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Abstract. In this article we propose a metric variation on the C0-version of

the Zimmer program for three manifolds.
After a reexamination of the isometry groups of geometric three-manifolds,

we consider homomorphisms defined on higher rank lattices to them and es-

tablish a dichotomy betweeen finite image or infinite volume of the quotient.
Along the way, we enumerate classification results for actions of finite

groups on three manifolds where available, and we give an answer to a metric
variation on topological versions of the Zimmer program for aspherical three-

manifolds, as asked by Weinberger and Ye, which are based on the dichotomy

stablished in this work and known topological rigidity phenomena for three
manifolds.

Using results by John Pardon and Galaz-Garćıa-Guijarro, the dichotomy for

homomorphisms of higher rank lattices to isometry groups of three manifolds
implies that a C0-isometric version of the Zimmer program is also true for

singular geodesic spaces closely related to three dimensional manifolds, namely

three dimensional geometric orbifolds and Alexandrov spaces.
A topological version of the Zimmer Program is seen to hold in dimension

3 for Alexandrov spaces using Pardon’s ideas.

1. Introduction

The question on the nature of group homomorphisms ρ : Γ→ Diff(M), between
a finitely generated group and the group of diffeomorphisms of an n-dimensional
smooth manifold, is interesting in many contexts. Particularly, in a series of ques-
tions and conjectures known as the Zimmer Program [Zimmer(1987)], [Fisher(2011)],
[Fisher(2020)], concerning on the question whether the group homomorphism can-
not have large image if the dimension of the manifold is small relative to the rank of
the group. As an example of this, in the recent result [Brown et al.(2020)Brown, Fisher, and Hurtado],
it is found that a homomorphism ρ : SLk+1(Z) → Diff(M), factorizes through a
finite group when k ≥ n − 2, or k + 1 ≥ n if additionally, the action is known to
preserve a finite volume form. This result is greatly generalized for other higher
rank semisimple lattices on [Brown et al.(2021)Brown, Fisher, and Hurtado].

The C0-version of the Zimmer Program, as suggested in [Weinberger(2011)],
and [Ye(2020)], [Ye(2019)], asks roughly for changing the category of manifolds
and morphisms in the Zimmer Program, from the smooth setting into a topological
setting, that is, by considering a group homomorphism from a finitely generated
group, and specifically a higher rank lattice, onto the group of homeomorphisms
within a prescribed category (topological, smooth, piecewise linear). The following
Conjecture is an example of a problem stated in this setting, found in [Ye(2020)]:
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Problem. Any group action of Sln(Z) with n ≥ 3 on a closed aspherical r- manifold
by homeomorphisms factors trough a finite group if r < n.

We propose the following variation on the C0-version of Zimmer’s program. Let
M be a three dimensional geometric manifold. Consider a group homomorphism
from a discrete group Γ to the group of isometries of M ,

ρ : Γ→ Isom(M),

What can be said about ρ?

It turns out that there exists a similar pattern for the relationship of finiteness
of the image of ρ to the growth of the rank when Γ is a lattice in a semisimple Lie
group.

Previous examinations of a related question, focused on homologically infinite
actions were performed in [Farb and Shalen(2000)]. The main conclusion, Theorem
1 in page 574 in loc.cit, is that the only homologically infinite actions of irreducible
lattices in semisimple Lie groups of real rank greater or equal than two on three
dimensional manifolds occur when the manifold is the three-dimensional torus, the
lattice is up to conjugacy a finite index subgroup of Sl3(Z), and the action is
isotypically standard.

Our main result below 1.3 gives a result which is valid for all Thurston geome-
tries based on the study of the isometry groups of three dimensional manifolds.
Moreover, the results stated for the isometry groups of three dimensional manifolds
imply results for the isometry groups of singular spaces closely related to the given
three manifold M , such as quotient orbifolds for the action of the lattice determined
by the group homomorphism, and a class of singular geodesic length spaces called
three dimensional Alexandrov spaces. In addition, the formulation for Alexandrov
spaces allows for a topological version of the Zimmer Conjecture.

We now explain in a more detailed fashion the content of the main result. Let
us begin by stating the content of the main result for three manifolds.

Among the three dimensional geometries, the most homogeneous ones are S3,
H3 and R3 and finite volume quotient of these models have either a finite group of
isometries, in the hyperbolic case, or a 3-dimensional group of isometries: Iso(S3),
respectively R3/Z3. The remaining five 3-dimensional homogeneous geometries
present a more flexible description of their isometry groups, in such cases we have
a fiber bundle structure

F → X → B,

where B is a two dimensional homogeneous geometry if X is one of H2×R, S̃L2(R)
or Nil; and B = R if X is either Sol or S2 × R. In this context, a discrete
group acting on the homogeneous space X, acts on the base of the corrresponding
fiber bundle, so that we can control the possible quotients of finite volume X by
understanding the projected action on B and this is given by the following general
dichotomy property:

Dichotomy 1.1. Let Γ be a discrete group of isometries of a any of the 3-

dimensional geometric manifolds H2 × R, S̃L2(R) or Nil; then either

• Γ projects to a discrete group of isometries of the base B of the fiber
bundle, or

• the orbifold X/Γ has infinite volume.
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Moreover, in the cases Sol and S2 × R, the projection to the base space is always
discrete. As a consequence of this dichotomy, it is possible to compute the isometry
groups of finite volume quotients of homogeneous 3-dimensional manifolds

Theorem 1.2. Let X be a simply connected, homogeneous 3-dimensional manifold
and let Γ be a discrete group of isometries of X, such that X/Γ has finite volume.
Then the isometry group Iso(X/Γ) has finitely many connected components, such
that its connected component of the identity is

• a closed subgroup of S1, if X is either H2 × R, S̃L2(R) or Nil;
• a closed subgroup of SO(3)× S1, if X is S2 × R;
• a closed subgroup of R3/Z3, if X = R3;
• a closed subgroup of SO(4), if X = S3.

Moreover, Iso(X/G) is finite if X is either H3 or Sol.

Remark: 1. One should be careful, as the isometry group of a quotient X/G
can differ a lot by changing the discrete subgroup G in the same geometry. As
an example of this, Iso(S3) = O(4) realizes the biggest isometry group, but there
are quotients S3/G such that the isometry group Iso(S3/G) is trivial. Check each
section to see examples and a more explicit description for the isometry groups of
the corresponding geometry.

The point of view adopted in this note allows us to ask for the nature of group
homomorphisms from finitely generated groups, in particular lattices, to the group
of isometries of singular spaces which are closely related to three manifolds.

The following result is a consequence of Theorem 1.2

Phenomenon 1.3. If Λ is a non-uniform higher rank lattice in a semisimple Lie
group without compact factors, such that Λ acts by isometries on a three dimen-
sional orbifold X as in Theorem 1.2, then the action factors through a finite group.

This phenomenon is the particular form that the Zimmer Program takes for
isometries of locally homogeneous three-dimensional orbifolds with finite volume,
this is a natural extension to the isometric setting of the Zimmer conjecture obtained
for example in [Brown et al.(2020)Brown, Fisher, and Hurtado].

A consequence of 1.3 and 1.2, is the positive answer to following metric variation
of problem 1,

Corollary 1.4. Any group action of Sln(Z) with n ≥ 3 on a closed aspherical r-
manifold by isometries factors trough a finite group if r < n.

We now explain the results for singular spaces obtained as a corollary of the
results for three dimensional manifolds and their isometry groups.

A fruitful point of view in geometry of singular spaces such as orbifolds and
geodesic metric spaces with synthetic notions of curvature has consisted in the
analogy, oposition, reduction, and comparison with the case of smooth manifolds.
There are many reasons for considering such generalizations, such as limit pro-
cesses in the Gromov-Hausdorff notion of convergence to yield Alexandrov spaces
[Burago et al.(2001)Burago, Burago, and Ivanov], and the conceptual generaliza-
tions of Cat(κ)- spaces and Gromov δ-hyperbolic spaces. An important motivation
comes directly from classification problems in both the singular setting and the
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manifold case, where there are examples for progresses in one of the two parts
which produce progress in the other one.

To mention some recent examples of reduction arguments let us recall in [Galaz-Garćıa et al.(2020)Galaz-Garćıa, Guijarro, and Núñez Zimbrón]
the proof of the geometrization of Alexandrov spaces characterizing sufficiently col-
lapsed Alexandrov spaces with finite volume as the orbifold spaces we considered
in Theorem 1.2, and in [Mecchia and Seppi(2019)] the proof of a version of the
Smale conjecture for spherical orbifolds. For examples of the comparison to man-
ifolds, rigidity results such as the ones related to the stable Cannon Conjecture
[Ferry et al.(2019)Ferry, Lück, and Weinberger], and the proof of the Borel conje-
ture for sufficiently collapsed Alexandrov spaces [Bárcenas and Núñez Zimbrón(2021)],
are a precedent to the argumentation of this work.

Finally, work by John Pardon originally oriented towards a proof of the Hilbert-
Smith conjecture for three manifolds [Pardon(2013a)] can be extended to the singu-
lar case in the setting of Alexandrov spaces because the proof of the Hilberth-Smith
conjecture [Repovs and Scepin(1997)] is reduced to a local behaviour(see theorem
36 below):

Theorem 2. If G is a locally compact, topological group, acting faithfully on a
three dimensional Alexandrov space by homeomorphisms, then G is a Lie group.

Finally, under the assumption of co-compact quotients, we have the following
result, which is proved in corollary 45

Corollary 3. Let X be a geometric 3-orbifold of finite volume, then X admits
an isometric action of a higher rank lattice Γ ⊂ G if and only if the group Iso(X)
contains the group SO(3). Moreover, the semisimple Lie group G is isotypic of type
SO(3) and the lattice is uniform.

One of the final outcomes of the research is the following question:

To what exent a condition of prescribed curvature in metric spaces,
such as the alexandrov condition, can be seen as a rigid structure, in the
sense of Gromov [Fisher(2011)]?
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3. Generalities on discrete groups of isometries

If X̃ is a complete, simply connected, Riemannian manifold and Γ ⊂ Iso(X̃) a
discrete subgroup of isometries, then X/Γ has the structure of a complete Riemann-

ian orbifold. The covering map ρ : X̃ → X satisfies the property that ρ(x) = ρ(y)

if and only if γx = y for some γ ∈ Γ. An isometry φ : X → X lifts to φ̃ : X̃ → X̃

such that ρ ◦ φ̃ = φ ◦ ρ and for every γ ∈ Γ and x ∈ X̃ we have

ρ ◦ φ̃(γx) = φ ◦ ρ(γx) = φ ◦ ρ(x) = ρ ◦ φ̃(x),

thus there exist γ′ ∈ Γ such that

φ̃(γx) = γ′φ̃(x),

that is φ̃ ◦ γ ◦ φ̃−1 = γ′ and φ̃ ∈ N = NIso(X̃)(Γ). This tells us that we have the

isomorphism
Iso(X) ∼= NIso(X̃)(Γ)/Γ.

Proposition 4. IfG is a Lie group and Γ ⊂ G is a discrete subgroup with associated
normalizer and centralizer subgroups

N = NG(Γ), Z = ZG(Γ),

then the connected components of N and Z coincide. Moreover, if Z0 denotes
such connected component, the projection π : N → N/Γ is a covering Lie group
homomorphism such π(Z0) ⊂ N/Γ is the connected component of the identity.

Proof. If gt ∈ N is a 1-parameter subgroup and γ ∈ Γ, then gtγg−t = γt is a
1-parameter group in Γ, but as Γ is discrete, γt = γ and this tells us that gt ∈ Z,
so that Z0 = N0. Now, N is a Lie group having Γ as a normal, discrete subgroup
so that the projection map

π : N → N/Γ

is a homomorphism of Lie groups and a covering map. In particular, π(N0) is a
connected, open Lie subgroup of the same dimension of N/Γ and thus it is the
connected component of the identity. �

We are interested in the particular case where X̃ is a homogeneous space, i.e.
its group of isometries acts transitively and X has finite volume. A general setting

where this is achieved is when we consider G = X̃ a simply-connected Lie group
with a right-invariant (or left-invariant) Riemannian metric and X = G/Γ, with
Γ ⊂ G a lattice subgroup (i.e. Γ is a discrete subgroup such that G/Γ has finite, left
G-invariant volume). As there is an embedding G ⊂ Iso(G), we have that NG(Γ) ⊂
NIso(G)(Γ), but it could happen that NG(Γ)/Γ is strictly smaller than Iso(G/Γ).
On the other hand, we can extend Γ to a discrete subgroup of Iso(G) which is not
completely contained in G, so that isometry group Iso(G/Γ) is decreased.

