
EQUIVARIANT K-THEORY OF CENTRAL EXTENSIONS AND

TWISTED EQUIVARIANT K-THEORY: SL3Z AND St3Z.
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Abstract. In this work, we compare twisted Equivariant K-theory of SL3Z
with untwisted equivariant K-Theory of a central extension St3Z. We compute
all twisted equivariant K-theory groups of SL3Z, and compare with previous

work on the equivariant K- Theory of BSt3Z by Tezuka and Yagita.

Using a universal coefficient theorem by the authors, the computations
explained here give the domain of Baum-Connes assembly maps landing on

the topological K-theory of twisted group C∗-algebras related to SL3Z, for

which a version of KK-Theoretic Duality studied by Echterhoff, Emerson and
Kim is verified.

1. Introduction

In this note, we compare versions of twisted equivariant K-theory with respect
to a discrete group G, and untwisted equivariant K-theory of a universal central
extension of G.

Given a discrete group G, a proper G-CW complex X and a cohomology class
α in the third Borel cohomology group H3(X ×G EG,Z), twisted equivariant K
theory, denoted by αK∗G(X) was defined in [BEJU14].

Specializing to the classifying space EG of proper actions of G and performing
the Borel construction EG ×G EG gives a model for BG and thus all twistings
agree with elements in the cohomology groups H3(BG,Z).

In the case of a discrete group G (compare [Moo64], [Moo68]), a class α ∈
H3(BG,Z) = H2(BG,S1) determines a central extension

1→ S1 → G̃α
pα→ G→ 1.

The space EG with the G̃α-action given by precomposition with pα is a model

for the classifying space of proper actions of G̃α, denoted by EG̃α. We compare

the abelian groups K∗
G̃α

(EG̃α) and αK∗G(EG).

We pay specific attention to the groups SL3Z and St3Z, related by a a central
extension of the form

1→ Z/2→ St3Z→ SL3Z→ 1.

The integral cohomology of both groups St3Z, and SL3Z has been extensively
studied in [Sou78], where also a model for the classifying space for proper actions
ESL3Z was constructed. In third degree, the cohomology groups are finitely gen-
erated, 2-torsion, and generated by classes u1, u2 in the case of SL3Z and a single
class w1 in the case of St3Z.

We describe the restriction of the classes u1 and u2 to the cohomology of finite
subgroups of SL3Z in Section 5, where also the relation to the generating class w1
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is stated. We follow these classes to their restrictions on finite subgroups of St3Z,
which are covers 2 to 1 of finite subgroups of SL3Z.

It turns out that the torsion class u1 + u2 represents the central extension

1→ Z/2Z→ St3Z
p→ SL3Z→ 1,

and its restriction to finite groups H ≤ G gives a model for Schur covering groups
of H:

1→ Z/2Z→ p−1(H)→ H,

(However, more finite subgroups appear in St3Z that are not a Schur covering group
for any finite group of SL3Z).

Thus, a cocycle representing u1 + u2 and the central extension satisfy the hy-
potheses of the following Theorem (4.4 )

Theorem. Let G be a discrete group and let α ∈ Z2(G;S1) be a cocycle taking
values in Z/nZ. Consider the extension associated to α

1 // Z/nZ // Gα
ρ

// G // 1.

Denote by EG a model for the classifying space of proper actions and notice that
the action of Gα via ρ on EG exhibits the later space as a model for EGα.

Then, the map ρ gives an isomorphism of abelian groups between the Bredon
cohomology groups of EG with coefficients in the α-twisted representation ring and
the Bredon cohomology groups of EGα with coefficients in the 1-central group rep-
resentation Bredon module ( defined in 4.2). In symbols,

H∗(EG;RGα )
ρ∗−→ H∗(EGα;RGα1 ).

We use the (Bredon) cohomological description to feed a spectral sequence con-
structed to compute twisted equivariant K-theory which was constructed in [BV14].
The input of the Spectral sequence are Bredon Cohomology groups with coefficients
in twisted representations, as briefly introduced in Section 2. The spectral sequence
is seen to collapse at the E2-term and the twisted equivariant K-theory groups are
determined.

• (Theorem 6.1) The twisted equivariant K-theory groups with respect to
u1 are as follows:

u1K0
SL3Z(ESL3Z) ∼= Z⊕13 u1K1

SL3Z(ESL3Z) = 0.

• (Theorem 6.3) The twisted equivariant K-theory groups with respect to
u2 are as follows:

u2K0
SL3Z(ESL3Z) ∼= Z⊕7, u2K1

SL3Z(ESL3Z) = 0.

• (Theorem 6.9) The twisted equivariant K-theory groups with respect to
u1 + u2 are as follows :
u1+u2K0

SL3Z(ESL3Z) ∼= Z⊕5, u1+u2K1
SL3Z(ESL3Z) ∼= Z/2Z.

Using the Universal Coefficient Theorem for Bredon cohomology with coefficients
in twisted representations, Theorem 1.13 in [BV14], the previous groups are verified
to be isomorphic to some equivariant K-Homology groups with coefficients defined
in terms of Kasparov KK-Theory groups in Section 7, Theorem 7.2. This extends
and generalizes work by Sánchez-Garćıa in [SG08] in the untwisted setting.

A version of the Baum-Connes Conjecture with coefficients, [CE01] relates these
groups to the topological K-theory of twisted group C∗-algebras. We see that the
input of the Baum Connes map with coefficients given by the twistings u1, u2 and
u1 + u2 satisfy a version of KK-theoretic Duality studied in [EEK08], and verified
in [BV14] for the twist u1.
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The result is interpreted in terms of twisted equivariant K- theory of the clas-
sifying space BSL3Z using results by Tezuka and Yagita [TY92], the Atiyah-Segal
Completion Theorem 4.4 on page 611 of [LO01].

This work is organized as follows: In Section 2, we introduce Bredon (Co)-
homology, focusing on coefficients in twisted representations. In Section 3, we re-
view spectral sequences relating Bredon cohomology groups to versions of twisted
equivariant K-theory. Section 4 deals with the proof of Theorem 4.4, relating
twisted equivariant K-theory and untwisted K-theory which is equivariant with
respect to a central extension coding the twist. Section 5 describes cohomological
information determining the twists, as well as some misunderstandings in the litera-
ture concerning the universal central extension of SL3Z and St3Z, see 5.3. Section
6 deals with the computations in Bredon cohomology. Finally, Section 7 gives
interpretations of the results as computations of twisted equivariant K-homology
related to versions with coefficients of the Baum-Connes Conjecture, as well as
computations of the complex K theory of the classifying space BSt3Z by Tezuka
and Yagita.

