130.
(]

Proposition 2.4. Let M be a paracompact Hilbert, C>~ - manifold. Assume that the
discrete group G acts properly by C'~ maps on M. Let ¢ : M — R be a G-invariant
C?~ -function satisfying the deformation property with respect to neighbourhoods of
critical sets, as in lemma[2.3 Suppose that ® satisfies the Orbitwise Palais-Smale
condition [L.3.

e If the function is bounded below, then the number of critical points of ¢
with values > a in M is at least G-cat(M, ).

o If G-cat(M, ¢*) is greater than the number of critical values of ¢ above a,
then there is at least one ¢ > a such that the critical set K. has positive
covering dimension. In particular ¢ has infinitely many critical orbits with
values above a.

o [f G-cat(M, K) = oo, then ¢ has an unbounded sequence of critical values.

Proof. The proofs given in [I5], Theorem 2.3 and Corollary 2.4 , pages 606 and 607,
and [16], Theorem 1.1 extend to the proper setting. The point is that the equi-
variant Lusternik-Schnirelmann Category for proper spaces satisfies subadditivity,
deformation monotonicity, and continuity (Proposition 2.3 in [6] in the absolute
case, and the obvious modification extends to the relative category). Il

3. UNIVERSAL COHOMOLOGY LENGTH

We discuss now cohomology length in the context of equivariant cohomology
theories. We use for this the notion of a classifying space for a family of subgroups.

Definition 3.1. Recall that a G-CW complex structure on the pair (X, A) consists
of a filtration of the G-space X = U_1<,X,,, X1 = 0,Xo = A and for which every
space X, is inductively obtained from the previous one by attaching cells in pushout
diagrams of the form

I St x G/H; —— Xp

J |

I[,D" xG/H; —— X,
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We say that a proper G-CW complex is finite if it consists of a finite number of
cells G/H x D™.

Definition 3.2. Let G be a discrete group. A metrizable proper G-Space X is an
Absolute Neighbourhood retract if every G- map Z — X from a closed subspace
Z of a metrizable G-space Y into X has an equivariant extension U — X to a
G-invariant neighbourhood U of Z in Y.

It is proved in [4] , Theorem 1.1 that proper G-ANR are G-homotopy equivalent
to G-CW complexes when G is a locally compact Hausdorff group.
We recall the notion of the classifying space for a family of subgroups.

Definition 3.3. Let F be a collection of subgroups in a discrete group Gwhich is
closed under conjugation and intersection. A model for the classifying space for the
family F is a G-CW complex X satisfying
e All isotropy groups of X lie in F .
e For any G-CW complex Y with isotropy in F, there exists up to G-
homotopy a unique G-equivariant map f:Y — X.

A model for the classifying space of the family F will be usually denoted by
Ex(G) .

Particularly relevant is the classifying space for proper actions, the classifying
space for the family FZN of finite subgroups, denoted by EG.

The classifying space for proper actions always exists, is unique up to G-homotopy
and admits several models. The following list includes some examples. We remit
to [27] for further discussion.

e If G is a compact group, then the singleton space is a model for EG.

e Let G be a group acting properly and co-compactly on a CAT(0) space X,
in the sense of [I4]. Then X is a model for EG.

e Let G be a Coxeter group. The Davis Complex is a model for EG.

e Let G be a mapping class group of an orientable surface. The Teichmiiller
Space is a model for EG.

The spaces apearing in applications in analysis are not always G-CW complexes.
They satisfy more often numerability conditions.

Definition 3.4. Let F be family of closed subgroups closed under conjugation
and intersection inside the locally compact second countable Hausdorff group G.
A G-space X is said to be an F-numerable space if there exists an open covering
{Ui,| i € I} by G-subspaces such that there is for each i € I a G-map U; — G/G;
for some G; € F and there is a locally finite partition of unity {e;;c;} subordinate
to {U;} by G-invariant functions. Notice that we do not require that the isotropy
groups of X lie in F.

