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Abstract. We answer a question of Gracia-Ferreira and Hrušák by
constructing consistently a MAD family maximal in the Katětov order.
We also answer several questions of Garcia-Ferreira.

1. Introduction

We consider two kinds of closely related mathematical structures in this

paper: almost disjoint families and cofinitary groups.

An infinite family A ⊆ P(ω) is almost disjoint (AD) if the intersection of

any two distinct elements ofA is finite. It ismaximal almost disjoint (MAD)

if it is not properly included in any larger AD family or, equivalently, if given

an infinite set X ⊆ ω there is an A ∈ A such that |A ∩X| = ω.

An attempt to classify MAD families via Katětov order was initiated by the

second author in [6] and continued in [[3], [7], [9]]. This analysis is analo-

gous to the study of ultrafilters via the Rudin-Keisler order. The following

theorem can be considered the main result of the paper, it answers one of

the basic question about this ordering.

Theorem 1.1. (t = c) There exists a MAD family maximal in the Katětov

order.

It is worth mentioning that a MAD family maximal in the Katětov order

is the analogue of a selective ultrafilter in this context. This will be explained

in detail in Section 3.

Cofinitary groups are subgroups of the symmetric group on ω, and there-

fore they have a natural action on ω. The structure of (maximal) cofinitary

groups has received a lot of attention (recently see e.g., [2], [8]). For a nice

survey of algebraic aspects of cofinitary groups consult Cameron’s [4].

Definition 1.2. (i) For any set A we denote by Sym(A) the group of

permutations from A onto A, with the group operation given by
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composition. We write IdA for the identity or just Id in case A is

clear from the context.

(ii) We say that a subgroup G ≤ Sym(A)1is cofinitary if any g ∈
G \ {Id} has finitely many fixed points. i.e., the set Fix(g) = {x ∈
A : g(x) = x} is finite.

Some of the interest in cofinitary groups derives from the fact that they

are groups in which the graphs of all members are almost disjoint.

We can associate to each AD family A the subgroup Inv(A) of Sym(ω)

which consists of the permutations that preserve A, i.e., f [A] ∈ A for all

A ∈ A. Also, we shall consider its module finite version Inv∗(A) = {f ∈
Sym(ω) : ∀A ∈ A ∃A′ ∈ A, A′ =∗ f [A]}. We consider Sym(ω) as a topo-

logical group with the subspace topology of the product ωω. Sym(ω) is a

polish group since Sym(ω) is a Gδ subspace of ωω. Garcia-Ferreira in [5]

asked several questions concerning the existence of invariant subgroups of

Sym(ω) with certain topological properties. In Section 2 we answer these

questions and in the process we also construct a cofinitary group with special

topological properties which is of independent interest.

Theorem 1.3. There exists a countable dense cofinitary group.

For convenience of the reader we state the questions of [5].

Question 1.4. For any countable F ⊆ Sym(ω) is there a MAD family A
so that F ⊆ Inv(A)?

Question 1.5. Is there a MAD family A so that Inv(A) is a closed sub-

space?

Question 1.6. Is there a MAD family A such that Inv(A) is a dense

subspace?

We answer the first question in the negative and the other two questions

in the affirmative.

2. Cofinitary groups

The following Proposition gives a negative answer to question 1.4.

Proposition 2.1. There is a countable subset F of Sym(ω) such that F *
Inv(A) for any MAD family A.

Proof. We shall show that the set F consisting of functions which are almost

equal to the identity is as required.

1Here ≤ denotes the subgroup relation.
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For each MAD family A, choose A ∈ A, n ∈ A and m ∈ ω \ A. Define

f ∈ Sym(ω) as follows:

f(k) =

 n if k = m
m if k = n
k if k /∈ {n,m}

Then f ∈ F but f /∈ Inv(A) since f [A] = (A ∪ {m}) \ {n} /∈ A. �

We shall need the following simple facts.

