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Resumen. Probamos un teorema de representabilidad de Brown en el con-
texto de espacios sobre una categoŕıa. Discutimos dos aplicaciones a la repre-
sentabilidad de teoŕıas de cohomoloǵıa, con énfasis en cohomologia de Bredon
con coeficientes locales.

Palabras y frases clave. Representabilidad de Brown, Espacios sobre una cate-
goŕıa, cohomoloǵıa de Bredon con coeficientes locales. .

In this note we present a proof of the Brown Representability Theorem in
the context of spaces over a category.

As an application of the representability result we describe an equivariant
generalization of Steenrod squares for Bredon cohomology with local coeffi-
cients, and describe induction structures.

There are several proofs of similar results in other contexts of transformation
groups. Matumoto outlined in [9] a proof of the result for topological compact
groups. In a slightly different context, L. Gaunce Lewis Jr. sketches in a slightly
different context the main steps to be done in chapter XIII of [10].

This work is organized as follows: in section 1 the basic properties of mod-
ules and spaces over a category are collected. In section 2, the representability
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2 NOÉ BARCENAS

theorem 18 is proved and in section 3 the naturality of the representing objects
are analized. Section 4 deals with the mentioned aplications.

This work was supported by the Sonderforschungsbereich 878 in Münster
and the Hausdorff Center for Mathematics in Bonn.

1. Spaces and Modules over a Category and Cohomology Theories

We refer the reader to [3] for further reference and for the proof of the results
in this section. All spaces have the compactly generated topology, in the sense
of [11].

Definition 1. Let C be a small category. A covariant (contravariant) pointed
C-space over the category C is a covariant (contravariant) functor C −→ Spaces
to the category of compactly generated, pointed spaces.

Example 2. Let E be the category with two objects s, t and morphisms i :
s→ t, p : t→ s such that p ◦ i = ids. An Ex- space, compare [5], is a covariant
functor X : E → Spaces to the category of compactly generated, Hausdorff
spaces. The space B = X(s) is called the base space, E = X(t) is the total
space and the maps X(p) : E → B,X(s) : B → E are called the projection and
the section, respectively.

Example 3. Let G be a group. Consider the category G consisting of only
one object c where the morphisms are the elements of G and multiplication is
composition. A contravariant (covariant) functor X : G→ Spaces is equivalent
to to giving a a compactly generated, pointed space X := X(c) and a right
(left) action of G leaving the basepoint fixed.

Example 4. Let F be a family of subgroups of the discrete group G closed
under intersection and conjugation. The orbit categoy Or(G,F) has as objects
homogeneous spaces G/H for H ∈ F , a morphism is a G-equivariant map
F : G/H −→ G/K. If X is a pointed G-space, we define the contravariant
Or(G,F)-space associated to X to be the functor G/H 7−→ XH . The covariant
Or(G,F)-space associated to X is the functor G/H 7→ G/H+ ∧G X.

A C-map f : X → Y between C- spaces is a natural transformation consist-
ing of continuous maps.

Let I+ be the constant C-space assigning to each object the interval [0, 1]
with an added disjoint base point. A homotopy of pointed C- maps f0, f1 : X →
Y is a map of C-spaces H : X ∧ I+ → Y which restricted to X ∧{j}+ gives the
maps fj for j = 0, 1.

A C-map i : A → X is said to be a cofibration if it has the homotopy
extension property.

The following definition extends the notion of a CW -complex to pointed
spaces over a category.
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SPACES OVER A CATEGORY 3

Definition 5. Let C be a small category. A pointed C-CW complex is a con-
travariant C-space together with a filtration

X0 ⊂ X1 ⊂ . . . = Xn

such that X = colimnXn and each Xn is obtained from the Xn−1 by a
pushout of maps consisting of pointed maps of C-spaces of the form∐

i∈In morC(?, ci)+ ∧ Sn−1

��

// Xn−1

��∐
i∈In morC(?, ci)+ ∧Dn // Xn

Where the space mor(?, ci) carries the discrete topology and + denotes the
addition of a disjoint basis point to the space.

Definition 6. Let f : X → Y be a map between C-spaces. f is said to be
n-connected (or a weak homotopy equivalence) if for all object c ∈ C, the map
of spaces f(c) : X(c)→ Y (c) is n-connected (weak homotopy equivalence).

We need the following version of the Whitehead Theorem,easily obtained
as a translation to the pointed setting from Theorem 3.4 in [3], page 222.

Theorem 7. Let f : Y → Z be a pointed map of C-spaces and X be a pointed
C-space. The map on homotopy classes of maps between C-spaces induced by
composition with f is denoted by f∗ : [X,Y ]C → [X,Z]C. Then:

• f is n-connected if and only if f∗ is bijective for any pointed C-CW com-
plex with dim(X) < n and surjective for any free C-CW complex with
dim(X) = n.

• f is a weak homotopy equivalence if and only f∗ is bijective for any pointed
C-CW complex X.

There exists a pointed C-CW approximation of every pair of pointed C-
spaces as it is easy to obtain by modifying Theorem 3.7 in [3], page 223 to the
pointed setting.

We present two useful constructions for spaces over a category. They are an
instance of ends and coends in category theory. Well known constructions like
geometric realizations and mapping spaces give examples of coends.