Acknowledgements. The first author thanks the support of a CONACYT Post-
doctoral fellowship. The second author thanks the support of a UNAM Postdoctoral
Fellowship.

The first author thanks Prof. Pierre de la Harpe for enlightening correspondence
related to the difference between St3Z and the universal central extension of SL3Z.

Both authors thank an anonymous referee for making crucial suggestions about
both the presentation and the mathematical content of this note, particularly the
suggestion of the material in section 4, which helped the authors to identify a
mistake in a previous version of this work.

2. Bredon (co)-homology

We recall briefly some definitions relevant to Bredon homology and cohomology,
see [MV03] for more details. Let G be a discrete group. A G-CW-complex is a
CW-complex with a G-action permuting the cells and such that if a cell is sent
to itself, this is done by the identity map. We call the G-action proper if all cell
stabilizers are finite subgroups of G.

Definition 2.1. A model for EG is a proper G-CW-complex X such that for any
proper G-CW-complex Y there is a unique G-map Y → X, up to G-homotopy
equivalence.

One can prove that a proper G-CW-complex X is a model of EG if and only if
the subcomplex of fixed points XH is contractible for each finite subgroup H ⊆ G.
It can be shown that classifying spaces for proper actions always exist.

Let OrFIN (G) be the orbit category of finite subgroups of G; a category with
one object G/H for each finite subgroup H ⊆ G and where morphisms are given
by G-equivariant maps. There exists a morphism φ : G/H → G/K if and only if
H is conjugate in G to a subgroup of K.

Definition 2.2 (Bredon chain complex). Let X be a proper G-CW-complex. The
contravariant functor C∗(X) : OrFIN (G) → Z − CHCOM assigns to every ob-
ject G/H the cellular Z-chain complex of the H-fixed point complex C∗(X

H) ∼=
C∗(MapG(G/H,X)) with respect to the cellular boundary maps ∂∗.

We will use homological algebra to define Bredon cohomology.
A contravariant coefficient system is a contravariant functor M : OrFIN (G) →

Z−MODULES. Given a contravariant coefficient system M , the Bredon cochain
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module CnG(X;M) is defined as the abelian group of natural transformations of
functors defined on the orbit category Cn(X)→M . In symbols,

CnG(X;M) = MorFunct(OrFIN (G),Z−MODULES)(Cn(X),M)

Given a set {eλ} of orbit representatives of the n-cells of the G-CW complex X,
and isotropy groups Hλ in G of the cells eλ, the abelian groups CnG(X,M) satisfy:

CnG(X,M) =
⊕
λ

HomZ(Z[eλ],M(G/Hλ))

with one summand for each orbit representative eλ. They afford a differential
δn : CnG(X,M) → Cn+1

G (X,M) determined by ∂∗ and pullback maps M(φ) :
M(G/Hµ)→M(G/Hλ) for morphisms φ : G/Hλ → G/Hµ.

Definition 2.3 (Bredon cohomology). Let M be a contravariant coefficient system.
The Bredon cohomology groups with coefficients in M , denoted by H∗G(X,M) are
the cohomology groups of the cochain complex

(
C∗G(X,M), δ∗

)
.

A covariant coefficient system is a covariant functor N : OrFIN (G) → Z −
MODULES. Let N be a covariant coefficient system and X be a proper G-CW-
complex. Dually to the cohomological situation, one can define the Bredon homol-
ogy groups with coefficients in N . We denote these by HG

∗ (X,N). Details can be
found in pages 14-15 of [MV03].

Bredon (co)-homology with coefficients in twisted representations.

Definition 2.4. Let K be a finite subgroup in the discrete group G. Let V be a
complex vector space and S1 be the unit circle in the complex numbers. Given a
cocycle α : K ×K → S1 representing a class in H2(BK,S1) ∼= H3(BK,Z), an α-
twisted representation is a function to the general linear group of V , P : K → Gl(V )
satisfying:

P (e) = 1

P (x)P (y) = α(x, y)P (xy).

The Grothendieck group of isomorphism classes of α-twisted representations is
called the α-twisted representation group and it is denoted by Rα(K)

Two α, α′-twisted representations are isomorphic if the cocycles α, α′ are coho-
mologous in H2(BK,S1).

Definition 2.5. Let H be a finite group and let α ∈ Z2(H,S1) be a cocycle. Recall
that the α-twisted Complex group algebra CαH is generated as a complex vector
space by the elements {h | h ∈ H}. The multiplication is given by the following
formula on representatives:

h1h2 = α(h1, h2)h1h2,

and extended C-linearly to define a complex algebra structure on CαH.

It is a consequence of Theorem 3.2 in page 112 , Volume 2, part 1 of [Kar94],
that the K0 group of the α- twisted complex group algebra CαH agrees with the
α-twisted representation group Rα(H).

We define a contravariant and a covariant coefficient system for the family FG =
FIN of finite subgroups agreeing on objects by using the K0-group of the twisted
group algebra, using restriction to define the contravariant functoriality, and using
induction to define the covariant functoriality.
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Definition 2.6. Let G be a discrete group and let α ∈ Z2(G,S1) be a cocycle. Let
i : H → G be an inclusion of a finite subgroup H.

Define Rα on objects G/H by

Rα(G/H) := K0(Ci
∗α(H)) ∼= Ri∗(α)(H).

Let φ : G/H → G/K be a G-equivariant map, we denote by Rα?(φ) : Rα|(H)→
Rα|(K) the induction of α-twisted, representations for the covariant functor. For

the contravariant functor, we denote by Rα?(φ) : Rα|(K)→ Rα|(H) the restriction
of α-twisted representations.

Definition 2.7. Let G be a discrete group, let X be a proper G-CW complex,
and let α ∈ Z2(G,S1) be a cocycle. The α-twisted Bredon (co)-homology groups
of X are the Bredon (co)-homology groups with respect to the functors described
in Definition 2.6.