The Slice Theorem 2.3.3, in page 313 of [34] implies that completely regular
spaces carrying proper actions of Lie groups are precisely numerable spaces with
respect to the family of compact subgroups for which, in addition, the isotropy
groups of points are all compact subgroups.

Specializing to Lie groups acting properly on G-CW complexes, the conditions
boil down to the fact that all stabilizers are compact, see [24], Theorem 1.23. In
particular for a cellular action of a discrete group G on a G-CW complex, a proper
action reduces to the finiteness of all stabilizer groups. Notice that any (continuous)
action of a compact Lie group or a finite group on a locally compact, Hausdorff
space is proper.

The following version of the classifying space for a family extends the notion to
JF-numerable spaces.
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Definition 3.5 (Numerable Version for the Classifying space of a family). Let F
be a family of subgroups. A model J£(G) for the classifying numerable G-space
for the family F is a G-space which has the following properties:
e Jr(G) is F-numerable
e For any F-numerable space X there is up to G-homotopy precisely one
map X — J£(G).

Remark 3.6. There exists up to G-homotopy a unique G-equivariant map EG —
Jr(G). This map is proved to be a G-homotopy equivalence for a discrete group
in Theorem 3.7, part ii of [27].

Recall the notion of an Equivariant Cohomology Theory, [26].

Definition 3.7. Let G be a group and fix an associative ring with unit R. A
G-Cohomology Theory with values in R-modules is a collection of contravariant
functors H¢ indexed by the integer numbers Z from the category of G-CW pairs
together with natural transformations 9% : HZ(A) = HE(A,0) — HE(X, A),
such that the following axioms are satisfied:

(i) If fo and f; are G-homotopic maps (X, A) — (Y, B) of G-CW pairs, then

He(fo) = HE(f1) for all n.
(ii) Given a pair (X, A) of G-CW complexes, there is a long exact sequence

HE

on—1 no-
e @ g H&(D

L HA(X,A) ST HA(X)
M pp(4) B (x,4) Y
wherei: A — X and j : X — (X, A) are the inclusions.

(iii) Let (X, A) be a G-CW pair and f : A — B be a cellular map. The
canonical map (F, f) : (X, A) — (X Uy B, B) induces an isomorphism

He(X Us B, B) 5 HE(X, A)

(iv) Let {X; | i € 7} be a family of G-CW-complexes and denote by j; : X; —
[1;cz Xi the inclusion map. Then the map
WierHE (i) - HE([[ X0) = MierHE (X))
is bijective for each n € Z.

A G-Cohomology Theory is said to have a multiplicative structure if there exist
natural, graded commutative U- products

HE(X, A) @ HE (X, A) = HET™ (X, A)

Let a : H — G be a group homomorphism and X be a H-CW complex. The
induced space ind, X, is defined to be the G-CW complex defined as the quotient
space G x X by the right H-action given by (g, ) - h = (ga(h),h™1z).

An Equivariant Cohomology Theory consists of a family of G-Cohomology The-
ories H¢, together with an induction structure determined by graded ring homo-
morphisms

He(indo (X, A)) = HE (X, A)
which are isomorphisms for group homomorphisms a : H — G whose kernel acts
freely on X satisfying the following conditions:

(i) For any n, 9% oind, = ind, o Og.
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(ii) For any group homomorphism /3 : G — K such that ker 8 o o acts freely
on X, one has

indaog = Hi (f1 0indg oindy) : Hi (indgoa (X, 4)) = HE (X, A)

where f; : indgind, — indgoq is the canonical G-homeomorphism.
(iii) For any n € Z, any g € G , the homomorphism

indC(g):GHG : Hg (ind)c(g):G%G (X? A)) - H% (Xa A)

agrees with the map Hg(f2), where fs : (X, A) — ind(y).c—q sends x
to (1,97 ') and c(g) is the conjugation isomorphism in G.

Remark 3.8 (Extensions of G-Cohomology theories to more general spaces). Let
‘H¢: be a G-cohomology theory defined on proper G-CW complexes. Using a func-
torial G-CW approximation for proper G-ANR as introduced in [4] for locally com-
pact Hausdorff groups, an equivariant cohomology theory may be extended to the
category of proper G-ANR.