In the following sections, we will examinate this phenomenon in the Thurston
Geometries, and determine the possible isometry groups of the corresponding finite-
volume orbifolds.

4. Euclidean Geometry

Recall that a three manifold is Euclidean if it is locally isometric to the Euclidean
three dimensional space R3. The isometry group of the three dimensional space is
the semidirect product E(3) = R3 oO(3).
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Let Γ be a discrete subgroup of isometries E(3). It is a consequence of the
Bieberbach Theorems, as interpreted by Nowacki [Nowacki(1934)], that there exists
a free abelian group T of rank ≤ 3 and finite index in Γ.

End of proof of Theorem 1.2 for euclidean geometry. We will now verify the asser-
tion of theorem 1.2 for the isometry group of R3/Γ by examining the rank of the
translation subgroup T .

• If the rank of T is one, then Γ is a finite extension of Z, and R3/T is either
the interior of a solid torus of the interior of a solid Klein Bottle, depending
on the orientability, where the generator of T acts as a screwdriver isometry
(combination of a rotation around an axis and a translation along a parallel
direction). It follows that R3/T has infinite volume.

• If the rank of T is two, then R3/T is the total space of a line bundle over
either the torus or the Klein bottle, and R3/T has infinite volume.

• If the rank of T is three, then the isometry group of E(3)/Γ is a finite
extension of a rank three torus by a finite subgroup.

�

The classification of (topological) finite group actions on the torus by isometries
has been concluded by work of Lee, Shin and Yokura [Lee et al.(1993)Lee, Shin, and Yokura]
and Ha, Jo, Kim and Lee [Ha et al.(2002)Ha, Jo, Kim, and Lee].

It follows from the Bieberbach theorems that any topological action on the three
torus is topologically conjugated to an isometry; moreover, by the fact that the
three dimensional torus is sufficiently large in the sense of Heil and Waldhausen,
[Waldhausen(1968)], any homotopy equivalence is homotopic to a homeomorphism,
and any two homotopic homeomorphisms are isotopic.

4.1. Connected components. The isometry group of co-compact euclidean orb-
ifolds has been determined by Ratcliffe and Tschantz [Ratcliffe and Tschantz(2015)],
in Theorem 1 and Corollaries 1 and 2 in pages 46 and 47, which we state now for
later reference.

Theorem 4.1. The isometry group of a cocompact euclidean orbifold R3/Γ is a
compact Lie group whose identity component is a Torus of dimension equal the first
Betti number of the group Γ, which corresponds to the rank of the abelian group
Γ/[Γ,Γ].

To understand why a compact quotients R3/G could have as isometry group a
torus of smaller dimension than 3, we can observe at two examples in dimension
two:

Example 4.2. The group Z2 is a discrete subgroup of Iso(R2), such that has
the torus NR2(Z2)/Z2 ∼= R2/Z2 acting naturally by isometries, however the full
isometry group Iso(R2/Z2) ∼= (R2/Z2) oD4 is bigger.

Example 4.3. We may extend the previous example to the group Λ = Z2 oD4,
which is a discrete subgroup of Iso(R2), such that it is not completely contained in
R2 and produces a compact quotient R2/Λ, homeomorphic to the 2-sphere S2. To
compute the isometry group, we observe the contentions

NR2(Λ) = {(n/2, n/2 +m) : n,m ∈ Z} ⊂ NR2(Z2) = R2,



8 NOÉ BÁRCENAS AND MANUEL SEDANO-MENDOZA

and NIso(R2)(Λ) = Aut(Z2) oNR2(Λ) ∼= D4 oNR2(Λ), which gives us

NIso(R2)(Λ)/Λ ∼= (D4 oNR2(Λ))/(D4 × Z2) ∼= Z2.

This gives us a finite isometry group Iso(R2/Λ) ∼= Z2. Observe that if σ ∈ D4 and
v ∈ Z2, then the commutator of these elements is [σ, v] = σ(v) − v ∈ Z2 and we
can produce two linearly independent elements. Thus, [Γ,Γ] contains a lattice in
R2 and Γ/[Γ,Γ] is finite, verifying Theorem 4.1.

5. Nil-geometry

5.1. Riemannian geometry of the Heisenberg group. If F is a commutative
ring, denote by HF the group of 3 × 3 upper triangular matrices over F with 1 in
the diagonal, that is

HF =


 1 x z

0 1 y
0 0 1

 : x, y, z ∈ F

 .

The group HR is a Lie group called the three dimensional Heisenberg group that
fits into the exact sequence

1→ R→ HR → R2 → 1,

where R ⊂ HR is its center. The three matrices

e1 =

 0 1 0
0 0 0
0 0 0

 , e2 =

 0 0 0
0 0 1
0 0 0

 , e3 =

 0 0 1
0 0 0
0 0 0

 ;

determine a canonical basis of the tangent space at the identity TI(HR), so that
its translations by left-multiplications gives us a basis of left invariant vector fields
denoted by Xj with Xj(I) = ej . For a fixed element

g =

 1 x z
0 1 y
0 0 1

 ∈ HR,

the vector fields at Tg(HR) have expresions

X1(g) =

 0 1 0
0 0 0
0 0 0

 , X2(g) =

 0 0 x
0 0 1
0 0 0

 , X3(g) =

 0 0 1
0 0 0
0 0 0

 .

If we consider the global coordinates

R3 → HR, (x, y, z) 7→

 1 x z
0 1 y
0 0 1

 ,

then a vector v ∈ Tg(HR) decomposes as

v = v1e1 + v2e2 + v3e3 = v1X1(g) + v2X2(g) + (v3 − xv2)X3(g),

so that the left-invariant metric in HR having Xj(g) as an orthonormal basis is
given in this coordinates as ds2 = dx2 + dy2 + (dz − xdy)2. Being left-invariant,
this metric has HR as a subgroup of isometries given by left multiplication

Lg : HR → HR, Lg(h) = gh,
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for every g ∈ HR, but there are other isometries that don’t come from left multipli-
cation of HR, such isometries form a group isometric to the orthogonal group O(2)
generated by twisted rotations

m : S1 ×HR → HR, mθ(x, y, z) = (ρθ(x, y), z + ηθ(x, y)),

where ρθ is a rotation in the (x, y)-plane with angle θ, ηθ is a polynomial function
in x and y and trigonometric in θ, and the reflection R(x, y, z) = (x,−y,−z). The
whole isometry group Iso(HR) can be described either as a semi-direct product
HR oO(2), because

mθ ◦ Lg ◦m−1
θ = Lmθ(g), R ◦ Lg ◦R = LR(g),

or via the exact exact sequence

1→ R→ Iso(HR)→ Iso(R2)→ 1,

induced by the action on the quotient by the center HR/R ∼= R2, see [Scott(1983)]
for more details.

5.2. Examples. In this section we describe a series of ilustrative examples that
capture the behaviour of every discrete subgroup of Iso(HR).

Example 1. The group HZ ⊂ HR is a discrete subgroup so that the exact sequence
determining HR induces the fiber-bundle structure

R/Z→ HR/HZ → R2/Z2

and thus HZ is a lattice subgroup of HR such that HR/HZ is a compact Riemannian
manifold. As the conjugation can be computed as

g = (x, y, z), g (n,m, p) g−1 = (n,m, p+ xm− yn),

the normalizer in HR is NHR(HZ) = {(n,m, p) : n,m ∈ Z, p ∈ R} gives us the
isometries in the quotient

S1 ∼= NHR(HZ)/HZ ↪→ Iso(HR/HZ),

but the bigger normalizer in Iso(HR) is computed as

NIso(HR)(HZ) = {(n,m, p) : n,m ∈ Z, p ∈ R}oD4,

where the Dihedral group D4 is generated by the isometries

mπ/2(n,m, p) = (−m,n, p− nm), R(n,m, p) = (n,−m,−p),

so that what we get is Iso(HR/HZ) ∼= S1 o D4. We can modify this example by
adding the Dihedral group to the lattice, so that we have the fiber bundle structure

R/Z→ HR/(HZ oD4)→ R2/(Z2 oD4) ∼= S2,

and we decreased the normalizer

NIso(HR)(HZ oD4) = {(n,m, l) : n,m, 2l ∈ Z}oD4,

and thus, Iso(HR/(HZ oD4)) ∼= Z2.

Example 2. Fix a positive integer p ∈ N and consider the lattice

Gp =

{(
n,m,

l

p

)
: n,m, l ∈ Z

}
⊂ HR,

which has as normalizer group in HR the group

NHR(Gp) =

{(
n

p
,
m

p
, r

)
: n,m ∈ Z, r ∈ R

}
,
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and normalizer group in Iso(HR), the group NHR(Gp) oD4, with Dihedral group
D4 = 〈mπ/2, R〉 as before. The isometry group is characterized by the exact se-
quence

1→ S1 → Iso(HR/Gp)→ D4 n (Zp × Zp)→ 1

and we recover the previous example by taking p = 1.

Example 3. Fix a positive integer p ∈ N and consider the lattice

Lp =

{(
n

2
+m,

√
3n

2
,

√
3l

2p

)
: n,m, l ∈ Z

}
⊂ HR,

so that it has normalizer group in HR

NHR(Lp) =

{(
n

2p
+
m

p
,

√
3n

2p
, r

)
: n,m ∈ Z, r ∈ R

}
.

As the group Lp projects to a hexagonal lattice in R2, we should expect to have
a dihedral group D6 normalizing Lp, however, the rotation mπ/3 : HR → HR given
by

mπ/3(x, y, z) =

(
1

2

(
x−
√

3y
)
,

1

2

(
y +
√

3x
)
, z +

√
3

8

(
y2 − x2 − 2

√
3xy

))
,

doesn’t preserve Lp. To fix this, we must add a translation mixed with the rotation,

more precisely, if g =
(

1
8 ,−

√
3

8 , 0
)
∈ HR, then ϕ = mπ/3◦Lg ∈ NIso(HR)(Lp), which

can be verified using the relation ϕ ◦Lh ◦ϕ−1 = Lmπ/3(ghg−1). We can describe the

normalizer group of Lp in Iso(HR) via its generators as

NIso(HR)(Lp) = 〈Lg, ϕ,R : g ∈ NHR(Lp)〉,
where R(x, y, z) = (x,−y,−z), and so, we have the isometry group

1→ S1 → Iso(HR/Lp)→ (Zp × Zp) oD6 → 1,

where the dihedral group D6 is generated by 〈ϕ,R〉 (mod R).

Example 4. The previous examples can be generalized as follows: Fix p ∈ N and
u, v ∈ R2 linearly independent, so that Γ = {nu+mv : n,m ∈ Z} ⊂ R2 is a lattice.
If (u, 0)× (v, 0) = (0, 0, λ) ∈ R3, then the group

Mp =

{(
nu+mv,

λ

p
l

)
: n,m, l ∈ Z

}
⊂ HR

is a lattice having normalizer group in HR

NHR(Mp) =

{(
n

p
u+

m

p
v, r

)
: n,m ∈ Z, r ∈ R

}
.

The lattice Γ has an automorphism group Aut(Γ) ∈ {0,Z2, D4, D6}, which is, if non-
trivial, generated by a rotation with angle θ and a reflection. So we can compute
the whole normalizer group via its generators as

NIso(HR)(Mp) = 〈Lg, ϕ,R : g ∈ NHR(Mp)〉,
where ϕ = mθ ◦ Lw. Here, w = (w0, 0) ∈ HR must be chosen so that if

w × (u, 0) = (0, r1), w × (v, 0) = (0, r2),

then mθ(u, r1),mθ(v, r2) ∈ Mp. Thus, we have an isometry group of the quotient
given by the exact sequence

1→ S1 → Iso(HR/Mp)→ (Zp × Zp) oAut(Γ)→ 1.
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Remark: 5. The previous examples give us the general strategy to compute the
isometry group of a quotient HR/G, for G ⊂ Iso(HR) a discrete group of isometries.
This strategy is as follows: G projects to a discrete subgroup Γ ⊂ Iso(R2) which
has a finite index subgroup Γ0 ⊂ R2, corresponding to a finite index subgroup
G0 = G ∩ HR ⊂ G and a lattice in HR. The normalizer of G0 projects again a
lattice in R2 and thus Iso(HR/G0) is an extension of a finite group Zp × Zp by
S1. The isometry group Iso(HR/G) is just the previous group with an extra finite
group of isometries, comming from the automorphisms of the lattice Aut(Γ). This
strategy fails when the projection to R2 is non-discrete, as shown in the following
two examples, but in the next section we will see that in the case where HR/G has
finite volume, then this doesn’t happen.