Remark 2.8. Notice the role of the family of finite groups in definition 2.7. More
generally, one can define Bredon (co)-homology groups for a family F of subgroups
which contains the isotropy groups of a G-CW complex X, and a functor F →
Z−MODULES. Since we are dealing with proper actions on G-CW complexes, we
can concentrate on Bredon cohomology for the family of finite subgroups.

3. Spectral sequences for Twisted Equivariant K-Theory.

Twisted equivariant K-theory for proper and discrete actions has been defined
in a variety of ways. For a torsion cocycle α ∈ Z2(G,S1), it is possible to define
it in terms of finite dimensional, so called α-twisted vector bundles, as for example
in [Dwy08]. This is not possible for twistings of infinite order, and the general
approach of [BEJU14] or C∗-algebraic methods are needed.

Definition 3.1. Let α ∈ Z2(G,S1) be a normalized torsion cocycle of order n for
the discrete group G, with associated central extension

0→ Z/n→ Gα → G.

An α-twisted vector bundle is a finite dimensional Gα-equivariant complex vector
bundle such that Z/n acts by multiplication with a primitive n-th root of unity. The
α-twisted, G-equivariant K-theory groups αK0

G(X) are defined as the Grothendieck
groups of the isomorphism classes of α-twisted vector bundles over X.

Given a proper G-CW complex X, define αK−nG (X) as the kernel of the induced
map

αK0
G(X × Sn)

incl∗→ αK0
G(X).

The α-twisted equivariant K-theory catches information relevant to the class of
twistings coming from the torsion part of the group cohomology of the group, in
the sense that the K-groups are zero for cocycles representing non-torsion classes.
In contrast, the approach discussed in [BEJU14] overcomes this difficulty.

As noted in [BEUV13], there is a spectral sequence connecting the α-twisted
Bredon cohomology and the α-twisted equivariant K-theory of finite proper G-
CW complexes. When the twisting is given by a torsion element of H3(BG,Z),
this spectral sequence is a special case of the Atiyah-Hirzebruch spectral sequence
for untwisted G-cohomology theories constructed by Davis and Lück [DL98]. In
particular, it collapses rationally.

Theorem 3.2 ([BEUV13]). Let X be a finite proper G-CW complex for a discrete
group G, and let α ∈ Z2(G,S1) be a normalized torsion cocycle. Then there is a
spectral sequence with
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Ep,q2 =

{
Hp
G(X,R?

α) if q is even

0 if q is odd

so that Ep,q∞ ⇒ αKp+q
G (X).

4. S1-central extensions and torsion cocycles.

Definition 4.1. Let 1 → Z/nZ → H̃ → H be a central extension. Let k ba a
natural number with 0 ≤ k ≤ n. Let V be a a complex vector space. A k-central
representation of H̃ is a map H̃ → Gl(V ), where the generator t ∈ Z/nZ acts by
multiplication by e2πik/n.

Definition 4.2. The k-central representation group of H̃, denoted by Rk(H̃), is

the Grothendieck group of isomorphism classes of k-central representations of H̃.

The k-central representation group is a contravariant coefficient system. Given
a discrete group G̃, we denote by R?

k the functor

R?
k : OrFIN (G̃)→ Z−MODULES

G̃/H̃ 7→ Rk(H̃).

Lemma 4.3. Let G be a discrete group and let α ∈ Z2(G;S1) be a torsion cocycle
of order n. Then,

• There exists a cocycle γ with values on Z/n ⊂ S1, which is cohomologous
to α.

• There exists a central extension of the form

1 // Z/nZ // Gα
ρ

// G // 1.

With the property that for each finite group H ≤ G, the 1-central represen-
tation group R1(ρ−1(H)) is isomorphic to the α |H- twisted representation
ring αR(H) as an abelian group.

• Moreover, this extends to a natural transformation of contravariant func-
tors defined over the orbit category of G,

T : αR? ∼= R?
1 ◦ ρ

which consists of group isomorphisms on each orbit.

Proof. • Let α ∈ Z2(G;S1) be a torsion cocycle of order n. Then αn is
cohomologous to the trivial cocycle, i.e there is a cochain t ∈ C1(G,S1)
with αn = δt.

Define a cochain u ∈ C1(G,S1) by u(g) = (t(g))−
1
n . The cocycle γ =

α · δu is again torsion of order n. The cocycle γ takes values in Z/nZ and
it is cohomologous to α.

• We use the Z/nZ-valued cocycle γ to define a group structure on the set
G × Z/nZ, and obtain a central extension of G by Z/nZ, denoted by Gα
(the notation being justified by the fact that α is cohomologous to γ).

Let σ be the generator of Z/nZ and 0 ≤ i ≤ n− 1. The multiplication
on the group Gα is given on elements (g, σi) by

(g, σj) · (h, σi) = (gh, α(g, h)σj+i),

thus defining a central extension

1 // Z/nZ // Gα
ρ

// G // 1.
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• Let H be a finite subgroup of G. Given a torsion cocycle α, consider the
central extension

1→ Z/nZ→ Gα
ρ→ G→ 1,

which was constructed in the previous part.
Let β : H → Gl(V ) be an α-representation. We define the 1-central

representation T (H) as the isomorphism class determined by the map
ρ−1(H) → Gl(V ) defined on elements (h, t) ∈ H × Z/nZ by t · (β(t, h)),
where we consider t ∈ Z/nZ ⊂ S1 and · denotes complex multiplication.

This defines a group homomorphism

T : αR(G/H)→ R1(Gα/ρ
−1(H)).

An inverse to the homomorphism T is given by assigning to the 1-central
representation ε : H̃ → GL(V ) the projective representation κ : H →
GL(V ) given by κ(h) = ε(h, 1). One checks that this is a γ-representation,
where γ is the cocycle with values on Z/nZ constructed in the first part.

• Let H and K be finite subgroups of G. The map ρ : Gα → G defines a
functor

OrFIN (G)
ρ∗−→ OrFIN (Gα)

G/H 7→ Gα/ρ
−1(H)

between the orbit categories with respect to the family of finite subgroups.
We will analyze the behaviour of the functor T with respect to restric-

tion.
Let φ : G/H → G/K be a G-equivariant map. Recall that such a map is

determined up to G-conjugacy by an inclusion H → K of finite subgroups
of G.