More generally, the Cech expansion of [33] provides a Cech extension of a G-
cohomology theory to arbitrary pairs of proper G-spaces. That is, a family of R-mod
valued functors 7—1@ defined on pairs of proper G-spaces and natural transformations

%A HE(AD) — HET (X, A) satisfying the axioms:
e G-homotopy invariance.
e Long exact sequences for G- pairs.
e Excision. Let X7, X5 C X be proper G- invariant spaces such that

XQ—Xlﬁxl—XQZQZXQ—lexl_X2
Then, the inclusion map (Xq, X1 N X2) — (X7 U X5, X1) induces a natural

isomorphism.
e Axioms i-iii for the Induction structure.

For the purposes of this work we need an extension of a specific cohomology
theory to a certain proper G-ANR which is contractible after forgetting the action
and is exhausted by finite G-CW complexes. This is done by an ad-hoc construction,
see definition (.11

Recall [17], [26], that for any Equivariant Cohomology Theory H* on finite G-
CW complexes there exists a spectral sequence with E?-term given by Bredon
Cohomology

By = Hyo, )X, H'(G/H))
converging to H(X).
The following result will be used later:

Proposition 3.9. Let X be an I-dimensional G-CW complex. Suppose that for
r = 2,3,... the differential appearing in the Atiyah-Hirzebruch spectral sequence
for X and HE, vanishes rationally. Then, for any element

z e HZOOT'(G)(X’ HeE(G/7))
there exists some positive integer k such that z* is contained in the image of’HOG(X)
under the edge homomorphism
Bdgeq : He(X) — Hyop ) (X, H&(G/7))
Proof. Let x € H(Z)OT(G)(X, HO(G/?)). The proof reduces to construct inductively

positive integers ks, ...k;_1 such that the product alli=2%i survives to E2f1 for
r =1,...1 — 1, in the sense that k:rdg’o(xnzl;zl ki) =0 for r = 2,...,1 — 1. Since
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T € ES’O, we pick ko such that koda(x) = do(z¥2) = 0 (this is possible by the
rational vanishing of the differentials).

Assume inductively that there are ko,..., k,._1 and 21122 B which survive to
the € E%O-term. Choose k, such that k:rdgvo(mnz;zl) = 0. This is possible by the
rational vanishing of differentials again).

Now, d20(alli=2) = k,d%0((«ITi=2 ) (2I1i=2 ) =1, And since «ITi=2 € E?, for
k= Hf;; k;, the I-dimensionality of X implies 2% € E%° and hence it is on the
image under the edge homomorphism. O

Definition 3.10. (Universal Cohomology Length relative to a family of subgroups)

Let A = {G/H;} be a collection of orbit spaces representing all homogeneous
G-spaces with isotropy in some family F of subgroups of G. Let M be a module
over the graded ring H§ (Ex(G)). The H a-length of the module M is the smallest
number k such that there exist spaces Ay, ..., Ay € A such that for any v € M and
w; in the kernel of the map

He(Ex(Q)) — He(G/H,)
given by the up to G-equivariant homotopy unique map G/H — Ex(G), one
has
Ywi ... wg = 0.
Given a map f : X — Y, between A-numerable spaces, the H 4-length of f is
the H 4 length of the image, considered as H{(Ex(G))- module .

4. COMPUTATIONS IN BURNSIDE RINGS

We specialize now to equivariant stable cohomotopy for proper actions.
We give a quick summary of important facts involving Equivariant Stable Coho-
motopy for finite groups.