Definition 8. Let X be a contravariant, pointed C-space over C and let Y be
a covariant pointed C-space over C. Their tensor product X ⊗C Y is the space
defined by ∐

C∈Obj(C)

X(C) ∧ Y (C)/ ∼

where ∼ is the equivalence relation generated by (xφ, y) ∼ (x, φy).
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4 NOÉ BARCENAS

Definition 9. Let X and Y be pointed C-spaces of the same variance. Their
map space homC(X,Y ) is the space of natural transformations between the
functors X and Y , topologized as subspace of the product of the spaces of
pointed maps ΠC∈Ob(C)Map(X(C), Y (C)).

Given a covariant (contravariant) C-space X and a covariant functor F :
C → D, the induction with respect to F is the D-space is given by

F∗X = X ⊗
C

morD(F (?), ??)+

respectively
F∗X = morD(??, F (?))+ ⊗

C
X

Given a contravariant (covariant) D-space the restriction to F , F ∗X is the
composition X ◦ F . Both induction and restriction are functorial, in the sense
that a morphism of C-spaces (i. e., a natural transformation) f : X → Y induces
morphisms F∗(f) : F∗X → F∗Y , F ∗(f) : F ∗X → F ∗Y given by f ⊗ id, f ◦ F
in the covariant case and id⊗

C
f , respectively f ◦ F in the contravariant case.

Induction and restriction satisfy adjunctions, which are described in Lemma
1.9 in page 208 in [3].

Lemma 10. Given a C-space X, a covariant functor F : C → D and a D-space
Y , there are natural adjunction homeomorphisms

• homD(F∗X,Y )→ homC(X,F
∗Y );

• F∗X ⊗
D
Y → X ⊗

C
F ∗Y ;

• Y ⊗
D
F∗X → F ∗ ⊗

C
X;

for a C-space and a D-space Y of the required variance.

The following definition contains a set of axioms for C-cohomology theories.

Definition 11. Let C be a small category. A reduced C-Cohomology theory
is a sequence of weak C-homotopy invariant, contravariant functors HnC : C-
Pairs→ Z−Mod, together with natural transformations

δn(X,A) : HnC (A)→ Hn+1
C (X,A)

σn(X,A) : HnC (X)→ Hn+1
C (Σ(X))

(where Σ(X,A) denotes the objectwise reduced suspension) satisfying
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• The boundary homorphisms fit into a long exact sequence

· · · → HnC (A)
δn(X,A)−→ Hn+1

C (X,A)
p∗−→ Hn+1

C (X)
i∗−→ Hn+1

C (A)→ · · ·

• For any wedge ∨Xi of pointed C-spaces, the inclusions Xi → ∨Xi induce
an isomorphism

H∗C(∨iXi) ∼= ΠiH∗C(Xi)

• For any pair (X,A) the homomorphisms σn(X,A) are isomorphisms.

Definition 12. An Ω-spectrum is a sequence of pointed spaces E = (En)n∈Z
together with structure maps σn : En ∧ S1 −→ En+1, such that the adjoint
maps ΩEn+1 −→ En are homotopy equivalences. A strong map of Ω-spectra
f : E −→ F is a sequence of pointed maps fn : En −→ Fn compatible with
the structure maps. We denote by SPECTRA the category of Ω-spectra and
strong maps. Recall that the homotopy groups of a spectrum E are defined by

πi(E) = colim πi+k(Ek)

where the structure maps are given as follows:

πi+k(Ek)
∧id−→ πi+k+1(Ek ∧ S1)

σk∗−→ πi+k+1(Ek+1)

Definition 13. A contravariant (covariant) spectrum over the small category
C is a contravariant (covariant) functor E : C −→ SPECTRA.

Let us recall the following

Definition 14. Let (X,A) be a C-pair of the same variance of the C-spectrum
E. We define the cohomology groups EpC(X,A) for a pair (X,A) with coefficients
in the spectrum E, by

EpC(X,A) = π−p(homC(X ∪A Cone(A),E))

If A = ∅, we just drop A from the notation above.

We now discuss an algebraic version of the previous constructions.

Definition 15. Let C be a small category and R be a commutative ring. A
contravariant (covariant) RC- module is a contravariant (covariant) functor
from C to the category of R-modules. A contravariant (covariant) RC-chain
complex is a functor from C to the category of R-chain complexes.
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6 NOÉ BARCENAS

A contravariant RC- module is free if it is isomorphic to an RC-module of
the shape ⊕

i∈I
R[morC(?, ci)]

for some index set I and objects ci ∈ C.
Given a covariant C-module A and a contravariant C-module B, the tensor

product is defined to be the R-module

⊕
c∈Ob(C)

A(c)⊗B(c)� ∼

where ∼ is generated by the typical tensor relation mf ⊗ n = m⊗ fn.

Given two RC-modules A B of the same variance, the module

homRC(A,B)

is the Z-module of natural transformations of functors from C to R-modules.

The following construction will be needed later:

Definition 16. Given a category C, the canonical C-cellullar approximation
of the constant functor {•} is defined to be the contravariant C-space which
assigns to an object c in C, the geometric ralization of the category under c ,
Bc ↓ C , where c ↓ C is the category where the objects are morphisms ϕ : c→ c0
and a morphism between ϕ0 : c → c0 and ϕ1 : c → c1 is a morphism ψ in C
such that ψ ◦ ϕ0 = ϕ1.