Fact 2.2. If A and B are MAD families such that, for any A ∈ A there is

a B ∈ B so that A =∗ B, then Inv∗(A) = Inv∗(B).

Fact 2.3. Let A be a MAD family. For any g ∈ Inv∗(A) and B ⊂ A with

|B| < |A|, there are X, Y ∈ A \ B such that Y =∗ g[X].

We are now in position to provide an answer to Question 1.5.

Proposition 2.4. There is a MAD family A so that Inv(A) = {Id}.

Proof. Let C be a MAD family of cardinality c and let {fα : α < κ} be an

enumeration of the set Inv∗(C\{Id}). We will construct recursively a family

{Bi
β : i < 2, β < κ} ⊆ C satisfying:

(1) {B0
α, B

1
α} ∩ {Bi

β : i < 2, β < α} = ∅ for any α < κ and

(2) B1
α =∗ fα[B0

α] for any α < κ.

Suppose that we have constructed B = {Bi
β : i < 2, β < α} satisfying (1) and

(2) for some α. Using Fact 2.3, we can find A,B ∈ C \B so that B =∗ fα[A],

we set B0
α = A and B1

α = B. This finishes the recursive construction.

For each α < κ, we choose nα,mα ∈ ω such that nα 6= mα and fα(mα) = nα.

We now set A0
α = B0

α∪{mα} and A1
α = B1

α\{nα}. Observe that A1
α 6= fα[A0

α].

We define

A = (C \ {Bi
α : i ∈ 2, α < κ}) ∪ {Aiα : i ∈ 2, α < κ}.

It is easy to see that A is a MAD family and moreover, by Fact 2.2,

Inv∗(A) = Inv∗(C).
Suppose that there is fα ∈ Inv(A) \ {Id} ⊆ Inv∗(C) \ {Id}, then,

fα[A0
α] = fα[B0

α ∪ {mα}] =∗ B1
α =∗ A1

α

and also fα[A0
α] 6= A1

α, which is a contradiction since both belong to the

same MAD family A. �

The following lemma give us a useful combinatorial characterization of

cofinitary groups.

Lemma 2.5. If G < Sym(ω) is a countable group, then the following are

equivalent:
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(i) For any A ∈ [ω]ω there is B ∈ [A]ω such that the family {f [B] : f ∈
G} is almost disjoint,

(ii) G is cofinitary.

Proof. Let us first show that (i) implies (ii). Suppose that this is not the

case, then there is f ∈ G \ {Id} so that B ∈ [Fix(f)]ω. It follows that

Id[B] ∩ f [B] = B, which is a contradiction.

For the reverse implication. Let {fk : k ∈ ω} be an enumeration of G with

f0 = Id and let A ∈ [ω]ω be given. We shall construct recursively a family

B = {Bn : n < ω} such that:

(1) B0 = A,

(2) Bn+1  Bn,

(3) |Bn+1| = ω and

(4) the family {fi[Bn] : i ≤ n} is disjoint.

Suppose we have constructed {Bi : i ≤ k}, since fk+1 ∈ G \ {Id} has

finitely many fixed points we can find C0 ∈ [Bk]
ω such that fk+1[C0]∩C0 =

∅.
Moreover f−1j ◦ fk+1 ∈ G \ {Id} for 0 < j < k + 1, so there exists

Cj ∈ [Cj−1]
ω such that (f−1j ◦ fk+1)[Cj] ∩ Cj = ∅.

As each fj is a bijection, we can infer from the last equation that

fk+1[C1] ∩ f1[C1] = fk+1[C2] ∩ f2[C2] = ... = fk+1[Ck] ∩ fk[Ck] = ∅ (∗)

Fix b ∈ Bk and set Bk+1 = Ck \ {b}. It should be clear that Bk+1 ∈ [Bk]
ω.