Theorem 4.1. Let G be a finite group. Then

e The 0-th equivariant cohomotopy group of a point, % ({e}) is isomorphic
to the Burnside ring, denoted by A(G), the Grothendieck ring of isomor-
phism classes of finite G-sets .

e The Burnside ring A(G) is provided with maps g : A(G) — Z, each one
for every conjugacy class of subgroups in G. These extend to an injective
map A(G) — I Z, where ces(G) denotes the set of conjugacy classes

Hin ces(G)
of subgroups in G.

o The prime ideals in A(G) are given by the sets Pr , = {x | pu(z) = 0(p)},
Puo = {x | pu(x) = 0}, where p is a prime number. The augmentation
ideal I is defined as the ideal {x | p.(z) = 0}.

e There exists an element, the Bartsch element 0 # z € A(G) with the
property that @ (x) =0 for every subgroup H.

e Ifp is a prime number and G is a finite p-group, then the completion map
A(G) — A(G)Ig is injective and the Ig-adical topology and the p-adical
topologies coincide.

Proof. e This is well known. See [37], [38].
e See [38], chapter II, section 8 , pages 155-160. The image is characterized
by a set of congruences for the number of generators of cyclic subgroups
of the Weyl groups NH/H for every conjugacy class of subgroups H in G
[38], section 5 chapter IV, page 256. Alternatively, Theorem 1.3 in [21],
page 41.
e This is proven in [2]], page 43, [18].
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e This is done in [I2]. The element is constructed as follows: let K be a
proper subgroup of G. Put ux = [G/K]— | G/K |¥ [G/G]. The element
x is defined as the product of all such ug, each one for every conjugacy
class of subgroups in K.

e For a detailed proof see [21]. The first result, Corollary 1.11 in [21], follows
from the fact that in this situation the kernel of the completion map,
NI coincides with Nker(py), where U ranges among alll p-sylow groups.
The second result follows from Frobenius reciprocity and an analysis of

the congruences defining the Burnside ring as subring inside In 7z,
Hin ccs(G)

proposition 1.12 in [21], page 44 .
U

Equivariant Cohomotopy for proper actions of infinite discrete groups on finite
G-CW complexes was defined in [25] via finite dimensional equivariant vector bun-
dles for proper, finite G-CW complexes. Alternative approaches aer given by a
construction using nonlinear Fredholm cocycles, which allow actions of noncom-
pact Lie groups on finite G-CW complexes [9], as well as a spectra version [g].
These approaches are compared in [7]. For convenience, we give the definition from
[25]:

Definition 4.2. A G-vector bundle over a G-CW-complex X consists of a real
vector bundle ¢ : E — X together with a G-action on E such that £ is equivariant
and each g € G acts on F and X via vector bundle isomorphisms.

Let S¢ denote its fibrewise one-point compactification.

Definition 4.3. Let X be a proper G-CW-complex. Let SPHBG(X) be the cate-
gory with
e Ob(SPHBY(X)) = {G-vector bundles over X}; and
e a morphism from a vector bundle £ : E — X to vector bundle p : F' — X is
given by a bundle map u : S¢ — S* which covers the identity id : X — X
and fiberwise preserves the basepoint.
(It is not required that u is a fiberwise homotopy equivalence.)

Let RF denote the trivial vector bundle X x RF — X.

Definition 4.4. Fix n € Z. Let &y, &1 be two G-vector bundles over X, and let kg
and k; be two non-negative integers such that k; + n > 0 for ¢ = 0,1. Then two
morphisms

w; - SEORN _, gei@RMHn

are called equivalent, if there are objects p; in SPHBG(X ) for i = 0,1 and isomor-
phisms of G-vector bundles v : pg ® & = p1 ® &1 such that the following diagram
in SPHB® commutes up to homotopy

S.lto@]Rk1 Ax Sfa@RkO MOSHO@RM Ax SﬁoEBRk0+"

| |

S#o@ﬁn@Rk0+k1 Suo@&o@Rk°+k1+"

J |

GHIBRN e @RS XU g gRR |\ o eRMT

Definition 4.5. For a proper G-CW-complex X define

mex(X) = {equivalence classes of morphisms u as above}
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By introducing triviality conditions on a G-CW pair, (considering morphisms
which are fibrewise constant with the value the point at infinity), equivariant coho-
motopy groups are extended to an equivariant cohomology theory with multiplica-
tive structure.