Fix an object c, and denote by Bc ↓ C the classifying space of the cate-
gory under c. The contravariant, free ZC-chain complex CZ

∗ (C) is defined as
the cellular Z-chain complex of the canonical C-cellular approximation of the
contstant functor {•}. In simbols

CZ
∗ (c) = C∗(Bc ↓ C)

Definition 17. Given a C-space (X,A) and a C-Z module M of the same vari-
ance, the n-th C-cohomology of (X,A) with coefficients in M , Hi

ZC((X,A);M)
is the n-th cohomology of the C-cochain complex obtained by taking the Z-
module of ZC maps between the cellular C-chain complex of a C-CW approxi-
mation (X

′
, A
′
)→ (X,A) and M . in symbols:

Hi
ZC((X,A);M) := Hi(homZC(C∗(X

′
, A
′
),M))

In the case of the category Or(G), the Or(G) cohomology with coefficients
in an Or(G)-module is known as Bredon cohomology [2].
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2. Representability

In this section we will prove:

Theorem 18. Let H∗C : C−Pairs→ Z−Mod be a C-cohomology theory defined
on contravariant C-spaces, in the sense of Definition 11. There exists a con-
travariant C- Ω-spectrum EHC and a natural transformation of C-cohomology
theories

HnC (X) −→ [X,EHC (n)]C

consisting of group isomorphisms.

We introduce the notion of a double sided map cylinder in the context of
(pointed) C-spaces.

Definition 19. Let f, g : X → Y be two pointed maps between pointed C-
spaces. A double sided mapping cylinder for f and g is a pointed C-space Z
together with a natural transformation p : Y → Z with the property that for
any map j : Y → W satisfying [j ◦ f ] = [j ◦ g] , one has a map j

′
: Z → W

such that [j] = [j
′ ◦ p].

There exists a concrete model for the double sided mapping cylinder of two
pointed C-maps f, g : X → Z, g denoted by Cfg , and defined as the quotient
space

X ∧ I+
∐

Z/(x, 0) ∼ f(x) (x, 1) ∼ g(x) + ∧I+ ∼ +

An easy consequence of the exact sequence property for pairs in reduced
C-cohomology theories is the following fact.

Lemma 20. Let T : C − Spaces −→ Z−Mod be a C-cohomology theory. Let
j : Y → C be the canonical inclusion of into the double sided mapping cylinder
for the C-maps f, g : X → Y . Then, for every element w ∈ T (Y ) satisfying
that T [g](w) = T [f ](w) in T (X), there exists a v ∈ T (C) with T [j](v) = w.

The following result is crucial for the representability theorem proved in
this section. One usual reference is [8], page 61.

Lemma 21 (Yoneda). Let T : C −→ Set be a contravariant functor defined on
the small category C with values in the category of sets. Then, for every object
c there is a bijection

{Natural transformations morC(?, c)
·→ T (?)} ∼= {Elements in T (c)}

Moreover, the bijection is given by assigning to a natural transformation
t : morC(?, c)→ T the image of the map induced by the identity t(ic) : T (c)→
T (c). The inverse map is given by assigning to an element u ∈ T (c) the natural
transformation ϕu : mor(?, c)→ T (?) which assigns a morphism f : d→ c the
evaluation T (f)(u) ∈ T (d).
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8 NOÉ BARCENAS

Definition 22. A functor T : C → Set naturally equivalent to morC( , c) for
a fixed object c ∈ C is called representable. An element u ∈ T (c) associated to
idc under such a natural correspondence is called universal element. In case of
a functor T defined on the category of C-spaces, and a C-space Y representing
T , the C-space Y is said to be a classifying object.

Definition 23. Let T be a contravariant, C-homotopy invariant functor
defined on the category of C-pairs, and taking values in the category of
abelian groups.

• T is said to have the exact sequence property if the following holds: For

any sequence of C-pairs, A
i→ X

j→ (X,A) the induced sequence

T (X,A)
T (j)→ T (X)

T (i)→ T (A)

is exact.

• T is said to satisfy the wedge axiom if for any family of C-spaces Xi,
the inclusions Xi → ∨Xi induce abelian group isomorphisms T (∨Xi) ∼=∏
T (Xi).

Notice in particular that this is the case for a C-cohomology group in a fixed
degree T := HqC(,∅).

Definition 24. Given a functor T satisfying the exact sequence property and
the wedge axiom defined in the category of contravariant C-spaces and a C-
space Y , an element u ∈ T (Y ) is said to be n-universal if the function ϕu :
[morC(?, c)+ ∧ Sq, Y )]C → T (morC(?, c)+ ∧ Sq) given by the Yoneda lemma is
an isomorphism for q < n and an epimorphism for q = n and all objects c ∈ C.

Lemma 25. Let Y be a C-space, let T be a functor satisfying the exact sequence
property and the wedge axiom. Pick up an element u ∈ T (Y ). Then, there is a
C-CW complex Y1 obtained by attaching pointed C-cells to Y and a 1-universal
element u1 ∈ T (Y1) with u1 |Y = u ∈ T (Y ).

Proof. We denote by Y1 = Y ∨α morC(?, c)+ ∧ S1 the space obtained by at-
taching a copy of the pointed 1-cell for every element α ∈ T (morC(?, c)+ ∧S1).