Here we add two examples of discrete groups which project onto the action on
R2 to non-discrete groups, these examples capture the general behaviour of discrete
groups having this property as we’ll see in the next section.

Example 5. The isometry group Iso(HR) preserves the fiber structure

R→ HR → R2

and in particular, induces an action on the Euclidean plane HR/R ∼= R2. In the
previous examples, the subgroups act on R2 as the lattice Z2 and in particular the
action is discrete, but this is not always the case for discrete subgroups of Iso(R2).
As an example of this, consider ϕ : N → S1, a homomorphism with dense image
and g = (0, 0, 1) ∈ HR a generator of the center, so that the group

{(gn, ϕ(n)) : n ∈ N} ⊂ HR o S1 ∼= Iso(HR)

is a discrete subgroup of isometries of HR with dense projection onto S1 ∼= SO(2)
and in particular, with a non-discrete action R2. In this example, the projected
group leaves fixed the point p = 1

1−λ ∈ C ∼= R2, where λ = ϕ(1) and in particular,
it is a group of rotations around such point.

Example 6. Another example of this is the following: Given a scaling 0 < ε < 1,
consider the group generated by (1, 0, 1), (ε, 0, 1) ∈ HR ⊂ Iso(HR) and −1 ∈ S1 ⊂
Iso(HR). This is a discrete subgroup of Iso(HR), which projects to a non-discrete
subgroup of Iso(R2) leaving fixed the line {(x, 0) : x ∈ R} ⊂ R2.

5.3. Classification of discrete subgroups of isometries. In this section HR
denotes the Heisenberg Lie group considered as a Riemannian manifold with respect
to the left-invariant metric constructed in the previous section. In this section, we
describe the conditions on which a discrete group on Iso(HR) induces a discrete
action on the Euclidean plane R2.

Proposition 6. If G is a discrete subgroup of isometries of HR, then the exact
sequence

1→ R→ Iso(HR)→ Iso(R2)→ 1

induces an exact sequence

1→ K → G→ Γ→ 1,

where Γ ⊂ Iso(R2) is either discrete or it is an abelian group leaving fixed either a
point or a line. Moreover, if Γ ⊂ Iso(R2) has a finite index lattice, then K ⊂ R is
a non-trivial discrete subgroup and if Γ is non-discrete and leaves fixed a line, then
there is a finite index subgroup of G which is contained in HR.
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Proof. Observe first that K = G ∩ R is a discrete subgroup of isometries of R and
so, if non-trivial, there is an isomorphism R/K ∼= S1. The exact sequence

1→ S1 → HR/K → R2 → 1

gives us

1→ S1 → Iso(HR)/K → Iso(R2)→ 1,

which has compact Kernel and thus, any discrete group in Iso(HR)/K projects to a
discrete group in Iso(R2). This argument tells us that if K is non-trivial then Γ is
discrete in Iso(R2), because it is the projection of G/K with compact kernel, and
G/K is always discrete in Iso(HR)/K. Suppose from now on that K is trivial. If we
identify R2 ∼= C as a Euclidean space, then we can realise the group of orientation
preserving isometries of the plane R2 as the matrix group

Iso+(R2) ∼=
{(

λ z
0 1

)
: λ, z ∈ C, |λ| = 1

}
with action (

λ z
0 1

)(
w
1

)
=

(
λw + z

1

)
.

Observe that the restriction Iso+(R2) ⊂ Iso(R2) reduces the discusion to a sub-
group of index 2, which doesn’t alter the property of discreteness. We recall two
important properties on commutators. First, commutators of two isometries give
elements of pure translation part[(

λ z
0 1

)
,

(
β w
0 1

)]
=

(
1 (z − w) + (λw − βz)
0 1

)
,

which tells us that [G,G] projects to a subgroup of Iso(R2) with only translation
part, and so [G,G] ⊂ HR. Second, the commutator in HR satisfies the relation 1 x r

0 1 y
0 0 1

 ,

 1 u s
0 1 v
0 0 1

 =

 1 0 xv − uy
0 1 0
0 0 1

 ,

which has the geometric interpretation: if two elements of HR project to the vectors
(x, y) and (u, v), then its commutator is an element of the center R = Z(HR) whose
magnitud is the area of the projected vectors. As we are under the supposition that
G∩R is trivial, the two previous relations on commutators tells us that [G,G] is a
commutative group and the corresponding projected group satisfies

[Γ,Γ] ⊂
{(

1 rz0

0 1

)
: r ∈ R

}
for some z0 ∈ C. Suppose first that Γ is non-commutative. The commutation
relation [(

λ z
0 1

)
,

(
1 z0

0 1

)]
=

(
1 (λ− 1)z0

0 1

)
,

and the hypothesis that all the translation elements of [Γ,Γ] are linearly dependent
give us the condition r = (1 − λ) for some r ∈ R and as |λ| = 1, the only options
are λ = ±1. As Γ is non-commutative, there is at least one element that is not a
translation, that is (

−1 z
0 1

)
∈ Γ,

and without loss of generality, we can change Γ by hΓh−1 (where h is the translation
by 1/2z) so that in fact (

−1 0
0 1

)
∈ Γ,
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this conjugation leaves [Γ,Γ] invariant. Observe also that[(
β w
0 1

)
,

(
−1 0
0 1

)]
=

(
1 2w
0 1

)
⊂ [Γ,Γ],

implies by the same argument that β = ±1 and w = sz0 for some s ∈ R, and thus
Γ preserves the line generated by z0. If on the other hand Γ is commutative and
contains an element of the form(

λ z
0 1

)
, λ 6= 1,

this element has as a unique fixed point −z
λ−1 . As Γ is a commutative group, every

element of Γ must fix −z
λ−1 , and thus, it consists of rotations around this point. If no

such element exists, Γ consists of elements with purely translation part, which tells
us that G ⊂ HR. We observe that in this last case, two elements a, b ∈ G which
project to two linearly independent vectors in Γ must satisfy that e 6= [a, b] ∈ G∩K,
which can’t happen by hypothesis, so Γ is a subgroup of the group {rω : r ∈ R} for
some ω ∈ C and thus Γ preserves the line generated by ω. �

Lemma 7. Let G be a discrete subgroup of isometries of HR together with the
projection to the isometry group of R2

G→ Γ ⊂ Iso(R2).

If Γ preserves either a line or a point in R2, then the orbifold HR/G has infinite
volume.

Proof. Suppose first that Γ preserves the line Rv, then as a consequence of either
Bieberbach’s Theorem if Γ is discrete, or as a consequence of the proof of Propo-
sition 6 if Γ is non-discrete, G has a finite index subgroup that is contained in
HR. Passing to a finite index subgroup doesn’t change the property of having fi-
nite co-volume so without loss of generality we may suppose that G ⊂ HR. There
is a fundamental domain that has non-empty interior, given for example by the
Dirichlet’s fundamental domain {q ∈ HR : d(q0, q) < d(q0, γ(q)), γ ∈ G \ {e}}, with
respect to the Riemannian distance d, see [Ratcliffe(2019)]. In particular there is a
subset of the form

D = {(tv + sv⊥, λr0) ⊂ C× R : (s, t, λ) ∈ (−ε, ε)3 + (s0, t0, λ0)} ⊂ HR

such that no two elements of D can be identified with an element of G. As Γ
preserves the line Rv, then we can see that no two elements of D̃ can be identified
with an element of G, where

D̃ = {(tv + sv⊥, λr0) ⊂ C× R : (s, t, λ) ∈ R× (−ε, ε)2 + (0, t0, λ0)}

but D̃ =
⋃
j Dj , where

Dj = {(tv + sv⊥, λr0) ⊂ C× R : (s, t, λ) ∈ (−ε, ε)3 + (sj , t0, λ0)} ⊂ HR

and every Dj can be obtained by translating D with an element of HR, thus

V ol(N/G) ≥ V ol(D̃) =
∑
j

V ol(Dj) =
∑
j

V ol(D) =∞.

The second possibility is when Γ is a commutative group preserving a point, that
is, Γ is conjugated to a subgroup of SO(2). Again there is a fundamental domain
of G with non-empty interior and in particular, there is a subset

Ω = {(reiθ, sr0) ⊂ C× R : (r, θ, s) ∈ (−ε, ε)3 + (a, b, c)} ⊂ HR,
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such that no two elements of Ω can be identified with an element of G. As Γ acts
only as rotations in the C plane, we can enlarge as before Ω to the subset

Ω̃ = {(reiθ, sr0) ⊂ C× R : (r, θ, s) ∈ R>0 × (−ε, ε)2 + (0, b, c)},

so that no two elements of Ω̃ can be identified with an element of G. As before, we

have a countable union of disjoints sets contained in Ω̃ that are translated copies
of Ω, that is ⋃

i

Ω + (ωj , 0) ⊂ Ω̃

and V ol(N/G) ≥ V ol(Ω̃) ≥
∑
j V ol(Ω + (ωj , 0)) =

∑
j V ol(Ω) =∞. �

Lemma 8. If u, v ∈ R2 are two linearly independent vectors, with (u, 0)× (v, 0) =
(0, 0, λ) ∈ R3 and n ∈ N, r, s ∈ R, then the group

G =

〈
(u, r) , (v, s) ,

(
0, 0,

λ

n

)〉
⊂ HR

is a lattice in HR. Conversely, every lattice in HR can be obtained like this.

Proof. Observe that the center of G is the subgroup K =
{
λp
n : p ∈ Z

}
and if

(x, y, z), (x, y, z′) ∈ G, then

(x, y, z)−1 · (x, y, z′) = (0, 0, z′ − z) ∈ K,

so that for k, l ∈ N fixed, and

(u, r)k · (v, s)l = (ku+ lv, rk,l)

the level set

{(w, z) ∈ G : w = ku+ lv} =

{(
ku+ lv, rn,m +

λp

n

)
: p ∈ Z

}
is discrete and thus, G is a discrete subgroup of HR. If Γ = {ku+ lv : k, l ∈ Z}
denotes the projection of G onto R2, then there is an exact sequence

1→ K → G→ Γ→ 1

which induces the fiber bundle structure

S1 ∼= R/K → HR/G→ R2/Γ ∼= S1 × S1,

which tells us that HR/G is compact and thus, G is a lattice in HR. Suppose now
that L ⊂ HR is a lattice, then by Lemma 7, L projects to a lattice subgroup of R2,
generated by two linearly independent vectors u′, v′ ∈ R2 such that (u′, 0)×(v′, 0) =
(0, 0, λ′), with 0 6= λ′ ∈ R and observe that if g = (u′, r′), h = (v′, s′) ∈ L, then
their commutator is [g, h] = (0, 0, λ′). As the intersection K ′ = G ∩ Z(HR) is
discrete and contains the non-trivial element (0, 0, λ′) ∈ K ′, then there is an integer

n′ ∈ N such that K ′ =
{
λ′p
n′ : p ∈ Z

}
and thus, the lattice L is generated by the

set
{

(u′, r′), (v′, s′),
(

0, 0, λ
′

n′

)}
. �

Theorem 9. If G ⊂ Iso(HR) is a discrete subgroup such that HR/G has finite
volume, then there is an exact sequence

1→ C → Iso(HR/G)→ F → 1,

where F is a finite group, and C ⊂ S1 is a closed subgroup. In particular, either
Iso(HR/G) is finite, or it is a finite extension of S1.
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Proof. By proposition 6 and Lemma 7, the projection of G to Iso(R2) has a lattice
Γ ⊂ R2 as a finite index subgroup. This is equivalent to the fact that L = G∩HR is
a lattice in HR and a finite index subgroup in G. By Lemma 8, there are u, v ∈ R2,
λ, r, s ∈ R, with λ 6= 0, and n ∈ N, such that Γ = {ku+ lv : k, l ∈ Z} and

L =

〈
(u, r) , (v, s) ,

(
0, 0,

λ

n

)〉
⊂ HR.