Given an α-projective representation β : H → GL(V ), the following
diagram is commutative

K // H
β

// GL(V )

ρ−1(K) //

ρ

OO

ρ−1(H)

ρ

OO

T (β)

99ttttttttt

,

where the unlabelled arrow denote inclusions.
Hence, the functor T is compatible with restrictions and thus defines a

natural transformation of contravariant functors over the orbit category.
�

Theorem 4.4. Let G be a discrete group and let α ∈ Z2(G;S1) be a cocycle taking
values in Z/nZ. Consider the extension associated to α

1 // Z/nZ // Gα
ρ

// G // 1.

Denote by EG a model for the classifying space of proper actions and notice that
the action of Gα via ρ on EG exhibits the later space as a model for EGα.

Then, the map ρ gives an isomorphism of abelian groups between the Bredon
cohomology groups of EG with coefficients in the α-twisted representation ring and
the Bredon cohomology groups of EGα with coefficients in the 1-central group rep-
resentation group. In symbols,

H∗(EG;RGα )
ρ∗−→ H∗(EGα;RGα1 ).
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Proof. Fix a G-cellular structure of EG. Associate to each equivariant cell in EG
of the form G/H ×Dn a cell in EGα of the form Gα/ρ

−1(H)×Dn.
Consider the cellular cochain complex of EG. In degree n, it has the form

CnG(EG,M) =
⊕
λ

HomZ(Z[eλ], αR(G/Hλ)).

From 4.3, this term is isomorphic (via ρ∗) to

CnG(EG,M) =
⊕
λ

HomZ(Z[eλ],R1(Gα/ρ
−1(Hλ)))

and the isomorphism commutes with the cellular boundary, thus determining a
chain isomorphism

C∗(EG; αR?)
ρ∗−→ C∗(EGα;R?

1),

which induces an isomorphism in Bredon cohomology. �

Corollary 4.5. Let G be a discrete group and let α ∈ Z2(G;S1) be a cocycle taking
values in Z/nZ. Consider the extension associated to α

1 // Z/nZ // Gα
ρ

// G // 1.

Then, there exists an isomorphism of abelian groups
αK∗G(EG) ∼= K∗Gα(EGα),

between the α-twisted, G-equivariant K-Theory and the untwisted Gα-equivariant
K-theory of the classifying spaces for proper actions EG = EGα.

Proof. From Theorem 4.4, the Bredon cohomology groups are all isomorphic. The
spectral sequence 3.2 lets us conclude the desired isomorphism.

�

5. Twistings in SL3Z and St3Z.

The cohomology of SL3Z. We recall the analysis of the cohomology of SL3Z in
[BV14]. Soulé proved in [Sou78] that the integral cohomology of SL3Z only consists
of 2 and 3-torsion. The 3-primary part is isomorphic to the graded algebra

Z[x1, x2]/〈3x1, 3x2〉
with both generators in degree 4.

The two-primary component is isomorphic to the graded algebra

Z[u1, . . . , u7]

with respective degrees 3, 3, 4, 4, 5, 6, 6, subject to the relations

2u1 = 2u3 = 4u3 = 4u4 = 2u5 = 2u6 = 2u7 = 0

u7u1 = u7u4 = u7u5 = u7u6 = u2u5 = u2u6 = 0

u2
7 + u7u

2
2 = u3u4 + u1u5 = u3u6 + u3u

2
1 = u3u6 + u2

5 = 0

u1u6 + u4u5 = u0
3u

2
4 + u2

6 = u5u6 + u5u
2
1 = 0

The twistings in equivariant K-theory are given by classes in H3(SL3Z,Z) all of
which are 2-torsion. For this reason, we shall restrict to the two-primary compo-
nent (we indicate this with the subscript (2)) in integral cohomology. In order to
have a local description of these classes, we describe the cohomology of some finite
subgroups inside SL3Z.

The finite groups of SL3Z include S4, the symmetric group in four letters, D4,
the dihedral group of order 8, the dihedral group of order 12, D6, as well as the
group of order two denoted by C2.
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Theorem 4 in page 14 of [Sou78], gives the following result: For all n ∈ N there
exists an exact sequence of abelian groups

0→ Hn(SL3Z)(2)
φ−→ Hn(S4)(2)⊕Hn(S4)(2)⊕Hn(S4)(2)

δ−→ Hn(D4)⊕Hn(C2)→ 0

where φ is given by restrictions (see [Sou78][2.1(b), Cor.]) and δ by the system of
embeddings

SL3Z

S4

66mmmmmmmmmmmmmmm
S4

OO

S4

hhQQQQQQQQQQQQQQQ

D4

i2

``BBBBBBBB i1

<<xxxxxxxx
C2

j1

bbFFFFFFFF j2

>>}}}}}}}}

.

IfR is as in Proposition 4 in [Sou78], the image of the morphism φ : H∗(SL3Z)(2) →
H∗(S4)(2) ⊕ (i∗1)−1(R), is the set of elements (y, z) such that j∗2 (y) = j∗1 (z). From
the paper of Soulé, we know that H∗(S4)(2) = Z[y1, y2, y3], with 2y1 = 2yz = 4y3 =

y4
1 + y2

2y1 + y3y
2
1 = 0, and, (i∗1)−1(R) = Z[z1, z2, z3], with 2z1 = 4z2 = 2z3 =

z2
3 + z3z

2
1 = 0. Furthermore j∗2 (y1) = t, j∗2 (y2) = 0, j∗2 (y3) = t2, j∗1 (z1) = 0,

j∗1 (z2) = t2, and j∗1 (z3) = 0. Then the elements u1 = y2, u2 = z1, u3 = y2
1 + z2,

u4 = y2
1 + y3, u5 = y1y2, u6 = y1y3 + y3

1 and u7 = z3 generate φ(H∗(SL3Z)(2)).