We are left to show that the family {fi[Bk+1] : i ≤ k + 1} is disjoint. Let

i, j ≤ k + 1, i 6= j be given. If i < k + 1 and j < k + 1, then fi[Bk+1] ∩
fj[Bk+1] ⊆ fi[Bk] ∩ fj[Bk] = ∅. On the other hand, if we have i = k + 1

and j < k + 1, then, since Bk+1 ⊆ Ck ⊆ · · · ⊆ C0 ⊆ Bk and by (∗) we have

fi[Bk+1] ∩ fj[Bk+1] = fk+1[Bk+1] ∩ fj[Bk+1] ⊆ fk+1[Cj] ∩ fj[Cj] = ∅. This

finish the recursive construction.

Choose b0 ∈ B0 and for each n > 0 we choose bn ∈ Bn \ Bn−1. Let B =

{bn : n ∈ ω}. Note that B ⊆∗ Bn for any n ∈ ω and moreover the family

{f [B] : f ∈ G} = {fi[B] : i ∈ ω} is almost disjoint. �

The following is the well-known result of Cayley that any group can be

represented as a group of permutations.

Theorem 2.6 (Cayley). For any group G there is a subgroup H < Sym(G)

such that

(i) G ∼= H and

(ii) ∀π ∈ H \ {Id}, F ix(π) = ∅.

Condition (ii) follows from Caley’s proof since the left action does not

have fixed points.
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Definition 2.7. Let X and Y be given such that X ⊆ Y and G <

Sym(X), H < Sym(Y ). We say H is final extension of G if there is an

isomorphism ψ : G→ H such that ψ(g) � X = g for any g ∈ G.

We are now in position to prove the main theorem of the section. For

more on constructions of cofinitary groups see e.g. [?, K]

Theorem 2.8. There is a countable dense cofinitary group G < Sym(ω).

Proof. Choose an enumeration {πi : i ∈ ω} of
⋃
i∈ω\{0} Sym(i) with π0 ∈

Sym(1). We will construct recursively a family of groups {Gi
n : n ≤ i < ω}

and at the same time a strictly increasing sequence of natural numbers

{ni : i ∈ ω} such that n0 = 1, G0
0 = {Id} and

(1) ∀n ≤ i < ω Gi
n < Sym(ni),

(2) ∀n ≤ j < i < ω Gi
n is a final extension of Gj

n,

(3) ∀n < ω ∃ g ∈ Gn
n such that πn ⊆ g and

(4) ∀j ≤ i < ω∀f ∈ Gj
i , F ix(f) ⊆ nj.

Suppose that {Gi
n : n ≤ i ≤ k} and {ni ∈ ω : i ≤ k} have been already

constructed for some k.

Let t be minimal so that nk+t|Gk
k| ≥ dom(πk+1) and let nk+1 = nk+t|Gk

k|.

Claim: There is Gk+1
k < Sym(nk+1) which is a final extension of Gk

k such

that ∀f ∈ (Gk+1
k \ {Id}), F ix(f) ⊆ nk.

Proof of Claim: Apply Cayley’s Theorem successively t times starting

with H0 = Gk
k to obtain a sequence Hi (i < t) so that Hi+1 < Sym(Hi) and

Hi
∼= H0 for all i < t. Let φi denote the isomorphism between H0 and Hi

given by composition of Cayley’s ones.

Let X = nk ∪
⋃
i<tHi. Observe that |X| = nk+1. For each h ∈ H0, we de-

fine a permutation φh : X → X given by φh(x) = φi(h)(x) where i is the

unique integer so that x ∈ Hi−1. Fix a bijection ψ : X → nk+1 and define

Gk+1
k = {ψ ◦ φh ◦ ψ−1 : h ∈ H0}. It is easy to prove, by using the fact that

Cayley representation does not have fixed points, that Gk+1
k is as required.

Let F be an isomorphism witnessing that Gk+1
k is a final extension of

Gk
k. We know that Gk

0 ≤ Gk
1 ≤ · · · ≤ Gk

k−1 ≤ Gk
k. For each j < k, set

Gk+1
j = F [Gk

j ], since F is an isomorphism, Gk+1
0 ≤ Gk+1

1 ≤ · · · ≤ Gk+1
k−1 and

moreover, Gk+1
j is a final extension of Gk

j for each j < k.