We introduce a Burnside ring for infinite groups, making out of Segal’s remark,
part 1 in Theorem our definition for finite groups:

Definition 4.6. Let GG be a group with a finite model for the classifying space for
proper actions E(G). The Burnside ring for G is the 0-th equivariant cohomotopy
ring of the classifying space for proper actions. In symbols

A(G) = g (E(G))
Denote by A'"™(G) = limpgerza A(H) the inverse limit of the Burnside rings
of the finite subgroups of G. Notice that this agrees with the 0,0-entry of the
E2%-term of the equivariant Atiyah-Hirzebruch spectral sequence. The following

relations between the Burnside ring and the inverse-limit Burnside ring are easy
consequences of the rational collapse of the Atiyah-Hirzebruch spectral sequence:

Lemma 4.7. Let G be a discrete group admitting a finite model for the classifying
space for proper actions EG.

(i) The edge Homomorphism e : A(G) — AY™(G) has nilpotent kernel and
cokernel. Its kernel is the nilradical.

(ii) The edge homomorphism gives an isomorphism between the set of prime
ideals in A(G) and A"™(G) (in fact an homeomorphism in the Zariski
topology), by assigning a prime ideal I C AW (H) its inverse image e 1 (I) €
A(Q).

(iii) The rationalized Burnside ring 7% (E(G)) ® Q does not contain nilpotent
elements.

In the rest of the section we will describe a completion theorem for families of p-
groups inside finite subgroups of discrete groups, which is the main computational
tool for the computation of equivariant cohomology lengths needed for the proof of
Theorem [I.I} This amounts to a generalization of the Segal Conjecture for families
[1]. The result was proved in [7], Theorem 13 in page 58, although similar results
have been proved in [28], [29] and [23], from where the crucial ideas and methods
come.

Let G be a discrete group and F be a family of finite subgroups of G, closed
under conjugation and under subgroups. Fix a finite proper G-CW complex X and
a finite dimensional proper G-CW complex Z whose isotropy subgroups lie in F.
Let f: X — Z be a G-map. Regard 7%(X) as a module over 7% (Z).

Definition 4.8. The augmentation ideal with respect to the family F is defined
as the kernel of the homomorphism

H _ -
I=Igrz=(2) "5 T *H(2%)
HeF
Proposition 4.9. Let F be a family of finite p-subgroups. Assume that there is an
upper bound for the order of subgroups in F.
Let P C 7% ({e}) be a prime ideal.
Then, the ideal

Iy 7o (o) = ker 7719{({°}) - H W?(OH({.})
KeF
is contained in P if P contains the image of the structure map for H

on + lim i ({o}) — 7 ({o})

li
KeF
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Proof. Let m be a positive integer number divided by all orders of subgroups in
F. For a given subgroup K in the family, Let uw = {ui,...,un} be a finite set of
cardinality m with a free K-action. For example, u may be chosen to be a disjoint
union of % copies of K. This gives an injective homomorphism into the symmetric
group in m letters, p : K — S,,,. For a prime p, let Syl,, be the p-Sylow subgroup
of S,,.

Let Sy, [p] be the set S, with the free K- action given by k,s — p(h)(s) and
S /Syl, be the set with the induced K-action. Notice that the fixed point set
Sm/ Sylg is nonempty if and only if L is a p-subgroup. This construction is compat-
ible with morphisms between subgroups in F in the sense that an homomorphism
K — K’ between groups in the family induces a map taking the free K "_set Sy, to
the free K-set S, and the same for the homogeneous set S, /Syl,,.

Consider the elements

{<Sm/sylp_ | SM/SZUZP | K/K}Ke}-

Let P be a a prime ideal containing the image of the structure map under ¢.
By the structure of the prime ideal spectrum, P is of the form P(M,p), where M
is a subgroup of H and p is a prime number or zero. By assumption, P contains
the image under the structure map of the elements above. Since (S, — | Sy, |
) =| Sy | and M (S,,,/Syl, — Sim/Syly) =| Sm/Syly M — | Sp/Syl, | and both
elements belong to pZ, because S,,/Syl, has order prime to p, we conclude that
either p =0 or M is a p-group.