In H3( ) the above discussion can be summarized in the following diagram

(5.1)

〈u1, u2〉 = H3(SL3Z)

i∗
uukkkkkkkkkkkkkk

i∗

��

i∗

))SSSSSSSSSSSSSS
i∗

,,XXXXXXXXXXXXXXXXXXXXXXXXX

〈z1〉 ⊆ H3(S4)

i∗1

��

〈z1〉 ⊆ H3(S4)

i∗2uukkkkkkkkkkkkkk
j∗1

��

〈y2〉 ⊆ H3(S4)

j∗2
uukkkkkkkkkkkkkkkkk

��

〈y2〉 ⊆ H3(D6)

vvmmmmmmmmmmmm

〈x3〉 ⊆ H3(D4)

��

0 〈y2〉 ⊆ H3(D2)

〈x3〉 ⊆ H3(D2).

In the Following section we will give explicit generators and analyze the depicted
embeddings in SL3Z.

The cohomology of St3Z. The following result was published as Theorem 8, page
17 in [Sou78], see also section 4 in [TY92], page 92 for a more precise account.

Theorem 5.2. • There exists a 3 torsion cohomology class ξ ∈ H4(St3Z,Z)
such that, for any St3Z-module A, the cup pruduct by ξ induces an iso-
morphism

· ∪ ξ : Hk(St3Z, A)→ Hk+4(St3Z, A)

as soon as k > 3 and k > 0 when A is constant.
• The ring H∗(St3Z,Z)2 is generated by elements w1, w2, w3 with respective

degrees 3, 4, 4, submitted to the defining relations 2w1 = 4w2 = 16w3 =
w1

2 = w1w2 = w2w3 = 0. Hence H1(St3Z,Z) = H2(St3Z,Z) = 0,
H3(St3Z,Z) = Z/2, H4(St3Z,Z) = Z/16⊕ Z/4⊕ Z/3.
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The cohomology of St3Z is seen to be completely determined by the classes
w1, w2, w3, as well as the periodicity class ξ. The classes wi restrict non-trivially
to some specific generators of the cohomology of finite subgroups. We will analyze
briefly how they relate to the generating classes u1, u2 of H3(SL3Z,Z). This is a
summary of the discussion in Lemma 9, and the proof of Theorem 8 in [Sou78].

The group St3(R) fits as a central extension 1→ Z/2→ St3(R)→ SL3(R)→ 1,
which restricts to a central extension of lattices 1→ Z/2→ St3Z→ SL3Z→ 1.

The maximal compact subgroups of St3(R), respectively SL3(R), are Spin3,
respectively SO(3). Hence, all finite subgroups of St3Z are contained in Spin3,
which is homeomorphic to the 3-dimensional sphere, thus the cohomology of all
finite subgroups in St3Z is 4-periodic. This is the origin of the periodicity class ξ.

The class w1 restricts nontrivially under a system of inclusions of finite groups

S∗4 S∗4

D∗4

>>}}}}}}}}

``AAAAAAAA

,

which covers the inclusions i1, i2 : D4 ⇒ S4 in SL3Z.
Thus, u1 maps to w1, and u2 maps to the trivial class under the map induced

by the universal cover St3Z→ SL3Z in cohomology.

Remark 5.3. [The universal central extension of SL3Z and St3Z.]
In the early literature on the Steinberg group (particularly Steinberg’ s Yale notes

[Ste68]), there is an unfortunate identification of St3Z with the universal central
extension of SL3Z. This mistake has been repeated in the literature [Sou78], 2.7
and [BdlH13], Example IV.

Denote by S̃Ln(Z) the universal central extension of SLn(Z). It fits in an exact
sequence

1→ H2(SLn(Z),Z)→ S̃Ln(Z)→ SLn(Z).

While there is an identification of Stn(Z) with S̃Ln(Z) for n ≥ 5, Van der Kallen
[vdK75] computes the Schur Multiplier H2(G,Z) for G SL3Z and SL4(Z), being
in both cases isomorphic to Klein’s Four group Z/2Z⊕ Z/2Z. Thus, the universal
central extension defining St3Z,

1→ Z/2Z→ St3Z→ SL3Z,

and the one defining S̃L3Z

1→ Z/2Z⊕ Z/2Z→ S̃L3Z→ SL3Z
are not the same. We thank Prof. Pierre De la Harpe for pointing this fact to us
on personal correspondence, leading to the correction of a mistake in a previous
version of this note.

6. Twisted K-theory of SL3Z

We use the following notations: {1} denotes the trivial group, Cn the cyclic group
of n elements, Dn the dihedral group with 2n elements and Sn the Symmetric group
of permutations on n objects.

There are four twistings for SL3Z up to cohomology, namely 0, u1, u2, u1 + u2,
continuing the work started in [BV14], we will calculate the twisted K-theory for
the twistings u2 and u1 + u2.

From diagram 5.1, one can see that the class u2 restricts nontrivially to two
copies of S4 corresponding to the stabilizer of the vertices v3 and v5. We recall the
SL3Z-CW-complex structure of ESL3Z as is given in [Sou78]. The labels O, Q,
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M , N , P of the vertices refer to the Figure 2 of [SG08], where also Soulés matrices
g1, . . . , g14 are recalled.

vertices 2-cells
v1 O g2, g3 S4 t1 OQM g2 C2

v2 Q g4, g5 D6 t2 QM ′N g1 {1}
v3 M g6, g7 S4 t3 MN ′P g12, g14 C2 × C2

v4 N g6, g8 D4 t4 OQN ′P g5 C2

v5 P g5 , g9 S4 t5 OMM ′P g6 C2

edges 3-cells
e1 OQ g2, g5 C2 × C2 T1 g1 {1}
e2 OM g6, g10 D3

e3 OP g6, g5 D3

e4 QM g2 C2

e5 QN ′ g5 C2

e6 MN g6, g11 C2 × C2

e7 M ′P g6, g12 D4

e8 N ′P g5, g13 D4

The first column is an enumeration of equivalence classes of cells; the second lists
a representative of each class; the third column gives generating elements for the
stabilizer of the given representative; and the last one is the isomorphism type of
the stabilizer. The generating elements referred to above are the same as in [BV14].

The twisting u1. The following theorem was proved in [BV14]:

Theorem 6.1.

u1K0
SL3Z(ESL3Z) ∼= Z⊕13,

u1K1
SL3Z(ESL3Z) = 0.

The twisting u2. In order to determine the twisted K-theory, we calculate Bredon
cohomology.

Determination of Φ1. In order to determine the morphism Φ1, we need to recall
the projective character tables of the groups where u2 restricts non trivially.