As seen in Example 4, the group NHR(L) =
{(

n
pu+ m

p v, r
)

: n,m ∈ Z, r ∈ R
}

is

the normalizer of L in HR. Denote by Aut(Γ) ⊂ O(2) the subgroup that preserves
the lattice Γ and observe that an element ϕ = σ ◦ Lg ∈ Iso(HR) satisfies that
ϕ ◦ Lh ◦ ϕ−1 = Lσ(ghg−1). As σ(ghg−1) and σ(h) have the same projection onto Γ,
then if ϕ normalizes L, σ ∈ Aut(Γ) and we have that

1→ K → G→ F ′ n Γ→ 1,

for some subgroup F ′ ⊂ Aut(Γ) and K = L ∩ R. As HR is normal in Iso(HR), we
see that NIso(HR)(G) ⊂ NHR(G), and thus, by applying a trick as in Example 4.3,
we may describe the greater normalizer as

1→ H → NIso(HR)(G)→ F ′′ n Λ→ 1,

with F ′′ ⊂ Aut(Γ) a finite group and Λ ⊂ R2 a lattice containing Γ. Thus, the
isometry group is calculated as

1→ C = H/K → NIso(HR)(G)/G→ F = (F ′′ n Λ) / (F ′ n Γ)→ 1,

so that C is either finite, cyclic or S1 and F is finite. �

Remark: 10. The most symmetric lattices in R2 are the square and hexagonal
lattices, having linear symmetry groups D4 and D6. Theorem 9 tells us that the
generalizations of these lattices to HR, described in Example 2 and Example 3 are
the most symmetric finite volume quotients HR/G, with isometry groups

1→ S1 → Iso(HR/G)→ (Zn × Zn) oD → 1,

with D equal to D4 and D6 respectively, and n ∈ N.

6. Spherical Geometry

This section is largely expository due to the fact that the verification of 1.2
consists of the comparison of the statement with the (fundamentally algebraic)
classification of groups acting by isometries on three dimensional spherical mani-
folds and orbifolds. These groups are restricted by results related to the positive
answer of the Smale conjeture, and the fact that a three dimensional Alexandrov
space of positive curvature is either a spherical three-manifold or a suspension of a
real projective space. This concerns specifically the quotient orbifold of an action
of a discrete group on a spherical three-manifold, that is, a quotient of the form

M = S3/Γ,

for Γ a finite subgroup of isometries of the three dimensional sphere O(4).

The following is a consequence of the classification of isometry groups of spher-
ical 3- manifolds in [McCullough(2002)], tables 2 and 3 in pages 173 and 176, re-
lying on work of Mccullough and collaborators and ultimately going back to Seifert,
Threlfall, Hopf and Hattori. See [Hong et al.(2012)Hong, Kalliongis, McCullough, and Rubinstein],
chapter 1 for an account of these facts.
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Lemma 6.1. Up to finite subgroups, the isometry groups of spherical three mani-
folds are:

• SO(3).
• O(2).
• O(4).
• SO(4).
• SO(3).
• O(2)×O(2)
• S1 ×Z/2 S

1.

In particular, they are all closed subgroups of O(4).

For a complete list of isometry groups of spherical orbifolds, see Chapter 3 of
[Mecchia and Seppi(2019)].

6.1. The Smale Conjecture. An important result by Hatcher [Hatcher(1983)],
originally conjectured by Smale states that the inclusion of the isometry group of
S2 into the group of diffeomorphisms is a homotopy equivalence.

The following result with contributions of many persons including (at least)
Asano, Boileau, Bonahon, Birman, Cappell, Ivanov, Rubinstein, and Shaneson, is
a consequence of research in mapping class groups and three- dimensional spherical
manifolds. It is discussed with comments about attribution in [McCullough(2002)],
Theorem 1.1 in page 3.

Theorem 6.2. Let M be a spherical manifold, then the inclusion of the group
of isometries of M on the group of Diffeomorphisms induces a bijection on path
components.

As of 2022, the following result in page 2 of [Bamler and Kleiner(2019)] is a
consequence of the study via Ricci flow methods of the homotopy type of the spaces
of positive scalar curvature and the subspace of metrics which are locally isometric
to either the round sphere S3 or the round cylinder S2 × R.

Theorem 6.3. Let (M, g) be a riemannian manifold which is an isometric quotient
of the three dimensional round sphere. Then, the inclusion of the isometry group
into the diffeomorphism group is a homotopy equivalence.

6.2. Connected components of isometries in spherical orbifolds. The fol-
lowing theorem was proved in [Mecchia and Seppi(2019)], using previous analysis
of the authors of Seifert fibrations for spherical orbifolds. It is a consequence of
tables 2 in page 1302, table 3 in page 1304 and table 4 in page 1308.

Theorem 6.4. Let X be a spherical three manifold, and let Γ be a discrete group
of X.

• The isometry groups of the orbifold X/Γ are either closed subgroups of
SO4 or PSO4, if the action is orientation preserving.

• The identity component of the isometry groups are S1, S1 × S1 or trivial
for the orientation preserving case.

End of the proof of Theorem 1.2 and Phenomenon 1.3 for the sherical geometry.
Recall that an orbifold quotient of an action of a discrete group on a spherical three
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manifold is an Alexandrov space of positive curvature It follows from corollary 2.2 in
[Galaz-Garcia and Guijarro(2015)] (see Theorem 12.2), that any Alexandrov space
of positive curvature is homeomorphic to a spherical three manifold or suspension
of RP 2. The result thus follows from Lemma 6.1. �

7. S2 × R.

A three dimensional manifold is said to have S2 × R- geometry if its universal
covering is homeomorphic to S2 × R.

Recall [Kobayashi and Nomizu(1996)], Chapter VI, Theorem 3.5 that given a
product of riemannian manifolds M × N with M of constant sectional curvature
and N flat, the isometry group of M×N decomposes as a direct product Isom(M)×
Isom(N). It follows that for a discrete subgroup Γ ≤ Isom(S2×R) ∼= O(3)×(R×Z2),
the projection onto the second factor πR(Γ) ≤ Ro Z/2 is a discrete subgroup.

Remark: 11. Due to the classification theorem of manifolds covered by S2 ×
R by Tollefson in page 61 of [Tollefson(1974)], there exist only four such three-
manifolds, namely: S2×S1, the non orientable S2- bundle over S1, RP 1×S1, and
RP 3#RP 2. Moreover, the finite groups which act freely on S2 × S1 are classified
in [Tollefson(1974)], Corollary 2. They are:

• Z/p, producing quotient spaces homeomorphic to S2×S1 in the odd case,
and RP 2 in the even case as quotient space.

• Z/p×Z/2, for p even, producing a quotient space homeomorphic to RP 2,
and

• Dn, the dihedral group of order 2n, producing RP 3#RP 3 as quotient
space.

We may observe that the projection onto the S2 factor of a discrete group of
isometries need not be discrete as the following example shows:

Example 7.1. If σ ∈ SO(3) is a rotation with irrational angle along a fixed axis,
so that the orbit {σn(p) : n ∈ N} is dense in a circle, orthogonal to the rotation
axis, for almost every p ∈ S2, then the group given by twisted translations

{(σn, n) ∈ O(3)× R : n ∈ N}
is a discrete subgroup of Iso(S2 × R) with non-discrete projection on Iso(S2).

The previous example gives us the general behaviour for discrete groups of isome-
tries on S2 × R as seen by the following Lemma

Lemma 12. If Γ ⊂ Iso(S2×R) is a discrete subgroup, then there is a finite group
F ⊂ O(3) and λ ∈ R such that the exact sequence

1→ O(3)→ Iso(S2 × R)→ Ro Z2

induces an exact sequence 1→ F → Γ→ L, where L is either λZ or λZ o Z2.

Proof. As the group O(3) is compact, the projection of the discrete group Γ onto
Iso(R) is discrete, so it is of the form λZ or λZoZ2, for some λ ∈ R. As O(3) can
be seen as a closed subgroup of Iso(S2 × R), then the intersection of Γ with O(3)
is a finite group, which we denote by F . The result thus follows from the product
structure of Iso(S2×R). In fact, Γ is generated by F , Z2 ⊂ Iso(R) and the twisted
translation subgroup {(σn, nλ) ∈ O(3)× R : n ∈ N}, for some σ ∈ O(3). �
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Theorem 7.2. If Γ ⊂ Iso(S2 ×R) is a discrete subgroup, such that (S2 ×R)/Γ is
compact, then Iso((S2×R)/Γ) is up to finite index, a closed subgroup of SO(3)×S1.
In particular, the connected component of the identity of the isometry group of the
quotient can only be one of the three possibilities:

SO(3)× S1, S1 × S1, or S1.

Proof. By Lemma 12, the discrete group Γ is generated by a finite group of O(3)
and a twisted translation as in Example 7.1. The isometry group is compact, so it
has a finite number of connected components and by Proposition 4, the connected
component of the identity can be computed using the centralizer, which always
contains the R-factor, so the result follows by examining the possible connected,
closed subgroups of SO(3). �

8. Solv-geometry

8.1. The geometry. Solv-geometry is given by the solvable Lie group of upper-
triangular matrices

S =


 et 0 x

0 e−t y
0 0 1

 : x, y, t ∈ R

 ,

which decomposes as a semidirect product S = [S, S] o (S/[S, S]) ∼= R2 o R. In
global coordinates, the vector fields

X1(x, y, t) = (et, 0, 0), X2(x, y, t) = (0, e−t, 0), X3(x, y, t) = (0, 0, 1),

define a basis of left-invariant vector fields. We choose the left invariant Riemannian
metric in S having this basis as orthonormal basis, so that in our global coordinates,
the metric has the expresion

ds2 = e−2tdx2 + e2tdy2 + dt2.

The isometry group of this metric is generated by left translations

Lg : S → S, Lg(h) = gh,

and the group of reflections (x, y, z) → (±x,±y,±z), isomorphic to the Dihedral
group D4. In particular, Iso(S) has eight connected components, with the con-
nected component of the identity isomorphic to S [Scott(1983)].

8.2. Existence of lattices. We start by observing that a Lie group admits a
lattice subgroup if and only if it is unimodular [Raghunathan(2007)], and so, not
every solvable group admit lattice subgroups.

Example 7. A solvable group which is close to S considered here, is the group of
orientation preserving affine transformations on R, given by

Aff+(R) ∼=
{(

et x
0 1

)
: x, t ∈ R

}
.

We could try for example, to exponentiate the set a lattice in R2 as

Λ = exp

({(
n m
0 0

)
: n,m ∈ N

})
=

{(
en (m/n)(en − 1)
0 1

)
: n,m ∈ N

}
,
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however, such discrete set is not a subgroup and the group which generates is not
discrete. The problem is that the group Aff+(R) is not unimodular, and in fact its
modular function has the expression

∆ : Aff+(R)→ R+, ∆

(
et x
0 1

)
= et,

which is non-trivial.

The solvable group S is unimodular, so that it admits a lattice subgroup and
an explicit way to construct a lattice is as follows: Consider a matrix A ∈ SL2(Z),
such that tr(A) > 2 and the group

ΓA =

{(
An Z
0 1

)
: n ∈ Z, Z ∈M2×1(Z)

}
∼= Z2 oA Z.

Lemma 13. For every A ∈ SL2(Z), with tr(A) > 2, ΓA is conjugated in SL3(R)
to a lattice subgroup in S, moreover, every lattice subgroup of S is conjugated to
one of such groups.

Proof. Suppose first that A ∈ SL2(Z), with tr(A) > 2, then there is a matrix
B ∈ SL3(R) such that

BAB−1 =

(
eλ 0
0 e−λ

)
,

for some λ 6= 0. We may define At = B−1

(
etλ 0
0 e−tλ

)
B, so that ΓA is a discrete

subgroup of the group

SA =

{(
At Z
0 1

)
: t ∈ R, Z ∈M2×1(R)

}
∼= Rn R2,

such that
1→ R2/Z2 → SA/ΓA → R/Z→ 1,

thus, ΓA is a lattice in SA. Observe that we have an isomorphisms of Lie groups
via the conjugation

SA → S, X 7→
(
B 0
0 1

)
X

(
B−1 0

0 1

)
,

and thus, a lattice in S.

Before proceeding with the proof of this Lemma, we need to prove the following
discrete projection Lemma:

Lemma 14. If Γ ⊂ S is a discrete subgroup, then its projection Γ ⊂ S/[S, S] ∼= R
is also discrete.

Proof. An element γ = (x, y, t), with t 6= 0, acts discretely by translations on the

line
{(

x
1−et ,

y
1−e−t , s

)
: s ∈ R

}
⊂ S, as γn

(
x

1−et ,
y

1−e−t , s
)

=
(

x
1−et ,

y
1−e−t , s+ nt

)
.