From the wedge axiom one gets T (Y1) ∼= T (Y ) × ΠαT (morC(?, c)+ ∧ S1).
Take the element u1 ∈ T (Y1) which maps under this equivalence onto (y, (α)).
Clearly, u1 |Y = u and notice that the natural transformation induced by u1

takes .
[S0 ∧morC(?, c)+, Y1]C → [S0, Y1(c)]+ = {•}

to the set T (S0 ∧morC(?, c)+) ∼= {•} bijectively for every object c.

The natural transformation [morC(?, c)+ ∧S1, Y ]C −→ T (morC(?, c)+ ∧S1)
is surjective. To see this, let α ∈ T (morC(?, c)+ ∧ S1). Let fα : morC(?, c)+ ∧
S1 −→ ∨αmorC(?, c)+ ∧ S1 be the inclusion. The class [fα] maps under the
transformation to α. �X
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Lemma 26. Given a C-space Y and an element u ∈ T (Y ), there is a space
Yn obtained by attaching pointed cells of dimension less or equal than n and an
n-universal element u′n ∈ T (Yn) with u′n |Y = u.

Proof. We assume inductively that we constructed Yn−1 with an element
u′n−1 with the above described property for n − 1 instead of n. As before,
for β ∈ T (morC(?, c)+ ∧ Sn), we consider a copy of morC(?, c)+ ∧ Sn and
we put Y

′

n = Yn−1 ∨ (∨βmorC(?, c)+ ∧ Sn). The wedge axiom gives T (Y
′

n) ∼=
T (Yn−1) × ΠβT (morC(?, c)+ ∧ Sn). We select the element u

′

n which maps to

(u
′

n−1, (β)) under this equivalence. As in the previous result, the correspond-

ing map ϕu′n : [morC(?, c)+ ∧ Sn, Y
′

n] −→ T (morC(?, c)+ ∧ Sn) is surjective.

We select a representative fα of every element α ∈ [morC(?, c)+ ∧ Sn−1, Y
′

n]
with ϕu′n(α) = 0 ∈ T (morC(?, c)+ ∧ Sn−1). We attach an n-cell of the type

morC(?, c)+ ∧Dn with fα as attaching map and obtain the space Yn.

The space Y
′

n together with the inclusion j : Y
′

n ↪→ Yn is a double sided

mapping cylinder for the diagram ∨αmorC(?, c)+ ∧ Sn−1
c−→−→
i
Y
′

n ↪→ Yn, where

i is the map given by fα on each summand α, and c is the map given by
∨fα. Notice that u

′

n satisfies T [c](u
′

n) = T [i](u
′

n). From Lemma 20, one gets
an element un ∈ T (Yn) satisfying un |Yn−1

= un−1. We claim that un has the
desired property.

The following diagram commutes

[morC(?, c)+ ∧ Sq, Yn−1]C
j∗|Y n−1

//

ϕun−1
))

[morC(?, c)+ ∧ Sq, Yn]C

ϕun
uu

T (morC(?, c)+ ∧ Sq)

With j∗ an isomorphism for q ≤ n − 2, since the cell structure in lower di-
mensions remains unaffected. Thus, in that range, ϕun−1

is an isomorphism,
as well as ϕun

. This is actually the situation for q = n − 1. The surjectivity
of the map is clear. Now, let f : morC(?, c)+ ∧ Sn−1 −→ Yn be a representa-
tive of an element in kerϕun . Because of the surjectivity of j∗, there is a map
α : morC(?, c)+ ∧ Sn−1 → Yn−1 such that j∗([α]) = f

Then, ϕun−1(α) = 0, and α represents one of the attaching maps used to
define Yn. It follows that j∗(α) = 0 and f is nullhomotopic. The surjectivity in
the case q = n is a consequence of the corresponding property for ϕu′n .

�X

Remark 27. Notice that the construction proposed here depends on the choice
of maps fαi

representing elements αi for T (morC(?, c)+∧Si), giving the attach-
ing maps to obtain Yi+1 out of Yi, as well as the subsequent choice of elements
β ∈ ker j∗ : T (Yi)→ T (Yi−1).
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Corollary 28. Given a C-space Y and an element u ∈ T (Y ), there is a C-CW
complex Y

′
obtained from Y by attaching cells, together with an ∞-universal

element u′ ∈ T (Y
′
) satisfying u

′ |Y = u.

Proof. From lemma 26, we get a sequence of spaces Yn, linked with maps
in : Yn −→ Yn+1, one each obtained form the previous one after an attachment
of pointed cells. The space Y = hocolim

n
Yn is a pointed C-CW-complex. We

get also n-universal elements un one each extending the previous one. From
lemma 20 for the pairs (Yn+1, Yn), there exists an element u ∈ T (Y ) satisfying
u |Yn

= yn. The morphism ϕu : [morC(?, c)+ ∧ Sq, Y ] −→ T (morC(?, c)+ ∧ Sq)
is an isomorphism for every q. �X

The following result analyzes uniqueness of the spaces obtained with this
construction

Proposition 29. Let Y and Y
′

be free C-CW complexes with ∞-universal
elements u ∈ T (Y ), u

′ ∈ T (Y
′
). Then there is a (weak) C-homotopy equivalence

h : Y −→ Y
′

Proof. Let Y0 = Y ∨Y ′ . From the wedge axiom one gets T (Y0) ∼= T (Y )×T (Y
′
).