Here we denote by z the generator of the central copy of Z2. The linear character
table of a Schur covering group S∗4 is obtained on page 254, volume 3 of [Kar94] by
considering the group with presentation

S∗4 = 〈h1, h2, h3, z | h2
i = (hjhj+1)3 = (hkhl)

2 = z, z2 = [z, hi] = 1〉

1 ≤ i ≤ 3, j = 1, k ≤ l − 2

and the central extension

1→ 〈z〉 → S∗4
f→ S4 → 1
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given by f(hi) = gi, as well as the choice of representatives of regular conjugacy
classes as below.

S∗4 e z h1 h1h3 h1h2 h1h2z h1h2h3 h1h2h3z
ε1 1 1 1 1 1 1 1 1
ε2 1 1 −1 1 1 1 −1 −1
ε3 2 2 0 2 −1 −1 0 0
ε4 3 3 1 −1 0 0 −1 −1
ε5 3 3 −1 −1 0 0 1 1

ε6 2 −2 0 0 1 −1
√

2 −
√

2

ε7 2 −2 0 0 1 −1 −
√

2
√

2
ε8 4 −4 0 0 −1 1 0 0

where the first five lines are characters associated to S4, and ε6 is the Spin repre-
sentation.

We take the following presentation of Dihedral groups, Dn = 〈gi, gj〉 = 〈gi, gj |
g2
i = g2

j = (gigj)
n = 1〉

The dihedral group of order six has trivial 3 dimensional integer cohomology.
Thus its projective representations do agree with the linear ones. The dihedral
subgroups with n even in SL3Z are C2 × C2 = D2 and D4.

The following is the linear character table for Dn:

Dn 〈(gi, gj)k〉 〈gj(gigj)k〉
ξ1 1 1
ξ2 1 −1

ξ̂3 −1k −1k

ξ̂4 −1k −1k+1

φp 2 cos(2πpk/n) 0

where 0 ≤ k ≤ n− 1, p varies from 1 to (n/2)− 1 ( n even) or (n− 1)/2 ( n odd)
and the hat denotes a representation which only appears in the case n even. The
group D∗2 = 〈h1, h3, z〉 is isomorphic to the eight elements quaternion group, and a
linear character table is given by

D∗2 1 z {h1, h
−1
1 } {h3, h

−1
3 } {h1h3, (h1h3)−1}

η1 1 1 1 1 1
η2 1 1 1 −1 −1
η3 1 1 −1 1 −1
η4 1 1 −1 −1 1
η5 2 −2 0 0 0

A Schur cover of D4 can be taken as D8 = 〈a, x | a4 = x2 = e, xax−1 = a−1〉,
whose character table is:

D8 e a4(= z) a2 a a3(= az) x ax
λ1 1 1 1 1 1 1 1
λ2 1 1 1 1 1 −1 −1
λ3 1 1 1 −1 −1 1 −1
λ4 1 1 1 −1 −1 −1 1
λ5 2 2 −2 0 0 0 0

λ6 2 −2 0
√

2 −
√

2 0 0

λ7 2 −2 0 −
√

2
√

2 0 0

The relevant inclusions among stabilizers are the following. We give a conjugacy
representative appearing in the corresponding character table when necessary.
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stab(e2)
i−→ stab(v3)

〈g6, g10〉 → 〈g6, g7〉
g6 7→ g6

g10 7→ g−1
7 g6g7

stab(e3)
i−→ stab(v5)

〈g6, g5〉 → 〈g5, g9〉
g6 7→ g−1

9 g5g9

g5 7→ g5

stab(e4)
i−→ stab(v3)

〈g2〉 → 〈g6, g7〉
g2 7→ g6g

2
7g6g

−1
7

stab(e5)
i−→ stab(v4)

〈g5〉 → q−1
2 · 〈g6, g7〉 · q−1

2

g5 7→ q−1
2 · g8 · q−1

2

stab(e6)
i−→ stab(v3)

〈g6, g11〉 → 〈g6, g7〉
g6 7→ g6

g11 7→ g7g6g
−1
7 g6g7 ∼ g6

stab(e6)
i−→ stab(v4)

〈g6, g11〉 → 〈g6, g8〉
g6 7→ g6 = x
g11 7→ (g6g8)2 = a2

stab(e7)
i−→ stab(v3)

〈g6, g12〉 → q−1
1 · 〈g6, g7〉 · q1

g6(= x) 7→ q−1
1 · (g6g

2
7g6) · q1 ∼ g2

7

g12(= ax) 7→ q−1
1 · g6 · q1 ∼ g6

stab(e7)
i−→ stab(v5)

〈g6, g12〉 → 〈g5, g9〉
g6 7→ g−1

9 g5g9

g12 7→ g2
9

stab(e8)
i−→ stab(v4)

〈g5, g13〉 → q−1
2 · 〈g6, g8〉 · q2

g5 7→ q−1
2 · g8 · q2

g13 7→ q−1
2 · g6 · q2

stab(e8)
i−→ stab(v5)

〈g5, g13〉 → 〈g5, g9〉
g5 7→ g5

g13 7→ g5g
2
9g5 ∼ g2

9

Using the above inclusions and elementary calculations with characters, particu-
larly the rectification procedure, Theorem 1.7 in [BV14], we obtain a matrix of size
34 × 33 representing the morphism Φ1. The matrices representing the restrictions
among stabilizers are the following. The signs corresponding to the coboundary
map as in [SG08].

e1 e2 e3

−1 0 0 0 −1 0 0 −1 0 0
0 −1 0 0 0 −1 0 0 −1 0

v1 −1 −1 0 0 0 0 −1 0 0 −1
−1 0 −1 −1 −1 0 −1 −1 0 −1
0 −1 −1 −1 0 −1 −1 0 −1 −1

e1 e4 e5

1 0 0 0 −1 0 −1 0
0 1 0 0 0 −1 0 −1

v2 0 0 1 0 0 −1 −1 0
0 0 0 1 −1 0 0 −1
0 0 1 1 −1 −1 −1 −1
1 1 0 0 −1 −1 −1 −1

e2 e4 e6 e7

0 0 1 1 1 −1 −1 0
v3 0 0 1 1 1 −1 0 −1

1 1 1 2 2 −2 −1 −1
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e5 e6 e8

v4 1 1 1 −1 0
1 1 1 0 −1

e3 e7 e8

0 0 1 1 0 1 0
v5 0 0 1 0 1 0 1

1 1 1 1 1 1 1

The elementary divisors of the matrix representing the morphism φ is 1 repeated
12 times. The rank of this matrix is 12.