If M is a p-group, then P(M,p) = P({e},p) D P({e},0) D Ir m (o}- If p=0,
then | SM | — | S,, |= 0, and hence M = {e}. For any subgroup K of every
element K € FNH, P(K',0) = P({e},0), since K is a p-group, hence P contains

the intersection of all such ideals, which is Iz g (e}-
O

Proposition 4.10. Let L be an n-dimensional G-CW complex with isotropy in
the family F consisting of finite p-subgroups inside the discrete group G. Let f :
G/H — L be a G-map and P C n;({e}) be a prime ideal. Then Irny o) =
ker 7 ({}) = [lxer Tanm({®}) is contained in P if P contains the image of
Ir 7 under indg g o f*: 72(L) — 1% ({e})

Proof. Let P be a prime ideal containing Iz p {4} By the previous proposition, we
can assume that P contains the image of the structural map ¢g.

Let v : HgOT(G)(E]:(G),’]Tg(G/?)) — limg 7% ({e}) be the isomorphism given
by assigning to an element x € HgOT(G)(E]:(G); 7% ({e})) the element whose com-
ponent under the structural map ¢ is the image image under the map induced by
the (G-homotopically) unique map ug : G/K — Ex(G), followed by the induction
isomorphism

Hzoor(c) (Ex(G);mg(G/?)) —
Hz6,(c)(G/K, 7 (G/7) = Hpo, ) ({0} 7k (K/7)) 2= mi ({o})

Given an element a € limg I 7k {4}, denote by x its image under y~'. By propo-
sition there exist a positive integer k and an element y € 7% (Ex(G)) such that
edge(y) = ¥, which is furthermore an element of Ir ¢ ..

The structure map ¢ : lim 7% ({8}) — 7% ({®}) maps a* to P. Because P is a
prime ideal, the map ind o f* maps a to P. O
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Theorem 4.11 (Segal Conjecture for families of finite p-subgroups). Let G be
a discrete group and F be a family of subgroups of order p of G closed under
conjugation and subgroups. Fir a finite proper G-CW complex X and a finite
dimensional proper G-CW complex Z whose isotropy subgroups lie in F and have
bounded order. Let f : X — Z be a G-map. Regard 7%(X) as a module over n2(Z)
and set

res2 oi*
I=1Irz=ker(ng(2) - [] »u(2%)
HeF
then

AN F gt {W@(X)/I” wg(X)} — {Wé”(E;(G) X X"_l)}
is an isomorphism of pro-groups. Also, the inverse system
{72 (E#(G) x X))} 00
satisfies the Mittag-leffler condition. In particular
lim'7% ((Ex(G) x X)") =0

and Ax F,r induces an isomorphism
78 (X); - 7 (EF(C) x X) = limag (E(G) x X)")

Proof. Since both functors have Mayer-Vietoris sequences, both of the systems
satisfy the Mittag-Leffler condition and in view of the 5-lemma for pro-modules,
[B], section 2, an inductive argument can be used to reduce the problem to the
situation of X = G/H, and where H is a finite group.

In this case, there exists a commutative diagram

7%.(2) — G/ H)

lndHaGJr

A(H) ——— i ({})
Hence, the map of pro-modules

NR g AmG (X) /1 -7 (X)) = {7 (Ex(G) x X"}

factorizes as follows

{r&(G/H)/T" - 73 (G/H)} —— {xji({e}),/T"}

L |

{n&(Ex(G) x G/H" )} e {ny ({o 1)/ Txrpr 1. (o) }

Where J is the ideal generated by the image of I under ind o f* and the lower
horizontal map is an isomorphism due to the completion theorem for families inside
finite groups of [1]], the right vertical map is induced by f. Due to propositionm
the prime ideals containing J and Ir~p,p,{e} agree and the right vertical map is an
isomorphism.