There exists a unique element u0 ∈ T (Y0) being mapped into (u, u
′
) via the

wedge isomorphism and restricting to u0. From Corollary 28 we get a space
Y
′′

with an ∞-universal element u
′′
. We denote by j the composition of the

inclusion Y ↪→ Y0 ↪→ Y
′′
. In the commutative diagram

[morC(?, c)+ ∧ Sq, Y ]C

ϕ
u
′′

((

j∗
// [morC(?, c)+ ∧ Sq, Y

′′
]C

ϕu
vv

T (morC(?, c)+ ∧ Sq)

the descending arrows are isomorphisms. It follows that the homotopy sets are
isomorphic for every q. Then, as a consequence of Theorem 7 one gets a C-weak
homotopy equivalence Y → Y

′′
and hence a C-homotopy equivalence between

Y and Y
′
. �X

Finally, we state the following technical results, which are the last require-
ments to finalize the proof.

Lemma 30. Let (X,A) be a C-CW pair. Then, for a map g : A −→ Y , an
universal ∞-element u ∈ T (Y ) and an element v ∈ T (X) with T [g](u) = v |A,
there exists an extension f : X −→ Y with T [f ](u) = v

Proof. We consider X ∨Y and (v, u) ∈ T (X ∨Y ) under the canonical equiva-

lence. Then, if Z is a double mapping cylinder for the maps A
k→ X → X ∨ Y ,
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A
g→ Y → X ∨ Y with structural map j : X ∨ Y −→ Z, we get from

Lemma 20 an element w ∈ T (Z) satisfying T [j](w) = (v, u). We can apply
corollary 28 to obtain a pointed C-CW complex Y

′
obtained from Z and an

∞-universal element extending w. Due to proposition 29, there exists a map
h : Y

′ −→ Y being a C-homotopy equivalence. Now define f
′

as the composi-

tion X
i−→ X ∨ Y j−→ Z

i
′

−→ Y
′ h−→ Y and notice that the maps f

′ ◦ i and
g are homotopic, due to the property of double sided mapping cylinders. The
map A ↪→ X is a C-cofibration. In particular, if H is any homotopy between
f
′ ◦ k and g, the problem

X
i0

$$

f
′

%%

A

id∧i0 ""

i

<<

X ∧ I H̄
// Y

A ∧ I
k∧id

::

H

99

admits a solution H̄. We define f = H̄1 and T [f ](u) = v. �X

Proposition 31. ∞-universal elements are universal. That is, if Y is a C-
space, and u ∈ T (Y ) is an ∞-universal element, then ϕu induces a natural
isomorphism [X,Y ] ∼= T (X)

Proof. We prove that the morphism ϕu is surjective. Let v ∈ T (X). Then
we apply lemma 30 to the C- pair (X,+) and the map ρ : + −→ Y to get a
map f : X −→ Y with T [f ](v) = u. Now, let us prove the injectivity. Suppose
we have [g0], [g1] ∈ [X,Y ]C with ϕu([g0]) = ϕu([g1]). We consider the space
X
′

= X∧I+/{+}∧I+. Now we consider the subspace A = X∧∂I+/{+}∧I. A is
homeomorphic toX∨X. Define the map g : A −→ Y by g = g1∨g0. We consider
the element v

′
naturally assigned to (T [g0](u), T [g1])(u)) ∈ T (X) × T (X) ∼=

T (X ∨X) and u. We apply then lemma 30 to this situation. One gets a map
f : X

′ −→ Y extending g with the property that T [f ](u) = (T [g0](u), T [g1](u)).
Let ρ : X ∧ I+ −→ X

′
be the quotient map and define H : X ∧ I+ −→ X by

the composition f ◦ ρ. This gives a C-homotopy between g0 and g1. �X

LetH∗C be a C-cohomology theory and let αq ∈ HqC(mor(?, c)+∧S0) be an ar-
bitrary element. Consider the space W0 obtained as the wedge

∨
αq mor(?, c)+∧

Sq and let iαq : mor(?, c)+ ∧ Sq → W0 the inclusion of the summand in-
dicated by αq. Because of the wedge axiom, there exists an element u0 ∈
HqC(mor(?, c)+∧S0) such that i∗α(u0) = αq. Applying corollary 28 and proposi-
tion 29 to the element u0, the spaceW0 and the functorHqC gives a contravariant
C- space YHq

C
.
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The C-spaces (EHC (n)(c)) := YHn
C

obtained by the previous construction
is an Ω-C-spectrum. To check this, notice that for any object c, the natu-
rality of the transformation associates to the suspension isomorphism σX :
HqC(morC(?, c)) → Hq+1

C (ΣmorC(?, c)) a natural isomorphism of representable
functors

[morC(?, c)+, YHq
C
]C → [morC(?, c)+,ΩYHq+1

C
]C

It follows that there exists a weak C-homotopy equivalence YHq
C
→ ΩYHq+1

C
and hence the spaces are Ω-spectra.

This finishes the proof of Theorem 18

3. Natural transformations

In this section we will analize the behaviour of the previous construction under
natural transformations.