Determination of Φ2. The relevant inclusions among stabilizers are the following.
We give a conjugacy representative appearing in the corresponding character table
when necessary.

stab(t3)
i−→ stab(e6)

〈g12, g14〉 → q−1
1 · 〈g6, g7〉 · q1

g12 7→ q−1
1 · g6 · q1

g14 7→ q−1
1 · g11 · q1

stab(t3)
i−→ stab(e7)

〈g12, g14〉 → 〈g6, g12〉
g12 7→ g12 = ax
g14 7→ g12(g6g12)2 = xa

stab(t3)
i−→ stab(e8)

〈g12, g14〉 → 〈g5, g13〉
g12 7→ g13(g5g13)2 = xa
g14 7→ (g5g13)2 = a2

stab(t4)
i−→ stab(e8)

〈g5〉 → 〈g5, g13〉
g5 7→ g5 = x

stab(t5)
i−→ stab(e6)

〈g6〉 → (q1q2)−1 · 〈g6, g12〉 · (q1q2)
g6 7→ (q1q2)−1 · (g6g11) · (q1q2)

stab(t5)
i−→ stab(e7)

〈g6〉 → 〈g6, g12〉
g6 7→ g6

Using the above inclusions, an elementary calculation yields a matrix of size
33 × 12 representing the morphism Φ2. The matrices representing the restrictions
among stabilizers are the following.

t1 t4
1 0 1 0

e1 0 1 0 1
0 1 1 0
1 0 0 1

t1 t5
−1 0 1 0

e2 0 −1 0 1
−1 −1 1 1

t4 t5
−1 0 −1 0

e3 0 −1 0 −1
−1 −1 −1 −1

t1 t2
e4 1 0 1

0 1 1

t2 t4
e5 −1 1 0
−1 0 1

t2 t3 t4 t5
e6 2 1 0 0 0 0

t3 t5
e7 −1 1 1
−1 1 1

t3 t4
e8 1 1 1

1 1 1
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The elementary divisors of the matrix representing the morphism φ is 1,repeated
7 times. The rank of this matrix is 7.

Determination of Φ3. The morphism Φ3 is given by blocks which are represented
by the following matrices

T1

t1 −1
−1

T1

t2 1

T1

t3 −1
−2

T1

t4 1
1

T1

t5 −1
−1

We have the Bredon cochain complex

0→ Z⊕19 Φ
u2
1−−→ Z⊕19 Φ

u2
2−−→ Z⊕8 Φ

u2
3−−→ Z→ 0.

Using the information concerning ranks and elementary divisors of Φu2
i , we ob-

tain

(6.2) Hp
SL3Z(ESL3Z,Ru2

) = 0, if p > 0, H0
SL3Z(ESL3Z,Ru2

) ∼= Z⊕7.

Since the Bredon cohomology concentrates at low degree, the spectral sequence
described in section 3.2 collapses at level 2 and we conclude

Theorem 6.3.

u2K0
SL3Z(ESL3Z) ∼= Z⊕7,

u2K1
SL3Z(ESL3Z) = 0.

The twisting u1+u2. Now we continue with the calculation of u1+u2KSL3Z(ESL3Z).
Notice that the classes u1 and u2 are disjoint, i.e they do not restrict simultane-
ously to a non-zero element in the cohomology of any subgroup of SL3Z. This
observation and diagram 5.1 lead to the following.

Remark 6.4. The matrix Φu1+u2
1 corresponding to the twisting u1 + u2 can be

obtained as:

e1 e2 e3 e4 e5 e6 e7 e8

v1 u1 u1 u1 0 0 0 0 0
v2 u1 0 0 u1 u1 0 0 0
v3 0 u2 0 u2 0 u2 u2 0
v4 0 0 0 0 u2 u2 0 u2

v5 0 0 u2 0 0 0 u2 u2

Where a ui in position (j, k) means that we take the corresponding submatrix
of Φui1 associated to the inclusion stab(ej)→ stab(vk).

This matrix has size 14× 16 and it has elementary divisors (1, 1, 1, 1, 1, 1, 1, 1, 2)
and its rank is 9.

Remark 6.5. The matrix Φu1+u2
2 corresponding to the twisting u1 + u2 can be

obtained as:
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t1 t2 t3 t4 t5
e1 u1 0 0 u1 0
e2 u0 0 0 0 u0

e3 0 0 0 u0 u0.
e4 u0 u0 0 0 0
e5 0 u0 0 u0 u0

e6 0 u2 u2 0 u2

e7 0 0 u2 0 u2

e8 0 0 u2 u2 0

Where an ui in position (j, k) means that we take the corresponding submatrix of
Φui1 associated to the inclusion stab(tj)→ stab(ek) (u0 denotes the trivial cocycle).

This matrix has size 16 × 8 and it has 1 as elementary divisor 7 times and its
rank is 7.

Finally the matrix Φu1+u2
3 corresponding to the twisting u1 + u2 is the same as

the matrix Φu2
3 .

We have the following cochain complex

0→ Z⊕14 Φ
u1+u2
1−−−−−→ Z⊕16 Φ

u1+u2
2−−−−−→ Z⊕8 Φ

u1+u2
3−−−−−→ Z→ 0

Using the data of Φu1+u2
i concerning ranks and elementary divisors we obtain

Hp
SL3Z(ESL3Z,Ru1+u2) = 0, if p > 1,(6.6)

H0
SL3Z(ESL3Z,Ru1+u2

) ∼= Z⊕5(6.7)

H1
SL3Z(ESL3Z,Ru1+u2) ∼= Z/2Z.(6.8)

Since the Bredon cohomology concentrates at low degree, the spectral sequence
described in section 3.2 collapses at level 2 and we conclude

Theorem 6.9.
u1+u2K0

SL3Z(ESL3Z) ∼= Z⊕5,

u1+u2K1
SL3Z(ESL3Z) = Z/2Z.