O

Corollary 4.12. Let p be a prime number. For any group satisfying conditions
for which the mazimal finite subgroups are finite p-groups, the groups n&(EG)® Zj

and WG(EG)HG,MAX are isomorphic.
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Proof. The morphism of pro-groups {n%(X)/p"mi(X)} = {7@ (XX EMAX)""1)}
is proved to be an isomorphism for X = G/H with H a p-group. The prime
ideals in 7% ({e}) containing Iymaxnm (e} and the one generated by the image
of Inpqax,q,g/r under ind o f* agree by the previous argument. Because H is a
p-group, these agree with the ones containing I ¢/ for the trivial family. Due
to part 5 of theorem these agree with the ones containing p.

Since both functors have Mayer-Vietoris sequences, the result follows by induc-

tion on the dimension of X.
O

Proposition 4.13. Let G be a discrete group satisfying conditions[1.3
There exists a “ Generalized Bartsch element ” w € 7% (EG) for which the map

. P .
TO(EG) — H oy (EG, 79({o}) = limgccsuna) 7 ({o}) £2% 70, ({o}) given by
the composition of the edge homomorphism and the structural map for the inverse

limit maps w to a power of the element constructed in[f.1] for any mazimal subgroup
M.

Proof. Let Xy, € 9, ({#}) be the Bartsch element constructed in Theorem (4.1
part 4. Put z = {xp, } € limy 7% ({8}). Choose an element w and a power k such
that w is mapped to z* under the edge homomorphism. O

5. END OF PROOF

Definition 5.1. Let X be a proper and paracompact G-ANR, which is contractible
after forgetting the group action. Assume that there is a map X — X from a proper
G-CW complex of finite type X = UX,, inducing a weak G-homotopy equivalence
(a map restricting to weak homotopy equivalences XH — XH for all subgroups
H). Define

F5(X) = lim g (Xa) © Qy

Proposition 5.2. Let G be a discrete group satisfying[1.4 Let X be a paracompact
proper G-ANR , which is contractible after forgetting the group action. Assume
that there is a map X — X from a proper G-CW complex of finite type X = UX,,
inducing a weak G-homotopy equivalence.

The maps X,, — EG together with the G-homotopy equivalence EG — Jrzpn(G)
induce isomorphisms

7o (T (G)) — 7% (EG) — lim 7% (X,,)

Proof. The point is the existence of long exact sequences for the functor 7 (X, A),

which is guaranteed by the natural equivalence with the Equivariant Cohomology

Theory defined by (X, A) — 7 ((Eamax(G),0) x (X, A)) on finite G-CW pairs.
[l

Proposition 5.3. Let G be a group satisfying conditions . Let X be a proper
G-ANR as in . Then, there exists an element w € 7% (EG) @ Q such that
o wekermd(EG)®Q — 1% (G/H) @ Q for all finite H.
o we kertd(EG) @ Q — 12(Xo) ® Q.
e For every k > 0 there exists an n > 0 such that the image if w* under
#Q(EG) — m%(X,) ® Q; is not zero.

Proof. Let v € 7%(EG) ® Q = IlgepmaxrA(H) @ Q be the image of the element
constructed in proposition under the rationalized edge homomorphism.
Let m = G-cat(Xp) and put w = v™. Asin [12], the following diagram commutes:
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o (EG) ® Qp lim,, 7 (X,,) @ Qp

\ |

7% (EG): ®Q —— #%(EG) ——— 5 #%,(X)

Ig, max

as the left and right vertical maps are isomorphisms, and there are no nilpotent
elements in the rationalized Burnside Ring 72 (EG) ® Q, there are no nilpotent
elements in 7%(EG) ® Qp, and so there exists a natural number n such that the

third condition holds.
O

Let E C E be a G-invariant linear subspace with a finite dimensional7 G-invariant
complement Fj satlsfylng the mountain pass condition 1 in . For any finite
dimensional subspace F, the sum F = Fy @ F satisfies

F —B.(F)cC¢®
Lemma 5.4. There is a G-map f such that the diagram
(F, F = By(F)) — (B — {0}, ¢%)

L

(F.F = S(Fy& F) ="— (E — {0}, S(E))
commutes, where irp and jp are given by inclusions.