Thus, if Γ is commutative, either Γ ⊂ R2 and its projection is trivial, or Γ preserves
a unique line on which it acts as translations and the action in this line is precisely
the action on R of its projection, which must be discrete. If Γ is non-commutative,
then at least it has two elements u = (a, b, 0) and γ = (x, y, t) with t 6= 0. Observe
that if b = 0, then γuγ−1 = (eta − a, 0, 0) and by iterating conjugation we get
a non-discrete subgroup of R2 ∩ Γ which is impossible and the same goes for the
case a = 0. Thus a, b 6= 0 and Γ ∩ R2 contains two linearly independent vectors,
say u and v = γuγ−1 = (eta, e−tb, 0), which implies that Γ ∩ R2 is cocompact in
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R2. Γ/(Γ ∩ R2) is discrete in S/(Γ ∩ R2) and the projection S/(Γ ∩ R2) → S/R2

has compact Kernel R2/(Γ ∩ R2) ∼= S1 × S1, thus the corresponding projection of
Γ/(Γ ∩ R2) into S/[S, S] is discrete. �

Suppose now that Γ ⊂ S is a lattice subgroup, then by Lemma 14, the Γ projects
to a non-trivial discrete group R, generated by an element enβ , with β 6= 0. The
intersection Γ∩R2 is a lattice, so that there are u, v ⊂ R2 linearly independent, such
that Γ∩R2 = {nu+mv : n,m ∈ Z}. Take C ∈ GL2(R) the matrix sending Γ∩R2

onto the canonical lattice Z2 and define the matrix A′ = B

(
eβ 0
0 e−β

)
B−1. An

element g =

(
B−1A′B W

0 1

)
∈ Γ must preserve Γ ∩ R2, so that the element

h =

(
A′ BW
0 1

)
∈ Γ must preserve Z2. Observe that the action of h in an

element v = (n,m) ∈ Z2 is A′v + BW ∈ Z2, this implies that BW ∈ Z2 and
A′ ∈ SL2(Z). In particular, the group Γ is isomorphic to the group ΓA′ and the
isomorphism is obtained by conjugation. �

Remark: 15. The existence of lattices in the Lie group S is related to the existence
of a Q-structure on S. More precisely, if A ∈ SL2(Z), with tr(A) > 2, and c =√

tr(A)2 − 4, then A is diagonalizable over the field Q(c), that is, there is a matrix
B ∈ SL2(Q(c)) such that BAB−1 is diagonal. If Qij(X) = Xij is the linear map
that gives the (i, j)-entry, then the group

G(k) =

{(
X Z
0 1

)
: Z ∈M2×1(k), Qij(BXB

−1) = 0, i 6= j, i, j ∈ {1, 2}
}
,

is algebraic subgroup of SL3(k), defined by polynomial equations with coefficients
over Q(c), such that G(R) ∼= S and G(Z) = ΓA. Moreover, the Galois auto-
morphism σ : Q(c) → Q(c), defined by σ(c) = −c, has a natural extension to
automorphisms of matrices and polynomials, so that we have the embedding

SL3(Q(c))→ SL3(R)× SL3(R), Y 7→ (Y, σ(Y )),

and a polynomial condition Q(Y ) = 0 on Y ∈ SL3(Q(c)) is equivalent to the
pair of polynomial conditions Q(Y ) + σ(Q)(Y ′) = 0 and Q(Y )σ(Q)(Y ′) = 0 on
(Y, Y ′) ∈ SL3(R)×SL3(R), but the latter are polynomials with coefficients over Q
(this trick is called “restriction of scalars” [Morris(2015)]).

Lemma 16. S has trivial center and the centralizer of a lattice group Γ ⊂ S is
also trivial.

Proof. Take γ = (x, y, t) in the centralizer of Γ in S, then as in the previous
proposition Γ ∩ [S, S] has a rank two subgroup, thus it contains at least a vector
u = (a, b, 0) such that a, b 6= 0 and we have

γuγ−1 = (eta, e−tb, 0) = (a, b, 0),

which implies that t = 0. As Γ projects to a lattice group in S/[S, S] ∼= R, then
there is a β ∈ Γ such that β = (c, d, s) with s 6= 0 and thus

βγβ−1 = (esx, e−sy, 0) = γ = (x, y, 0)

which implies that x = y = 0 and γ is the identity. A completely analogous
computation shows that S has trivial center. �

Corollary 17. If Γ is a discrete group of isometries of S such that S/Γ has finite
volume, then S/Γ is compact and has finite isometry group.
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Proof. As the connected component of the isometry group of S is S itself acting by
left multiplications, Γ is modulo a finite index subgroup a lattice in S and it lies in
an exact sequence

1→ Γ0 → Γ→ Γ1 → 1

where Γ0 = Γ ∩ [S, S] and Γ/Γ0
∼= Γ1 ⊂ R. By Proposition 14 Γ1 is a discrete

subgroup, so this exact sequence induces a the fiber bundle

R2/Γ0 → S/Γ→ R/Γ0,

so that S/Γ has finite volume if and only if R2/Γ0 and R/Γ1 are torus of the
corresponding dimension and S/Γ is compact. The isometry group of S/Γ is a
compact Lie group with connected component of the identity determined by the
centralizer of Γ in S (Proposition 4) which is the trivial group by Lemma 16, thus
the isometry group is a compact, zero-dimensional Lie group, i.e. finite. �

Example 8. For A =

(
2 1
1 1

)
and n ∈ N, consider the lattice ΓAn = Z2 oAn Z.

A matrix Y =

(
M W
0 1

)
∈ GL3(R) normalizes ΓAn if and only if M = Ak for

some k ∈ Z and (I−An)W ∈ Z2, so that if Λn = (I−An)−1Z2, then the normalizer
is NIso(S)(ΓAn) = Z nA Λn and the isometry group is computed as

Iso(S/ΓAn) = (Λn/Z2) oA Zn.

Three ilustrative cases are

(i) Λ1 = Z2, so that Iso(S/ΓA) is trivial;
(ii) det(I −A2) = −5, so that Z2 ≤ Λ2 ≤ 1

5Z
2 and each contention is of index

5, in particular we have that Iso(S/Γ2) = Z5 o Z2;
(iii) Λ5 = 1

11Z
2, so that Iso(S/Γ5) = (Z11 × Z11) oA Z5.

Remark: 18. The previous example exhibits an isometric action of each finite
cyclic group on a three dimensional manifold.

Notice that the action is not necesarilly free, since there exists a very rigid classi-
fication of free actions of finiite groups on three dimensional manifolds with Nil and
Sol structure, based on p-rank estimates and P.A. Smith Theory, [Jo and Lee(2010)],
[Koo et al.(2017)Koo, Oh, and Shin].

9. Hyperbolic geometry

9.1. Normalizers of Fuchsian groups. Denote by Hn the n-dimensional hyper-
bolic space and recall that the isometry group Iso(Hn) is a non-compact semisimple
Lie group that can be identified with the group PO(n, 1).

Lemma 19. If Γ ⊂ Iso(Hn) is a discrete subgroup such that Hn/Γ has finite
volume, then the normalizer group

Λ = {g ∈ Iso(Hn) : ghg−1 = h, ∀ h ∈ Γ} ⊂ Iso(Hn)

is discrete and Iso(Hn/Γ) is a finite group.

Proof. Passing to a finite cover doesn’t alter the outcome, so we may suppose that
Γ,Λ ⊂ O(n, 1). By Proposition 4, the connected component of Λ lies inside of the
centralizer of Γ in O(n, 1). Let g ∈ O(n, 1) centralizing Γ, then the polynomial

Pt : Mn+1(R)→Mn+1(R), Pt(X) = gXg−1 −X
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vanishes at Γ but by Borel’s density Theorem (see [Furstenberg(1976)]), Γ is Zariski
dense in O(n, 1) and thus Pt(O(n, 1)) = 0 which tells us that g lies in the center of
O(n, 1), which is finite. This tells us that Λ is a discrete group that contains the
lattice Γ, so Λ is also a lattice in O(n, 1). If FΛ, FΓ ⊂ Hn are fundamental domains
of the groups Λ and Γ correspondingly, so we have that

|Iso(Hn/Γ)| = |Λ/Γ| = V ol(FΓ)/V ol(FΛ) <∞.

�

Remark: 20. The previous result is stated for hyperbolic manifolds in Corollary
3, Section 12.7 of [Ratcliffe(2019)] and for hyperbolic orbifolds in [Ratcliffe(1999)],
where the hypotheses are that the discrete group is nonelementary, geometrically
finite and without fixed m-planes, for m < n − 1. In Lemma 19 we presented an
argument using Zariski-density of the lattice group in Iso(Hn), which implies for
example the non-existence of fixed m-planes. As seen in [Greenberg(1974)], every
finite group can be realized as the isometry group of a compact hyperbolic surface
as in Lemma 19.

Lemma 21. If Σ is a compact, orientable surface of genus g ≥ 2, then there are
no faithful actions of the compact group S1 on Σ.

Proof. Suppose there is a faithful action S1×Σ→ Σ, then perhaps after an averag-
ing process, we may suppose that the action is isometric with respect to a Riemann-
ian metric h. The existe of isothermal coordinates [Umehara and Yamada(2017)]
tells us that there exists a complex structure in Σ such that in holomorphic coor-
dinates z = x+ iy, the vector fields ∂x and ∂y are h-orthogonal. As the S1-action
is h-isometric, it preserves angles and orientation in the isothermal coordinates
and thus it is an action by holomorphic transformations. By the uniformization
Theorem, the universal cover of Σ is the hyperbolic semiplane H2 ⊂ C and the
holomorphic automorphisms of Σ lift to holomorphic automorphisms of H2 which
also are isometric automorphisms with respect to the hyperbolic metric. As a con-
sequence of this, we have that the S1-action preserves a hyperbolic metric in Σ
which has finite volume, because Σ is compact, but this contradicts Lemma 19. �

Corollary 22. If Σ is a compact, orientable surface of genus g ≥ 2 and h is a
Riemannian metric in Σ, then the isometry group Iso(Σ, h) is finite.

Proof. As Σ is compact, then the isometry group G = Iso(Σ, h) is a compact
Lie group. If g denotes the Lie algebra of G, then for every X ∈ g, the one
parameter group {exp(tX)} is a commutative group whose closure is a compact,
commutative Lie group with connected component of the identity isomorphic to a
product S1 × · · · × S1. As a consequence of this and the fact that G has only has
finitely many connected components, if G is infinite, then it has a closed subgroup
isomorphic to S1, but this is impossible as is shown in Lemma 21. �

9.2. Finner classification of hyperbolic isometries. Recall that in dimension
two, we have the action of SL2(R) on H2 by isometries via Möbius transformations,
so that we have a realization of the orientation preserving isometries as Iso(H2) ∼=
PSL2(R). An element A ∈ SL2(R) has as a characteristic polynomial pA(x) =
x2 − tr(A)x + 1, and discriminant tr(A)2 − 4. Thus, there are three dynamically
different possibilities for the isometry of H2 generated by A, characterized by the
sign of tr(A)− 2:
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• tr(A) − 2 > 0, where the matrix is conjugated to a diagonal matrix over
R, and thus, the conjugated isometry is contained in the one parameter
group of isometries generated by{

exp

(
t 0
0 −t

)
=

(
et 0
0 e−t

)
: t ∈ R

}
.

One isometry of this type is called hyperbolic, and the one-parameter
group generated by this matrix is characterized by the property of having
two fixed points in the boundary S1 = ∂H2 and preserves a foliation
determined by the two points and guided by the geodesic that joints the
two points (in the case of diagonal matrices, this is {0,∞}).

• tr(A) − 2 = 0, where the matrix is conjugated over R to an upper trian-
gular matrix, and thus, the conjugated isometry is contained in the one
parameter group of isometries generated by{

exp

(
0 t
0 0

)
=

(
1 t
0 1

)
: t ∈ R

}
.

One isometry of this type is called parabolic, and the one-parameter group
generated by this matrix is characterized by the property of having one
fixed point in the boundary ∂H2 and preserving the foliation of horocycles
tangent to the fixed point (in the upper triangular case, the horocycles
that are tangent to ∞ are just horizontal lines).

• tr(A)−2 < 0, where the matrix is conjugated over R to a rotation matrix,
so that the conjugated isometry is contained in the one parameter group
of isometries generated by{

exp

(
0 −t
t 0

)
=

(
cos(t) − sin(t)
sin(t) cos(t)

)
: t ∈ R

}
.

One isometry of this type is called elliptic, and the one-parameter group
generated by this matrix is characterized by the property of having one
fixed point in the interior of H2 and preserving a foliation of circles.

Lemma 23. If α, β ∈ PSL2(R) are two non-trivial elements, then

(i) α and β commute if and only if Fix(α) = Fix(β),
(ii) C(α) = {γ ∈ PSL2(R) : αβ = βα} = {exp(tX) : t ∈ R}, for some

X ∈ sl2(R). In particular C(α) is isomorphic to either R or S1.