7. Applications

Twisted equivariant K-Homology and the Baum-Connes Conjecture.
The Baum-Connes Conjecture [BCH94], [MV03] predicts for a discrete group G
the existence of an isomorphism

µi : KG
i (EG)→ Ki(C

∗
r (G))

given by the (analytical) assembly map, where C∗r (G) is the reduced C∗-algebra of
the group G.

More generally, given any G-C∗-Algebra, the Baum-Connes conjecture with co-
efficients predicts an isomorphism given by an assembly map

µi : KG
i (EG,A)→ Ki(AoG)).

Where KG
i (EG,A) is defined in terms of equivariant and bivariant KK-groups ,

KG
∗ (EG,A) = colim

G−compactX⊂EG
KK∗(C0(X), A)

and A o G denotes the crossed product C∗-algebra, X ⊂ EG is a cocompact
subcomplex. See [CE01], [Ech08] for more details.
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Definition 7.1. Let G be a discrete group. Given a cocycle ω ∈ Z2(G,S1),
an ω-representation on a Hilbert space H is a map V : G → U(H) satisfying
V (s)V (t) = ω(s, t)V (st).

Consider the quotient map U(H)→ PU(H) = U(H)/S1. Recall that the group
PU(H) is the outer automorphism group Out(K) of the C∗-algebra of compact
operators on H, denoted by K. The cocycle ω defines in this way an action of G
on K. This algebra is denoted by Kω.

Let G be a discrete group with a finite model for EG. Let ω ∈ Z2(G,S1)
be a cocycle and assume that the bredon cohomology groups H∗(EG,R−ω) are
concentrated in degrees 0 and 1.

Then, the Universal Coefficient Theorem for Bredon cohomology, Theorem 1.13
in [BV14] identifies the Bredon homology groups HSL3Z

∗ (ESL3Z,Rα) with the Bre-
don cohomology groupsH∗SL3Z(ESL3Z,Rα). By inspecting the Bredon cohomology
groups computed in 6.6, 6.2, the hypotheses of Corollary 7.3 in [BV14] are satisfied
for the twistings u2 and u1 + u2. This gives a duality isomorphism

ωK∗G(EG)→ KG
∗ (EG,K−ω).

Similar forms of Poincaré duality for proper and twisted actions have been stud-
ied by Echterhoff, Emerson and Kim in [EEK08] (Theorem 3.1) under assumptions
concerning the Baum-Connes conjecture, particularly the validity of the Dirac-
Dual-Dirac Method for the group G.

Theorem 7.2. The equivariant K-homology groups with coefficients in the G-C∗

algebra Kω are given as follows:

•
KSL3Z

0 (ESL3Z,Ku1) ∼= Z⊕13,

KSL3Z
1 (ESL3Z,Ku1

) = 0.

•
KSL3Z

0 (ESL3Z,Ku2) ∼= Z⊕7,

KSL3Z
1 (ESL3Z,Ku2

) = 0.

•
KSL3Z

0 (ESL3Z,Ku1+u2) ∼= Z⊕5,

KSL3Z
1 (ESL3Z,Ku1+u2

) ∼= Z/2Z.

Relation to the work of Tezuka and Yagita. In the case of finite order twists
given by cocycles α ∈ Z2(G,S1), the finite dimensional, α-twisted vector bundle
model of twisted equivariant K-theory is related to untwisted equivariant K-theory
groups in a way we will describe below.

Recall that given a normalized torsion cocycle α, there exists a central extension

1→ Z/n→ Gα → G→ 1

Let X be a G-connected G-CW complex. The α-Twisted K-theory groups are
seen to agree with the abelian group of Gα-equivariant, complex vector bundles for
which the generator of Z/n acts by complex multiplication by e2πin. There is a
splitting

(7.3) K0
Gα(X) ∼=

⊕
V ∈Irr(Z/n)

K0
Gα(X,V ),

where K0
Gα

(X,V ) is the subgroup of Gα-equivariant, complex vector bundles
for which the action of the central Z/n on each fiber restricts to the irreducible
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representation V , and the definition is extended to other degrees using the remarks
following definition 3.1.

Given a discrete group G and a normalized torsion cocycle α, Theorem 3.4
in [Dwy08] proves that the groups αK∗G(X) extend to a Z/2-graded equivariant
cohomology theory on the category of finite, proper G-CW pairs. This theory
restricts to equivariant K-theory [LO01] in the case of a trivial cocycle. The groups
αK∗G(X) have a natural graded K∗G(X)-module structure.

The multiplicative structure on the graded ring K∗G(EG) is well known. Recall
the definition of the augmentation ideal

IG = ker(K0
G(EG)

i∗→ K0
G(EG0)→ K0

{e}(EG0),

where EG0 → EG denotes the inclusion of the 0th-skeleton and the last map is the
restriction map associated to the trivial group {e} ⊂ G.

The following result is a generalization of the Atiyah-Segal completion Theorem
and it is proved in part b) of 4.4 in [LO01], page 611.

Theorem 7.4. Let EG be the classifying space for proper actions.

• if EG has the homotopy type of a finite G-CW complex, then there is an
isomorphism

K∗(BG) ∼= K∗G(EG)ÎG ,

where the right hand side denotes the completion with respect to the
ideal IG.

Specializing to the case of St3Z, the topological K-theory ring K∗(BSt3Z) is
known after computations by Tezuka and Yagita using Brown Peterson spectra
and its Conner-Floyd isomorphism, Corollary 4.7 in page 93 of page [TY92], which
we recall:

Theorem 7.5. Localized at the prime 2, the topological K-theory of BSt3Z is given
as follows:

• K0(BSt3Z) = Z6
2̂
⊕ Z(2)

• K1(BSt3Z) = Z2̂,

where Z(2) is the localization at 2, and Z2̂ denotes the 2-adical completion of the
integers.

Putting toghether Theorems 6.9, 7.4, and 7.5 one obtains:

Corollary 7.6. The completion of the equivariant K-theory groups K∗G(ESt3Z)
computed in 6.9 with respect to the augmentation ideal ISt3Z is given as follows:

• K0
G(ESt3Z)ÎSt3Z

= Z6
2̂
⊕ Z(2)

• K1
G(ESt3Z)ÎSt3Z

= Z2̂,
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