Definition 32. Let F : C → D be a a covariant functor between small cat-
egories, let H∗C and K∗D be C- respectively D- cohomology theories defined on
contravariant C, respectively D-spaces. Given integer numbers n, k , an opera-
tion of type (F,H,K, n, k) is a natural transformation

ΘX : KnD(F∗X) −→ HkC(X) of natural group homomorphisms, compatible
with long exact sequences, boundary maps and suspension isomorphisms. In
other words, for every C-map f : X −→ Y the following diagram commutes

HkC(X) HkC(Y )
f∗

oo

KnD(F∗X)

ΘX

OO

KnD(F∗(Y ))

ΘY

OO

Kn
D(F∗(f))
oo

And the diagram is compatible with long exact sequences, boundary operators
and suspension isomorphisms.

Lemma 33. Let Θ : K∗D(F∗ ) −→ H∗C( ) be an operation of type (F,H,K, r, r).
Then there is a celullar map FΘ : F ∗YKr

D
−→ YHr

C
, well defined up to C-

homotopy inducing Θ.

Proof. For simplicity, we denote the C- spaces YHr
C
, respectively YKr

D(F∗( )) by
YHC , respectively F ∗YKD . The last notation is justified by the fact that the C-
space F ∗YKr

D
has the same C-homotopy type as YHr

C(F∗( )) due to proposition
29 and the adjunctions in lemma 10.

We construct the map inductively on the cell skeleton. Let C be an object
in C. The map F : morC(?, c)+ → morD(F (?), F (c))+ assigning to a morphism
ψ in C the morphism F (ψ) gives a map FΘ0

:= f0 : F ∗Y 0
KD → Y 0

HC .

Revista Colombiana de Matemáticas, Edición para autores
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We assume inductively that we constructed natural transformations fq :=
FΘq : F ∗Y qKD −→ Y qHC for q = 1, . . . , n such that the diagrams

πq(Y
q
HC (c))

// HrC(morC(?, c)+ ∧ Sq)

πq(F
∗Y qKD (F (c)))

FΘq ∗

OO

// KrD(F∗(morC(?, c)+ ∧ Sq)

Θ

OO

commute.

Recall that in the proof of lemma 26 we used the intermediate space

Xq
H = Y q−1

HC

∨
α∈Hr

C(morC(?,c)+∧Sq)

morC(?, c)+ ∧ Sq

and group homomorphisms

αH : πq(X
q
HC (c)) −→ H

r
C(morC(?, c)+ ∧ Sq)

βK : πq(F
∗Xq
KD (F (c))) −→ KrD(F∗morD(?, c)+ ∧ Sq) obtained by the q-

universality of elements in HrC(Y
q
HC ), respectively KrC(F∗(Y

q
KC )) . We obtained

Y q+1
Hr
C

, respectively Y q+1
Kr
D

by attaching cells by means of the maps in the kernel of

these homomorphisms. Notice that our inductive hypothesis and the fact that
the operation is a group homomorphism imply that ker ΘmorC(?,c)+∧Sq ◦ βK ⊂
kerαK ◦ fq∗ , since the diagram above commutes. Let us define the map fq+1 as
the dotted arrow in the following diagram

∨βH(F ∗morC(?, c)+ ∧ Sq) //

��

∨βH(F ∗morC(?, c)+ ∧Dq+1)

��

∨αH(morC(?, c)+ ∧ Sq) //

gq|
55

��

∨αmorC(?, c)+ ∧Dq+1

gq

44

��

F ∗(Y qKD ) // F ∗(Y q+1
KD )

Y qHC
//

fq

55

Y q+1
HC

fq+1

44

where the map gq maps all wedge factors α to the factor β defined by the
homotopy class of the constant map morC(?, c)+∧Sq,→ YH with image on the
basis point .
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In this factor, the map gq is defined to be the map F ∧ id : morC(?, c)+ ∧
Dq+1 → morD(F (?), F (c))+ ∧Dq. This finishes the inductive definition of f .

�X

4. Equivariant cohomology theories and natural transformations.

The study of C-spaces and C-cohomology Theories was motivated by equivariant
algebraic topology, particularly examples 4 and 3. The notion of C-cohomology
theory and the notion of an operation generalize the notion of an induction
structure in equivariant cohomology theories, as well as some operations in
equivariant cohomology theories.

Definition 34. Let X be a pointed space with a base point preverving sction
of the discrete group G. Recall that a pointed G-CW complex structure on
(X,A) consists of a filtration of the G-space X = ∪0≤nXn, X0 = A together
with a choice of a G-fixed base point {•} ⊂ A and for which every space
is inductively obtained from the previous one by attaching cells in pushout
diagrams consisting of pointed maps∐

i S
n−1 ∧G/Hi+

//

��

Xn−1

��∐
iD

n ∧G/Hi+
// Xn

There exist functors ? : G−Spaces+ → Or(G)−Spaces+ and ˆ : Or(G)−
Spaces+ → G−Spaces+ between the categoies of pointed spaces over the orbit
category Or(G) and the category of pointed G-spaces. They assign to a G-space
the contravariant space of example 4 and to a contravariant Or(G)-space the
space X̂ := X ⊗

Or(G)
∇, where ∇ is the covariant Or(G)-space defined as G/H+

on every orbit G/H with the action of G induced from the left translation on
G/H.

These functors are adjoint and take pointed G-CW complexes to pointed
Or(G,F)-complexes, giving a bijection between cells of type G/H in Y and
pointed cells in the Or(G)- space Y ? based at the object G/H. Compare [3],
Theorem 7.4 in page 250 for the unpointed version.