In order to define Gk+1
k+1, consider the function π : nk+1 → nk+1 defined as

π(x) =

{
πk+1(x) if x ∈ dom(πk+1)

x otherwise.
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Now we set

Gk+1
k+1 to be the subgroup generated by Gk+1

k and π.

It is clear, due to the construction, that nk+1, G
k+1
0 , ..., Gk+1

k+1 satisfy con-

ditions (1)-(4),

It follows from condition (2) that for fix i the sequence Gj
i (i ≤ j) is a chain

of a final extensions. Thus, there exists a group Gω
i < Sym(ω) which is a

final extension of Gj
i for all j ≥ i (the group is constructed by gluing to-

gether the all the groups in the obvious way). We now define G =
⋃
i∈ω G

ω
i .

Note that G is a subgroup since for each i, Gi
m ≤ Gi

n whenever m ≤ n ≤ i.

Therefore Gω
m ≤ Gω

n whenever m ≤ n. It is easy to see that G is the desired

group. �

We are ready to provide an answer to Question 1.6.

Theorem 2.9. There is a MAD family A such that Inv(A) is dense in

Sym(ω).

Proof. Let G < Sym(ω) be like in Theorem 2.8 and let

Σ = {A : A is an AD family and A ∈ A iff {f [A] : f ∈ G} ⊆ A}.

Note that by Lemma 2.5 Σ 6= ∅. Also (Σ,⊆) is a partial order in which every

chain has an upper bound. By an application of Zorn’s Lemma there is A0

maximal in (Σ,⊆). Note that A0 is dense since G ⊆ Inv(A0). So it suffices

to show that A0 is a MAD family. Suppose this is not the case, then there

is X ∈ [ω]ω almost disjoint from A0. We infer from lemma 2.5 that there

exists an infinite subset Y ⊆ X so that {f [Y ] : f ∈ G} is almost disjoint.

It follows that B = A0 ∪ {f [Y ] : f ∈ G} is almost disjoint and B ∈ Σ which

contradicts the maximality of A0. �

3. A Katětov maximal MAD family

If A is a MAD family then J (A) denotes the ideal of all subsets of

ω which can be almost covered by finitely many elements of A, J +(A) =

P(ω)\J (A) denotes the family of sets of positive measure. We also need the

set J++(A) consisting of all X ∈ P (ω) so that there exists 〈An : n ∈ ω〉 ⊆ A
such that |X ∩ An| = ω for all n ∈ ω. Note that for any MAD family

A, J+(A) = J++(A). In the case A is just an AD family the set J++(A)

consist of the sets that remain positive for any AD family extending A.

Recall the definition of Katětov order.

Definition 3.1. Let I,J be ideals on ω. We say that I ≤K J if there is

a function f : ω → ω such that f−1(I) ∈ J for all I ∈ I. If A and B are

MAD families then we write A ≤K B for J (A) ≤K J (B).

We refer to ≤K as the Katětov ordering.
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For h ∈ ωω, a function φ : ω → [ω]<ω with |φ(n)| ≤ h(n) for all n is

called an h-slalom. A function π : [ω]<ω → ω is said to be a predictor. If

h : ω<ω → ω, a function π : ω<ω → [ω]<ω with |π(s)| ≤ h(s) for all s is

called an h-slalom predictor.

The following theorem give us a several characterizations of non(M) in

terms of families of functions.

Theorem 3.2. The following are equivalent for any cardinal κ.

(i) non(M) > κ,

(ii) for all F ⊆ ωω of size ≤ κ there is g ∈ ωω such that for all f ∈
F , f(n) 6= g(n) holds for almost all n,

(iii) for all families Π of predictors of size ≤ κ there is g ∈ ωω such that

for all π ∈ Π, g(n) 6= π(g � n) holds for almost all n,

(iv) any of (ii) through (iii) with the additional stipulation that g be in-

jective.