Proof. Suppose αβ = βα, then β(Fix(α)) = Fix(α) and α(Fix(β)) = Fix(β). If α
is parabolic or elliptic, then it has only one fixed point and thus Fix(α) = Fix(β)
and the same applies for β either parabolic or elliptic. In the case where both α and
β are hyperbolic, we observe that β cannot interchange two distinct elements of the
boundary S1, thus the property β(Fix(α)) = Fix(α) implies Fix(α) = Fix(β).
On the other hand, if α and β have the same set of fixed points, then they are
elements of the same one-parameter group, this is obvious when the fixed points
are in standard configuration, that is {0,∞}, {∞} or {i} according if the element
is hyperbolic, parabolic or elliptic; and in general it can be seen via a conjugation
of matrices by sending the fixed points to the standard configuration. In particular
αβ = βα, because a one-parameter group is commutative and the result follows. �

Corollary 24. If Γ ⊂ PSL2(R) is a subgroup such that it has the identity element
as an accumulation point (equivalently Γ is not a discrete subgroup) and Λ ⊂ Γ is
a non-trivial, normal and discrete subgroup, then there exist Γ1 ⊂ Γ commutative
subgroup of finite index.
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Proof. Λ is cyclic. As Λ is normal, for every γ ∈ Γ, the conjugation induces an
automorphism

Λ→ Λ, g 7→ γgγ−1,

and as Λ is discrete and Γ has the identity element as an accumulation point, for
every F ⊂ Λ finite set, there exist γ ∈ Γ close enough to the identity such that
γ 6= e and γg = gγ, for every g ∈ F . By the Lemma 23, the group generated by
F is a discrete subgroup of the one-parameter group C(γ) and thus it is a cyclic
group. For F1 ⊂ F2 ⊂ Λ any two distinct finite subsets, there are elements gj ∈ Λ
such that 〈gj〉 = 〈Fj〉 and 〈F1〉 ⊂ 〈F2〉 which implies that g1 = gk2 for some k and
in particular 0 < |g2| < |g1|. Now Λ must be cyclic because otherwhise we would
have a sequence {gj} ⊂ Λ obtained as the generators of subgroups generated by an
increasing tower of finite subsets of Λ that converge to the identity.

Existence of Γ1. Take α ⊂ Λ a generator of the group and as γαγ−1 is again
a generator of Λ, for every γ ∈ Γ, then the subgroup

Γ1 = {γ ∈ Γ : γαγ−1 = α}
is a finite index subgroup of Γ ([Γ : Γ1] ≤ 2 if Λ ∼= Z, and [Γ : Γ1] ≤ |Λ| if Λ ∼=
Z/mZ). Finally, by the Lemma 23, Γ1 is commutative and the result follows. �

10. H2 × R

Recall [Kobayashi and Nomizu(1996)], Chapter VI, Theorem 3.5 that given a
product of riemannian manifolds M × N with M of constant sectional curvature
andN flat, the isometry group of M×N decomposes as a direct product, Isom(M)×
Isom(N). The following give us the isometry groups of finite volume quotients of
H2 × R (see Theorem 31 for another proof):

Theorem 25. If G ⊂ Iso(H2 × R) is a discrete subgroup such that (H2 × R)/G
has finite volume, then the group Iso((H2 × R)/G) is a finite extension of S1

Proof. Consider the exact sequence

1→ K → G→ Γ→ 1,

where K = G ∩ Iso(R) is a discrete subgroup of G and Γ ∼= G/K is a subgroup
of isometries of H2. If Γ is discrete as a subgroup of Iso(H2), then H2/Γ is an
hyperbolic orbifold such that

R/K → (H2 × R)/G→ H2/Γ

is a locally trivial fiber bundle and as (H2×R)/G has finite volume, then R/K ∼= S1

and Γ is a Lattice subgroup of Iso(H2). In this case, we have an exact sequence of
isometry groups

1→ Iso(S1)→ Iso(H2 × R/G)→ Iso(H2/Γ)→ 1,

where Iso(H2/Γ) is a finite group by Lemma 19 and thus Iso(H2×R/G) is a finite
extension of S1.

If Γ is not discrete as a subgroup of Iso(H2), we can see that the quotient
(H2 × R)/G cannot have finite volume. To see this, first observe that we have
another exact sequence

1→ Λ→ G→ L→ 1,

where Λ = G ∩ Iso(H2) ⊂ Γ is a discrete, normal subgroup and G/Λ ∼= L ⊂
Iso(R). If Λ = 0, then G ∼= L is commutative and thus Γ is commutative. If
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instead Λ is non-trivial, then Corollary 24 tells us again that Γ is commutative
(perhaps after passing to a finite index subgroup). In any case, G leaves a closed
surface ζ × R ⊂ H2 × R fixed, where ζ is a geodesic, an horocycle or a circle
(corresponding to the type of the isometries of Γ). If Γ consists of parabolic or
hyperbolic elements, then Γ acts discretely by Euclidean automorphisms in ζ ×
R ∼= R2 so that by Bieberbach Theorem [Ratcliffe(2019)], Γ contains a finite index
subgroup isomorphic to a subgroup of Z2 and in particular the fundamental domain
of the G-action in H2 × R contains a subset isometric to

{x+ iy : a < x < b} × [c, d] ⊂ H2 × R,

this implies that (H2 × R)/G doesn’t have finite volume. If Γ consists of elliptic
elements, then G acts discretely by Euclidean automorphisms in ζ × R ∼= S1 × R,
and thus as in the previous case, the G-action has a fundamental domain containing
an open subset isomorphic to

{(seiθ, r) ∈ D× R : a < θ < b, c < r < d},

where D ∼= H2 is the poincaré disc model of the hyperbolic plane, and again (H2 ×
R)/G doesn’t have finite volume. �

11. SL2-geometry

11.1. Riemannian structure of PSL2(R). Recall that given a Riemannian man-
ifolds (M, g), there is a natural construction of a Riemannian tensor on the tangent
bundle TM constructed as follows: if (p, x) ∈ TM , and (c(t), v(t)) ∈ TM is a
smooth curve such that c(0) = p and v(0) = x, then

‖(c′(0), v′(0))‖2(p,x) = ‖dπ(p,x)((c
′(0), v′(0)))‖2p +

∥∥∥∥Ddt |t=0
v(t)

∥∥∥∥2

p

,

where π : TM → M is the projection, D
dtv(t) is the covariant derivative along the

curve c(t) and g(u, u)p = ‖u‖2p. If X = c′(0) and Z = v′(0), in local coordinates we
have the formula

‖(X,Z)‖2(p,x) = ‖X‖2p +
∥∥Z +XjviΓkij∂k

∥∥2

p
.

The vector (X,Z) is called horizontal if c(t) is constant, and thus X = 0, it is called
vertical if it is orthogonal to every horizontal vector in which case Z = −XjviΓkij∂k.
So, we have a decomposition in horizontal and vertical components as

(X,Z) = (0, Z +XjviΓkij∂k) + (X,−XjviΓkij∂k).

If we take the global coordinates (x, y) 7→ x+ iy of the hyperbolic plane

H2 = {z ∈ C : Im(z) > 0},

with corresponding metric tensor ds2 = dx2+dy2

y2 , then the Christoffel symbols at a

point x+ iy are given by

−Γ2
11 = Γ2

22 = Γ1
12 = Γ1

21 = −1/y.

There is a natural identification of the tangent bundle

H2 × C ∼= TH2, (z, w) 7→ d

dt |t=0
(z + tw)

and so the projection π : TH2 → H2 is just given by the projection in the first
factor and we have global coordinates in each tangent plane ∂1 = 1 and ∂2 = i. If
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as before, (X,Z) is a tangent vector to TH2 at the point (p, v) = (i, 1), then the
orthogonal decomposition in horizontal and vertical components is given by

(X,Z) = (0, Z −X2 +X1i) + (X,X2 −X1i).

The isometric action by Möbius transformations of SL2(R) in H2, induces the action
in the tangent bundle

SL2(R)× TH2 → TH2,

(
a b
c d

)
· (z, w) =

(
az + b

cz + d
,

w

(cz + d)2

)
.

This action is transitive in the unitary tangent bundle T 1H2 = {(z, w) ∈ H2 :
‖w‖z = 1}, so the orbit of the point (i, 1) ∈ T 1H2 induces the diffeomorphism
φ : PSL2(R)→ T 1H2 given explicitly by the formula

φ

(
a b
c d

)
=

(
ai+ b

ci+ d
,

1

(ci+ d)2

)
.

As this action is also isometric with respect to the previously defined metric, it will
define a left invariant metric in PSL2(R) that corresponds to an inner product in
its tangent vector to the identity, naturally identified with the Lie algebra

sl2(R) = {A ∈M2(R) : tr(A) = 0}.

More precisely, if we consider the derivative dφ, we get the identification

Ψ : sl2(R)→ T(i,1)(TH2), Ψ(X) =
d

dt |t=0
φ(exp(tX)).

A basis of sl2(R) is given by

X1 =

(
1 0
0 −1

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 1
1 0

)
.

If gt,j = exp(tXj), then φ(gt,1) = (e2ti, e2t), φ(gt,2) = (i, e2it) and

φ(gt,3) =

(
ch(t)i+ sh(t)

ch(t) + ish(t)
,

1

(ch(t) + ish(t))2

)
,

where ch(t) and sh(t) denote the hyperbolic cosine and the hyperbolic sine corre-

spondingly. If X̂j = Ψ(Xj), we have

X̂1 = (2i, 2), X̂2 = (0, 2i), X̂3 = (2,−2i),

where we immediatly see that X̂2 is vertical and a direct computation tells us that

X̂1 and X̂3 are horizontal and orthogonal. Thus { 1
2X1,

1
2X2,

1
2X3} is an orthonor-

mal basis in the corresonding inner product in sl2(R).

As the PSL2(R)-action is given by holomorphic maps, it commutes with the
action of given by rotations in each tangent plane

S1 × T 1H2 → T 1H2, η · (z, w) = (z, ηw),

as well as with the map (z, w) 7→ (z, w). It is immediate the previous maps act
by isometries and in fact generate the whole isometry group. Thus, the isometry
group Iso(PSL2(R)) is isomorphic to PSL2(R)× (S1 o Z2), see [Scott(1983)].

Theorem 26. If Γ ⊂ Iso(PSL2(R)) is a discrete group such that PSL2(R)/Γ has
finite volume, then

Iso(PSL2(R)/Γ) ∼= S1 o F,

where F is a finite group.
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Proof. Consider the projection into the simple factor

P : Iso(PSL2(R))→ PSL2(R),

as the Kernel of P is compact and Γ is a discrete subgroup, then Γ0 = P (Γ) is
a discrete subgroup of PSL2(R) and Γ0

∼= Γ/F0, with F0 = Ker(P ) ∩ Γ a finite
subgroup of S1 o Z2. Observe that π : PSL2(R)→ H2 is a fiber bundle with fiber
S1 such that π(γx) = P (γ)π(x), so we have an induced projection

π : PSL2(R)/Γ→ H2/Γ0,

which implies that H2/Γ0 has finite hyperbolic area. As we also have the identifi-
cation π : PSL2(R)/Γ0 → H2/Γ0, we have that Γ0 is a Lattice in PSL2(R). By
Lemma 19, we have that Γ0 has finite index in Λ = NPSL2(R)(Γ0). Observe that if

F1 = Λ/Γ0, then we have that Γ ⊂ Λ× S1 o Z2 and a bijection of sets

(Λ× S1 o Z2)/Γ ∼=
(Λ× S1 o Z2)/F0

Γ/F0
↪→ (Λ× S1 o Z2)/Γ0

∼= F n S1,

where F is either F1, or F1 × Z2, deppending on whether Γ contains the map
(z, w) 7→ (z, w) or not. Thus, we have that

S1 ⊂ NIso(PSL2(R))(Γ)/Γ ⊂ (Λ× S1 o Z2)/Γ ∼= F n S1,

and the result follows. �

Remark: 27. As seen in Remark 20, we can obtain every finite group as an isom-
etry group of an hyperbolic surface, so that, the finite factor of the isometry group
in Theorem 26, can be any finite group.

11.2. The universal cover S̃L2(R). The Lie group PSL2(R) is topologically the

product S1 ×R, so that there is a simply connected Lie group denoted by S̃L2(R)
which is the topological universal cover of PSL2(R) and algebraically it is a central
extension by a cyclic group Z, more precisely, there is an exact sequence

1→ Z→ S̃L2(R)→ PSL2(R)→ 1,

where Z ⊂ S̃L2(R) is the center. We can pull-back the metric tensor of PSL2(R)

we constructed in the previous section to S̃L2(R) to obtain the model of the homo-
geneous 3-dimensional geometry denoted by SL2.