Proof. Compare lemma 5.2 in [I6]. Define a map f : E — E by sending the
bounded closed subspace A in theorem to 0, mapping E N ¢* into £ — BT(E)
and extending to all of E , since Eisa proper, G- absolute retract, Theorem 3.9
in page 1953 of [3]. O

The same argument as in Proposition 5.3, [16], page 17 yields:
Proposition 5.5. For any Equivariant Cohomology Theory, HE,,
G—cat(E,¢%) > Hilenght (S(Fy ® F) — S(Fo & E, S(Fy))

We now finish the proof of Theorem [I.I] This follows the proof of proposition
3.2 in [12].

Proposition 5.6.
G—cat(E, ¢*) = 00

Proof. Let F, be an increasing sequence of finite dimensional linear G-subspaces
of E such that F' = UF,, is infinite dimensional. as in [I2], the 7%, -length of the
inclusion

S(Fo @ F,) — S(Fo @ E, S(Fy))

becomes arbitrarily large as n tends to infinity.

The proper G-ANR S(E) satisfies the hypothesis of lemma

Hence there is an element w € 7% (EG) satisfying conditions 1 to 3 in let
v and v, be the images of W along the homomorphism induced by the universal
maps S(Fp @ E) — EQ, respectively S(Fy & Fn) — EG). Since the diagram
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%
In

m%(S(Fy @ Fy,) 7%(S(Fy @ E), S(Fp))

1% (S(Fo & E)

commutes up to homotopy, v, € im(j¥), and proposition yields that for any k
there is an n with %, — lenght j,, > k.
O

6. CONCLUDING REMARKS

Paraphrasing Willem, [39], page 3 Minimax-Type Theorems usually consist of
different parts:

e Deformation lemma using some pseudo-gradient vector field.

e Construction of Palais-Smale typical sequences, which converge either due
to some a priori compactness condition, or which give critical points using
additional a posteriori information, typically topological intersection prop-
erties, like the intermediate value theorem, the Borsuk-Ulam theorem,
degree notions, etc.

In this work, the proof given by Bartsch-Clapp Puppe was adapted using a
Borsuk-Ulam-Type Theorem, which may be deduced from[5.5]and[5.3] The problem
of classifying the groups satisfying equivariant Borsuk-Ulam-Type theorems has
deserved particular attention [I0], [22], among others.

Let G be a discrete, linear group which acts properly and linearly on finite
dimensional representation spheres SV. Define the Borsuk-Ulam function bg(n) as
the maximal natural number k such that if there exists a G-map SV — SW where
dimV > n, then dimW > k

Problem 6.1. Classify all linear, discrete groups satisfying

lim bg(n) = oo
n—oo
as in [10], [22], and in this work, condition[I.2} the answer should involve restric-
tions for the number of primes dividing the cardinality of the isotropy groups.

Remark 6.2 (Topological Noncompact Groups of Symmetry). In the context of
Hamiltonian Systems, some proper actions of non-compact Lie groups appear [36].
Equivariant Cohomotopy Theory has been extended in [7], [9] for these class of
symmetries. The use of Equivariant Algebraic Topology, particularly Equivariant
Cohomotopy may be useful. However, in this context, the Segal Conjecture (which
was the main homotopy theoretical input of theorem [I.I} crucially in the proof of
the Borsuk-Ulam-type result) is not true, as it is not even true for compact Lie
groups, see [19], [13].

Remark 6.3 (Equivariant Degree Notions for Infinite Discrete Groups). In [7],
an equivariant degree notion for proper actions of discrete group is defined. This
assigns to a quadruple (E, F, T, c) consisting of locally trivial G- Hilbert bundles
over a proper, cocompact G-CW complex, a fibrewise Fredholm operator T and
a fibrewise compact nonlinearity satisfying the property that the map T, + ¢, :
E, — F, defined on the fibers F,, F,, over each point x is proper, an element in
the equivariant cohomotopy 7{;(X), as introduced in definition
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