Recall the notion of an Equivariant Cohomology Theory [6].

Definition 35. Let G be a group and fix an associative ring with unit R. A
G-Cohomology Theory with values in R-modules is a collection of contravari-
ant functors HnG indexed by the integer numbers Z from the category of G-
CW pairs together with natural transformations ∂nG : HnG(A) := HnG(A,∅) →
Hn+1
G (X,A), such that the following axioms are satisfied:
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(i) If f0 and f1 are G-homotopic maps (X,A)→ (Y,B) of G-CW pairs, then
HnG(f0) = HnG(f1) for all n.

(ii) Given a pair (X,A) of G-CW complexes, there is a long exact sequence

. . .
Hn−1

G (i)
→ Hn−1

G (A)
∂n−1
G→ HnG(X,A)

Hn
G(j)→ HnG(X)

Hn
G(i)→ HnG(A)

∂n
G→ Hn+1

G (X,A)
Hn+1(j)→ . . .

where i : A→ X and j : X → (X,A) are the inclusions.

(iii) Let (X,A) be a G-CW pair and f : A → B be a cellular map. The
canonical mal (F, f) : (X,A)→ (X ∪f B,B) induces an isomorphism

HnG(X ∪f B,B)
∼=→ HnG(X,A)

(iv) Let {Xi | i ∈ I} be a family of G-CW -complexes and denote by ji : Xi →∐
i∈I Xi the inclusion map. Then the map

Πi∈IHnG(ji) : HnG(
∐
i

Xi)
∼=→ Πi∈IHnG(Xi)

is bijective for each n ∈ Z.

Let α : H → G be a group homomorphism and X be a H-CW complex.
The induced space indαX, is defined to be the G-CW complex defined as the
quotient space G×X by the right H-action given by (g, x) ·h = (gα(h), h−1x).

An Equivariant Cohomology Theory consists of a family of G-Cohomology
Theories H∗G together with natural group homomorphisms

indα : HnG(indα(X,A)) −→ HnH(X,A)

for group homomorphisms α : H → G whose kernel acts freely on X satisfying
the following conditions:

(i) indα is an isomorphism whenever kerα acts freely on X.

(ii) For any n, ∂nG ◦ indα = indα ◦ ∂nG.

(iii) For any group homomorphism β : G→ K such that kerβ ◦ α acts freely
on X, one has

indα◦β = HnK(f1 ◦ indβ ◦ indα) : HnK(indβ◦α(X,A))→ HnH(X,A)

where f1 : indβ indα → indβ◦α is the canonical G-homeomorphism.
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(iv) For any n ∈ Z, any g ∈ G , the homomorphism

indc(g):G→G : HnG(ind)c(g):G→G(X,A))→ Hn
G(X,A)

agrees with the map HnG(f2), where f2 : (X,A) → indc(g):G→G(X,A)
sends x to (1, g−1x) and c(g) is the conjugation isomorphism in G.

We explain the relation of these notions to the naturality considerations in
the previous section.

In [7], Example 1.7 in page 1030, an equivariant cohomology theory is con-
structed given a contravariant functor E from the category of small groupoids
and injective homomorphisms to the category of Ω-spectra, under the assump-
tion that equivalences of groupoids are sent to weak equivalences of spectra.
The idea is the following. Given a G-set S, the transport groupoid GG(S) has
as objects the elements of S. The morphisms from s1 to s2 consists of the ele-
ments in G which satisfy gs0 = s1, composition comes from the multiplication
in G. By assigning to an homogeneous space G/H the transport groupoid we
obtain a covariant functor Or(G) → Groupoids. The equivariant cohomology
theory with coefficients in E is defined as

Hp
G(X,A,E) := π−p(homOr(G)(X

?
+ ∪
A?

coneA?
+,E ◦ GG))

The construction in Section 3 of a homotopy class of a weak map between
spectra realizing an operation defined on cohomology theories over different
categories gives a partial converse to this construction.

Corollary 36. Let H∗? be an equivariant cohomology theory and let G be a
discrete group. Let H∗Or(G) be the Or(G)-cohomology theory defined on Or(G)

spaces by applying to a Or(G) pair (X,A) a cellular approximation (X
′
, A
′
)→

(X,A), followed by the coalescence functor. In symbols:

H∗OrG(X,A) = H∗G( ̂(X ′ , A′))

For any p ∈ Z, the classifying object construction G 7→ YHp
Or(G)

(G/G) sends

a group isomorphism to a weak homotopy equivalence.

Proof. Let α : H → G be a group isomorphism. The induction structure of
H∗? , and the adjunctions in 10 give natural transformations of representable
functors

[α∗(morOr(H)(?, c))+ ∧ Sn, YHp
Or(G)

]Or(G)
// [morOr(H)(?, c)+ ∧ Sn, YHp

Or(H)
]Or(H)

[morOr(H)(?, c)+ ∧ Sn, α∗(YHp
Or(G)

)]Or(H)

OO
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consisting of isomorphisms. Moreover, these can be realized up to homotopy
by a Or(H)-map α∗YHp

Or(G)
→ YHp

Or(H)
as a consecuence of lemma 33. On the

other hand α induces homeomorphisms of Or(H)-spaces

morOr(H)(?, c)+ ∧Dr → morOr(G)(α(?), α(c))+ ∧Dr

which fit into a cellular map α : YHp
Or(H)

→ α∗YHp
Or(G)

which is seen to be

a weak Or(H)-equivalence inverse to the previous map. Evaluation at H/H,
respectively G/G gives a weak homotopy equivalence. �X

Remark 37. The construction in section 3 and the consequence in corollary
36 do not give a functor from the category of small groupoids to the category of
spectra and strong maps.All relevant maps, even the described weak equivalence
are only defined up to weak C-homotopy.