Remark: 28. The isometry group of S̃L2(R) can be characterized into three dif-
ferent ways. First, we have the homomorphism

S̃L2(R)× R→ Iso(S̃L2(R))

given by left and right multiplications, here R ∼= S̃O(2) is the universal cover of the

rotation group SO(2) ⊂ SL2(R), with Kernel Z = R ∩ S̃L2(R) being precisely the

center of S̃L2(R), so that Iso(S̃L2(R)) has two connected components and

Iso(S̃L2(R))0
∼=
(
S̃L2(R)× R

)
/Z

is the component of the identity. In fact, we have an epimorphism

Iso(S̃L2(R))→ Iso(PSL2(R)) ∼= PSL2(R)× (S1 o Z2),

with Kernel isomorphic to Z, however, the group Iso(S̃L2(R)) is no longer a product
group. The left projection of the previous product gives us the second description
in terms of a short exact sequence

1→ R→ Iso(S̃L2(R))0 → PSL2(R)→ 1,
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and if we consider the groups S̃L2(R) and R as closed subgroups of Iso(S̃L2(R),
then we have the third description

Iso(S̃L2(R))0 = L(S̃L2(R))R(R),

where L(·) and R(·) represent left and right multiplications in the group S̃L2(R).

A discrete subgroup Γ ⊂ Iso(PSL2(R)) can be lifted to a discrete subgroup

Γ̃ ⊂ Iso(S̃L2(R)), so that S̃L2(R)/Γ̃ ∼= PSL2(R)/Γ and thus, we can compute

Iso(S̃L2(R)/Γ̃) with Theorem 26, however, not every discrete group of Iso(S̃L2(R))
can be obtained this way. In the next section we prove discuss the general setting

for discrete groups of isometries in S̃L2(R).

11.3. General orbifolds modelled in S̃L2(R). The following Lemma is well
known and holds for every Lie group, but we include a proof of the case we need
for the sake of completeness.

Lemma 29. If G is a Lie group locally isomorphic to R× SL2(R), for example G

can be the isometry group of S̃L2(R) or H2 × R, then there exists a neighborhood
of the identity U ⊂ G such that [U,U ] ⊂ U .

Proof. Observe first that this is a local property, so we only need to prove this for
linear groups. As the R factor lies in the center, we have that

[gg0, hh0] = [g, h], ∀ g0, h0 ∈ R

and thus we only need to prove this for SL2(R). The commutator[(
a x
y b

)
,

(
c z
w d

)]
=

(
t1 t3
t4 t2

)
,

is defined by the relations

• t1 = 1+xy+zw+xyzw+wxac+w2x2−adxw−a2zw+bxwd−yd2x−azyd,
• t2 = 1+xy+zw+xyzw−xwbc− c2xy+ayzc−zb2w−zbcy+zybd+z2y2,
• t3 = xac(d− c)− cx2w + acz(a− b)− xwbz + zydx+ z2ya,
• t4 = w2xb+ wxcy + bdw(b− a)− awyz + bdy(c− d)− dy2z.

So that if 0 ≤ |x|, |y|, |z|, |w| < ε and 1−ε < a, b, c, d < 1+ε, then there is a constant
C > 0 independent of ε such that |t3|, |t4| < Cε2 and |t1− 1|, |t2− 1| < Cε2. Thus,
by choosing ε > 0 such that Cε2 < ε, the neighborhood

Uε =

{(
a x
y b

)
: |x|, |y| < ε, |a− 1|, |b− 1| < ε

}
is stable under taking commutators. �

Proposition 30. Let H be a Lie group which is a central extension of PSL2(R)
of the form

1→ R→ H → PSL2(R)→ 1.

If G ⊂ H is a discrete subgroup with induced exact sequence

1→ K → G→ Γ→ 1,

with K ⊂ R, then either Γ ⊂ PSL2(R) is discrete or is an abelian subgroup leaving
fixed a point, a geodesic or a horocycle in H2.
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Proof. Denote by p : H → PSL2(R) and consider U ⊂ H a neighborhood of
the identity such that [U,U ] ⊂ U and U ∩ G = {e}. We have that the group
L = 〈p(U) ∩ Γ〉 is a commutative subgroup of PSL2(R), to see why this is true
take two elements α, β ∈ G such that p(α), p(β) ∈ p(U), then we may write those
elements as α = α0α1 and β = β0β1, where

α1, β1 ∈ R, α0, β0 ∈ U.
As R lies in the center of H we have that [α0, β0] = [α, β] ∈ G ∩ U and thus α and
β commute. Now, for every α ∈ G, choose a neighborhood of the identity Uα ⊂ G
such that [α,Uα] ⊂ U , so that the elements of Γ∩ p(Uα) commute with p(α) (same
argument as with the commutativity of L). Suppose that Γ is non-discrete, then
L is a non-trivial commutative subgroup and for every γ = p(α) ∈ Γ, we have that
Γ∩ p(Uα) is a non-trivial subset that generates the group L and commutes with γ.
So, Γ commutes with L and thus, there exists an element X ∈ sl2(R) such that

Γ ⊂ L = {exp(tX) : t ∈ R}
and Γ leaves fixed a point, a geodesic or a horocycle, depending on the type of
X. �

Theorem 31. If G is a discrete subgroup of isometries of X either S̃L2(R) or
H2 × R such that X/G has finite volume, then the isometry group Iso(X/G) is a
finite extension of S1.

Proof. The exact sequence

1→ R→ Iso(X)→ PSL2(R)→ 1

induces the sequence
1→ K → G→ Γ→ 1,

if Γ is non-discrete, then it preserves a geodesic, a point or a horocycle by Proposi-
tion 30 and we can see that X/G doesn’t have finite volume (as we did in Theorem
25). So, Γ is a discrete subgroup of isometries of the hyperbolic plane and we have
a fiber bundle structure

R→ X → H2

so that the volume form decomposes as∫
R

∫
H2

fdµdt =

∫
X

fdvolX

where dµ is the hyperbolic area form. If D ⊂ H2 is a fundamental domain of Γ,

then π−1(D) = D̂ is such that gD̂∩D̂ 6= ∅ only for g ∈ K = G∩R. Thus for Ω ⊂ R
fundamental domain of K in R we have that Ω×D is a fundamental domain for G
which implies that

V ol(X/G) ≥
∫

Ω

∫
D

ξ = |Ω| × µ(D),

and we have that µ(A) < ∞ and |Ω| < ∞ which implies that K = Z. Take

Ñ = NIso(X)(G) and N = NPSL2(R)(Γ), so that we have the exact sequence

1→ N0 → Ñ → N → 1

(because gGg−1 = G projects to gΓg−1 = Γ and N0 = R because R normalizes

S̃L2(R)), this sequence induces the exact sequence

1→ N0/Z→ Ñ/G→ N/Γ→ 1

(to see that this sequence is exact observe that π(gG) = gΓ is well defined and
surjective, the condition π(gG) = Γ holds if and only if g ∈ Γ and thus g = [A, r]
withA ∈ Γ, this is because there is an element h = [A, s] ∈ G, thus gG = gh−1G and
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gh−1 ∈ i(N0/Z). This implies that the kernel of π is i(N0/Z). Finally i(rZ) = G
if and only if r ∈ G, but G ∩ R = Z, so that rZ = Z and thus i is injective). This
exact sequence can be written as

1→ S1 → Iso(X/G)→ Iso(H2/Γ)→ 1

which implies the result because of the Lemma 19. �

12. Three dimensional Alexandrov Spaces

We will need some preliminaries on three dimensional Alexandrov spaces. For a
general reference see [Burago et al.(2001)Burago, Burago, and Ivanov].

Alexandrov spaces are a synthetic generalization of complete riemannian mani-
folds with a lower bound on sectional curvature. The generalization uses comparison
triangles with respect to the model spaces S2

k, which are simply connected, two di-
mensional complete riemannian manifolds of constant curvature k. More precisely,
for k > 0, S2

k is the sphere of radius 1√
k

, for k < 0, S2
k is the hyperbolic plane

H2( 1√
−k ) of constant curvature k, and for k = 0, S2

k is the euclidean space R2.

Given a geodesic triangle in a geodesic length space (X, d), with vertices p, q, r ∈
X, a comparison triangle in S2

k is a geodesic triangle p̄q̄r̄ having the the same side
lengths. The geodesic length space (X, d) is said to satisfy the Topogonov property
for k ∈ R, if for each triple p, q, r ∈ X of vertices of a geodesic triangle, and each
point s on the geodesic from q to r, the inequality d(p, s) ≥ d(p̄, s̄) holds, where s̄
is the point on the geodesic side q̄r̄ of the comparison triangle with d(p̄s̄) = d(p, s).

Definition 12.1. A n-dimensional k-Alexandrov space is a complete, locally com-
pact, length space of finite Hausdorff dimension n, such that the Topogonov Prop-
erty is satisfied locally for k.

Topogonov’s globalization theorem tells us that the local and global Toponogov
property are equivalent in k-Alexandrov spaces. By Gromov’s precompactness theo-
rem, Alexandrov n-dimensional spaces arise as Gromov-Hausdorf limits of compact
riemannnian manifolds of dimension n for which the sectional curvature is bounded
below by k, and the diameter above by some fixed positive number D.

The class of k-Alexandrov spaces includes riemannian manifolds of sectional
curvature bounded below by k, and several constructions including more gen-
eral geodesic length spaces such as euclidean cones, suspensions, joins, quotients
by isometric actions of compact Lie groups, and glueings along a submetry, see
[Galaz-Garćıa(2016)] section 2.2. From now on, we will omit the k from the nota-
tion.

There exists a notion of angle between geodesics of an Alexandrov space, and a
space of tangent directions at a given point p, denoted by Σp can be defined as the
completion of the metric space of equivalence classes of geodesics making a zero
angle.

The space of tangent directions at a point p in an Alexandrov space X , denoted
by Σp, has the structure of a 1-Alexandrov space of Hausdorf dimension dim(X)−1.
There is a set RX ⊂ X, called the set of metrically regular points, where a point p
belongs to RX if its direction space Σp is isometric to the radius one sphere. The
complement is called the set of metric singular points and denoted by SX = X\RX .
There are examples of Alexandrov spaces whose space of metrically singular points
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is dense, as seen in an example constructed in [Otsu and Shioya(1994)] as a limit
of Alexandrov spaces, using baricentric subdivisions of a tetrahedron. However, for
every Alexandrov space X, there is a dense subset of topologically regular points,
whose space of directions are homeomorphic to a sphere (the set of topologically
singular points is the complement of the set of topologically regular points). By
Perelman’s conical neighborhood theorem, every point p in an Alexandrov space
has a neighborhood pointed homeomorphic to the euclidean cone over Σp, so that
a locally compact, finite dimensional Alexandrov space has a dense subset which is
a topological manifold.

In the specific case of dimension three, there are only two possibilities for the
homeomorphic type of the space of directions, which is the two sphere S2, for the
topologically regular points and the real projective space RP2 for the topologically
singular points. Let us summarize the basic structure of three dimensional Alexan-
drov spaces due to Galaz-Garćıa and Guijarro, compare Theorem 1.1 in page 5561
of [Galaz-Garcia and Guijarro(2015)], and Theorem 3.1 and 3.2 in page 1196 of
[Galaz-Garcia and Guijarro(2013)].

Theorem 12.2. Let X be three dimensional Alexandrov space.

• The set of metrically regular points is a riemannian three manifold.
• The set of topologically singular points is a discrete subset of X.
• If X is closed, and positively curved Alexandrov space, that contains a

topologically singular point, then X is homeomorphic to the suspension of
RP 2.

A closed Alexandrov space is geometric if it can be written as a quotient of one of
the eight geometries of Thurston under a cocompact lattice. The following theorem
was proved as Theorem 1.6 in [Galaz-Garcia and Guijarro(2015)] in page 5563.

Theorem 12.3. A three dimensional Alexandrov space admits a geometric de-
composition into geometric pieces, along spheres, projective planes, tori and Klein
bottles.

We now direct our attention to the isometry group of three dimensional Alexan-
drov spaces.

Theorem 12.4. Let X be an n-dimensional Alexandrov space of Hausdorff dimen-
sion n.

• The Isometry group of X is a Lie Group. It is compact if X is.
• The dimension of the group of Isometries of X is at most

n(n+ 1)

2
,

and the bound is attained if and only if X is a riemannian manifold.

Proof. • The first part is proved as the main Theorem, 1.1 in [Fukaya and Yamaguchi(1994)].
The second part follows from the Van Dantzig-Van der Waerden Theorem
[Dantzig and Van der Waerden(1928)].

• This is proved as Theorem 3.1 in page 570.

�
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Remark: 32. It is proved in [Bagaev and Zhukova(2007)] that the same lower
bound for the dimension of the isometry group holds in general for Riemannian
orbifolds.

13. Hilbert-Smith conjecture

The following conjecture was formulated as an extension of Hilbert’s 5th Prob-
lem:

Conjecture 13.1 (Hilbert-Smith conjecture). If G is a locally compact, topological
group, acting faithfully on a topological manifold, then G is a Lie group.

As a consequence of structural theorems of locally compact groups, such as
Gleason-Yamabe theorem and some theorems of Newman, a counter-example to

such conjecture must contain a copy of a p-adic group Ẑp, for some p, see [Lee(1997)],
thus giving the equivalent conjecture

Conjecture 13.2 (Hilbert-Smith conjecture p-adic version). For every prime p,

there are no faithful actions of the p-adic group Ẑp on a topological manifold.

Conjecture 13.2 has been proved in different contexts. For example, if there
is a notion of dimension which must be preserved, such as bi-Lipschitz actions of

Ẑp on Riemannian manifolds, where three notions of dimension coincide: Haus-
dorff dimension, cohomological dimension with integer coefficients and topological
dimension. In such setting, the bi-Lipschitz condition tells us that the Hausdorff di-
mension on the quotient cannot decrease, but on the other hand a theorem by Yang
[Yang(1960)], tells us that the cohomological dimension of the quotient increases
by two, leading to the following result:

Theorem 33 (Repovš-Ščepin [Repovs and Scepin(1997)]). There are no faithful

actions by bi-Lipschitz maps of the p-adic group Ẑp on a Riemannian manifold.

The stronger setting of the topological actions is much harder and has been
proved only for small dimensions

Theorem 34 ([Pardon(2019)], [Pardon(2013b)]). For every prime p, there are

no faithful actions by homeomorphisms of the p-adic group Ẑp on a topological
manifold of dimension n ≤ 3.

Remark: 35. The p-adic group can be described as

Ẑp =

{ ∞∑
n=0

anp
n : an ∈ {0, 1, · · · , p− 1},

}

so that pkẐp ⊂ Ẑp is an open, normal subgroup, with Ẑp/pkẐp ∼= ZpkZ, giving the

inverse limit description Ẑp = lim← Zpk , moreover, the group Ẑp is homeomorphic

to the Cantor space {0, · · · , p− 1}N. Observe that there is a topological 2-manifold
with the cantor space 2N as its ends space, which is Σ = S2 \ C, where C ⊂ S2

is a closed subset homeomorphic to 2N. Thus, there is a faithful action of Ẑ2 on
End(Σ) ∼= 2N and every homeomorphism of End(Σ) extends to a homeomorphism
of the surface Σ, however, by Theorem 34, such extensions cannot be promoted to

an action of Ẑ2 on the Freudenthal compactification.
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As seen in the previous section, an Alexandrov space X has a closed subset
SX , corresponding to topologically singular points and such that the set of regular
points RX = X \ SX is an open-dense subset, having the structure of a topological
manifold. An action by homeomorphisms on X must preserve the decomposition

X = SX ∪RX and a continuous action of Ẑp which is trivial on the regular points,
is trivial on the whole space X.

Hence, the weaker version of the p-adic Hilbert-Smith conjecture for Alexandrov
spaces holds, and we can consider the following conjecture:

Conjecture 13.3. If G is a locally compact, topological group, acting faithfully on
a finite dimensional Alexandrov space by homeomorphisms, then G is a Lie group.

A consequence of Theorem 34, gives us

Theorem 36. If G is a locally compact, topological group, acting faithfully on a
three dimensional Alexandrov space by homeomorphisms, then G is a Lie group.

Remark: 37. As observed in previous section, there is a subset of metrically regular
points which admits a compatible Riemannian metric, constructed in [Otsu and Shioya(1994)].

Thus, we have as a consequence of Theorem 33, that the p-adic group Ẑp cannot act
faithfully by bi-Lipschitz homeomorphisms. However, we should be careful, as the
set of metrically singular points can be dense, as seen in an example constructed
in [Otsu and Shioya(1994)] as a limit of Alexandrov spaces, using baricentric sub-
divisions of a tetrahedron.

14. Lattices on semisimple Lie groups of higher rank

Recall that an algebraic R-group is a subgroup GC ⊂ GLm(C) obtained as
solutions of polynomial equations with coefficients over R and GR = GC ∩GLm(R)
is a real Lie group. In this context we say that GR is a real form of GC or that
GC is a complexification of GR. The local structure of a Lie group is captured by
its Lie algebra, so that two groups are locally isomorphic if and only if they have
isomorphic Lie algebras, and thus, they can be obtained one from the other by
taking connected components and topological covers.

The class of semisimple Lie groups can be defined as the class of Lie groups
which are constructed up to covers and connected components from algebraic R-
groups which split as products G1× · · · ×Gk, where each factor Gj is simple. This
definition is equivalent to other definitions of semisimple Lie groups aviailable in
the literature, see [Zimmer(1984)].

Remark: 38. Not every semisimple Lie group is an algebraic group as the group

SL2(R) has a universal cover, denoted by S̃L2(R), which is homeomorphic to R3

and it cannot be embedded in any linear group GLm(C) as a Lie subgroup. In the
same way, not every semisimple Lie group splits as a product of simple Lie groups,
as the example SO(4) shows, but its universal cover is isomorphic to the product
SU(2)×SU(2). In general, given a connected semisimple Lie group G, with center
Z(G), then the quotient G/Z(G) is a connected, linear algebraic group which splits
as a product of simple groups and it is locally isomorphic to G. Thus it is common
for some results to ask for the group to be centerless.

In the context of algebraic groups defined over a field k, the concept of k-rank
is the maximal abelian subgroup which can be diagonalized over k. Thus, for
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a complex algebraic group, the C-rank is the dimension of a maximal subgroup
isomorphic to a complex torus (C∗)l and we are particularly interested in the real
rank of a real form. We can observe that the real rank of a product G1×· · ·×Gk is
the sum of the real rank of its factors Gj and we can give some explicit examples.

Example 14.1. The following is a complete list, up to local isomorphism, of com-
plex, simple Lie groups and some examples of their real forms:

(i) The group SLn(C), has C-rank n − 1 and has the groups SU(p, q) and
SLn(R) as real forms, with real rank equal to min{p, q} and n− 1 respec-
tively.

(ii) The group SO(n,C) has C-rank
⌊
n
2

⌋
and has the groups SO(p, q) as real

forms, having real rank equal to min{p, q}.
(iii) The group Sp(2n,C) has C-rank n and has the groups Sp(p, q) and Sp(2n,R)

as real forms, with real rank equal to n and min{p, q} respectively.
(iv) The exceptional complex groups G2(C), F4(C), E6(C), E7(C), E8(C) have

C-rank determined by the corresponding subindex.

Remark: 39. Between the possible real forms of a complex semisimple Lie group,
there is one and only one compact real form up to conjugacy and such compact
form has a compact universal cover, so the compactness property survives in the
process of passing to a cover. We can thus, speak of the compact factors of a real
semisimple Lie group. Moreover, the rank of a compact Lie group, defined as the
dimension of a maximal torus (S1)l contained in the group, equals the rank of its
complexification and has real rank equal to 0. Finally, given a compact, connected,
Lie group C, there is a finite cover of C that splits as G×T , where G is an algebraic
semisimple Lie group, and T is a torus.

Definition 14.2. A semisimple Lie group is said to have higher rank if its real rank
is greater or equal to 2. Moreover, if a semisimple Lie group has a complexification
whose simple factors are all locally isomorphic, the group is called isotypic.

Isotypic Lie groups are important, because we can construct irreducible lattices
in them, which don’t split as a product of lattices in the simple factors.

Example 9. If σ : Q(
√

2) → Q(
√

2) is the non-trivial Galois automorphism and

Q(x, y, z, t) = x2 + y2 −
√

2z2 −
√

2t2, σ(Q) = x2 + y2 +
√

2z2 +
√

2t2. The groups
G = SO(Q,R) ∼= SO(2, 2) and K = SO(σ(Q),R) ∼= SO(4) are semisimple Lie
groups, with K compact and G of real rank equal to 2. If we consider the integral
points in G, that is, the group Γ = SO(Q,Z(

√
2)) ⊂ G, then the group,

Γ̂ = {(g, σ(g)) ∈ G×K : g ∈ Γ}

is discrete. In fact there is an R-group HC ⊂ GLm(C) such that HR = G × K

and HZ = Γ̂, in particular, it is a lattice which is co-compact. As the projection

G ×K → G has compact Kernel and maps Γ̂ onto Γ, thus Γ ⊂ G is discrete and
thus, a co-compact lattice in G.

Remark: 40. The previous example captures the general behaviour of irreducible
lattices in isotypic semisimple Lie groups. In fact, isotypic, semisimple Lie groups
are the only cases of semisimple Lie groups admiting irreducible lattices and such
lattices are constructed with the method of the previous example, but with higher
degree extension fields k/Q. See [Morris(2015)], Section 5.6 for the details of the
previous example and the construction in general.
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Remark: 41. As a consequence of the previous discussion, for every semisimple
Lie group G such that G× SO(4) is isotypic1, there is an irreducible lattice Γ ⊂ G
and an homomorphism Γ → SO(4) with dense image. In particular, such lattice
acts by isometries on the round sphere S3 with dense orbits. This tells us that
there are no restriction on the dimension of the higher rank lattices which can act
on the round sphere, but the type of such lattice is restricted. The same applies to
the 3-orbifolds of the type S2 × S1, as the first factor has isometry group SO(3)
which is simple.

We have in fact a converse of Remark 41, given by the following Theorem:

Theorem 42. If Γ ⊂ G is a lattice in a higher rank, semisimple Lie group, K is a
compact Lie group and ϕ : Γ→ K is a homomorphism with dense image, then the
group G×K is isotypic and Γ ⊂ G is cocompact.

Theorem 42 is “well known to the experts”, but a sketch of the first part of
its proof is made in [Brown et al.()Brown, Fisher, and Hurtado], section 2.3. The
fact that the lattice Γ is cocompact is a consequence of Godement’s compactness
criterion.

Corollary 43. If Γ ⊂ G is a lattice in a higher rank, simple Lie group, K is a
compact Lie group and ϕ : Γ → K is a homomorphism with infinite image, then
G × L is isotypic, with L = ϕ(Γ). In particular, dim(G) ≤ dim(K) and Γ is
cocompact in G.

As an immediate consequence, non-cocompact lattices don’t appear in this set-
ting and we have

Corollary 44. Let X be a geometric 3-orbifold of finite volume, and Γ a non-
cocompact higher rank lattice in a semisimple Lie group G, then any action of Γ in
X factors through a finite group.

As a particular example of the previous, any action of SLn(Z) in a geometric
3-orbifold of finite volume, factors through a finite group.

Corollary 45. Let X be a geometric 3-orbifold of finite volume, then X admits
an isometric action of a higher rank lattice Γ ⊂ G if and only if the group Iso(X)
contains the group SO(3). Moreover, the semisimple Lie group G is isotypic of type
SO(3) and the lattice is uniform.

Observe that the group SO(4) factors locally as the product SO(3) × SO(3)
and in fact, there is a copy of SO(3) inside SO(4), so that the previous Corollary
includes at the same time examples like X = S3/Λ and X = (S2 × R)/Λ.
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[Galaz-Garćıa(2016)] Fernando Galaz-Garćıa. A glance at three-dimensional Alexandrov

spaces. Front. Math. China, 11(5):1189–1206, 2016. ISSN 1673-3452. doi: 10.1007/
s11464-016-0582-3. URL https://doi.org/10.1007/s11464-016-0582-3.

[Galaz-Garcia and Guijarro(2013)] Fernando Galaz-Garcia and Luis Guijarro. Isometry groups

of Alexandrov spaces. Bull. Lond. Math. Soc., 45(3):567–579, 2013. ISSN 0024-6093. doi:
10.1112/blms/bds101. URL https://doi.org/10.1112/blms/bds101.

[Galaz-Garcia and Guijarro(2015)] Fernando Galaz-Garcia and Luis Guijarro. On three-

dimensional Alexandrov spaces. Int. Math. Res. Not. IMRN, (14):5560–5576, 2015. ISSN
1073-7928. doi: 10.1093/imrn/rnu101. URL https://doi.org/10.1093/imrn/rnu101.
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