We will now introduce an example of a C-cohomology theory, Bredon coho-
mology with local coefficients. Bredon cohomology with local coefficients was
indroduced by Moerdijk and Svensson in [12], and with an equivalent approach
by Mukherjee and Pandey [13].

We describe some categories and notations which are relevant to this con-
struction.

Let X be a compactly generated, Hausdorff space. The category of equiv-
ariant simplices of X, denoted by ∆G(X) has as objects continuous maps
σ : G/H × ∆n → X, where ∆n = {(x1, . . . , xn) ∈ Rn | Σxi = 1 xi ≥ 0}
is the canonical n-simplex. A morphism in ∆G(X) between the objects σ1 :
G/H1 ×∆n → X and σ2 : G/H2 ×∆m → X consists of a pair (ϕ, α), where
ϕ : G/H1 → G/H2 is a G-equivariant map, α : ∆m → ∆n is a simplicial
operator and σ1 = σ2 ◦ (ϕ, α).

The equivariant fundamental category of X, πOr(G)(X) is the category
where the objects are G-maps xH : G/H → X and where a morphism consists
of a pair (ϕ, [H]) where ϕ : G/H1 → G/H2 is a G-map and [H] is the homo-
topy class of a G-homotopy H : I × G/H1 → X between xH1 and xH2 ◦ ϕ.
Notice the projection functor p : ∆G(X) → πOr(G)(X) given by assigning to
a higher dimensional simplex ∆n → X the restriction to the last n-th vertex
G/H × enn → X in a fixed ordering en0 , . . . e

n
n.

A local coefficient system with values in R-modules is a contravariant func-
tor M : πOr(G)(X) → R − Mod. Given a ring R, a discrete group G and a

G-space X, the singular chain complex of X, Csing
∗ (∆G(X)) is the free ∆G(X)-

chain complex which is given on every object C as the cellullar chain complex
of the canonical ∆G(X)-cellular aproximation of the constant functor {•}

Definition 38. Let G be a discrete group and X be a G-space. The Bredon
cohomology groups of X with coefficients in the local coefficient system M ,
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are defined to be the ∆G(X)-cohomology groups of the cochain complex of the
chain complex of natural transformations between the cellular chain complex of
the canonical ∆G(X)- cellullar approximation of the constant functor {•} and
the functor p∗M obtained by precomposing the functor M with the projection
functor p : ∆G(X)→ πOr(G)(X). In symbols,

Hn
Z∆G(X)(X,M) := Hn(homZ∆G(X)(C

sing
∗ (∆G(X)), p∗M))

Recall the category E of example 2. Consider a contravariant Or(G)× Eop-
space X. The contravariant Or(G)-space defined by restricting to the full sub-
category Or(G)× s is called the base of X. Given a local coefficient system M
on X, Basu and Sen [1] used equivariant versions of constructions of classifying
spaces of crossed complexes to promote the Or(G)-space X? to an Or(G)×Eop-
space with base denoted by ΦK(π, 1).

The following result is proved in Theorem 6.3 , page 24 in [1], and it is an
explicit approach to the representability of a particular C-cohomology theory.

Theorem 39. There exists a contravariant functor EMn : Or(G) × Eop →
Ω−SPECTRA with basis ΦK(π, 1) such that given a local coefficient system M
on X, the n-th Bredon cohomology groups with coefficients in a local coefficient
system M for a G-space X are classified by Or(G)× Eop- maps

[X?
+ΦK(π,1), E

M
n ]Or(G)×Eop

The previous theorem has the immediate consequence that Bredon coho-
mology with local coefficients is an Or(G) × Eop-cohomology theory. We will
examinate its natural transformations.

Steenrod operations ∪i : H∗Z∆G(X)(X,M) → H∗+iZ∆G(X)(X,M) on Bredon

cohomology with local coefficients were introduced by Ginot [4], Theorem 4.1
in page 246 for local coefficient systems, and with an alternative approach by
Mukherjee-Sen [14]. Steenrod operations induce natural transformations

Sqi : H∗Z∆G(X)(X,M)→ H∗+iZ∆G(X)(X,M)

which satisfy Cartan and Adem relations, generalize cup products, and Sqi(f) =
0 holds whenever f ∈ Hm

Z∆G(X)(X,M) with i > m.

Corollary 40. Let M be a local coefficient system and H∗ZOr(G)( ,M) be
Bredon cohomology with coefficients in M . The Steenrod square operations Sqk
correspond to Or(G)op × E-homotopy classes of Or(G)× E- maps

Sqk ∈ [YHZ∆G(X)n,M
, YHZ∆G(X)n+k,M

]Or(G)op×E

between the representing objects constructed either in theorem 18 or [1].

Revista Colombiana de Matemáticas, Edición para autores
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