(v) any of (ii) through (iii) with the additional assumptions that the

families consists of partial functions. Moreover, for every X ∈ [ω]ω

we can find g so that the range of g is contained in X.

Proof. (i) to (iii) is the well-known Bartoszynski-Miller characterization of

non(M) (see [1]). Details for showing that (iv) is equivalent to (ii) can be

found in [2]. Since (v) is a strengthening of the preceding ones, it suffices

to prove that (ii) implies (v). Let F be a family of ≤ κ partial functions

by extending every function arbitrarily we may assume that the domain of

each function is all ω. Now, let F ′ = {f �f−1(X): f ∈ F} applying (iii) to

the space Xω and the family F ′ we obtain the desired conclusion. �

In order to prove Theorem 1.1 we shall need a slight generalization of

the concept of cofinitary group.

Definition 3.3. Let G be a subset of injective partial functions from ω

into ω closed under compositions and inverses. We say that G is a partial

cofinitary semigroup if for every f ∈ G either f is a partial identity or f has

finitely many fix points.

The following lemma will play a key role in the construction of a MAD

family maximal in the Katětov order.

Lemma 3.4. Let G be a partial cofinitary semigroup of cardinality < non(M)

and X ∈ [ω]ω then there exists f : ω → X such that G∗f is a partial cofini-

tary semigroup.

Proof. Define an operation F : ω≤ω → ωω recursively as follows: let n ∈
ω, f ∈ ω≤ω and assume F (f)(k) and F (f)−1(k)have been defined for k < n.

If F (f)−1(k) = n for some k < n, then clearly F (f)(n) = k. If not, then let
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F (f)(n) = f(2n). If F (f)(k) = n for some k < n, then clearly F (f)−1(n) =

k. If n ∈ X, then let F (f)−1(n) = f(2n + 1). If n /∈ X, then F (f)−1 is not

defined at n.

If H is a partial cofinitary semigroup, a word w(x) in variable x from H is

an expression of the form

g0 · xm0 · ... · gl−1 · xml−1 · gl

such that gi ∈ H, gi 6= Id for 1 ≤ i ≤ l − 1, and mi ∈ Z \ {0} for all i. The

length of such a w(x) is lg(w(x)) = |{i ≤ l : gi 6= Id}+
∑

i<l |mi|. For a word

w(x), an injective finite partial function (not necessarily in ω<ω), we form the

(possible empty) injective partial function w(t) in the usual manner. Also, if

g is an injective partial function, we define w(g) as usual. Given a word w(x),

define a predictor πw(x)(s) by w(F (s))(n) where 2n+ e = |s| (e ∈ {0, 1}) for

s ∈ S (S denotes the set of injective finite functions from ω into ω).

Now let H be a partial cofinitary semigroup of size < non(M). We have

to show that H is not maximal. By the injective version of (v) in Theorem

3.3, there is f : ω → X injective such that for all πw(x) with w(x) being

a word from H, πw(x)(f � n) 6= f(n) holds for almost all n. We claim that

G = H ∗ F (f) is a partial cofinitary semigroup. Since all elements of G are

of the form w(F (f)), where w(x) is a word from H, it suffices to show that

that for all such words w(x) 6= Id. This is done by induction on lg(w(x)).

Basic Step. lg(w(x)) = 1. Then either w(x) = g0 for g0 ∈ H \ {Id} in

which case there is nothing to prove, or w(x) = x or w(x) = x−1. Since

π1(f � n) 6= f(n) for almost all n (where π1 is the predictor associated with

the word representing the identity), it follows that F (f)(k) = f(2k) 6= k for

almost all k.

Induction Step. Assume w(x) = g0 ·xm0 · ... ·gl−1 ·xml−1 ·gl is a word of length

at least two and the claim has been proved for all shorter words. For k <∑
i<l |mi| we define the chopped word wk(x) and the inverse chopped word

w−1k (x) basically by removing the occurrence of x, as follows. First let j < k

be such that
∑

i<j |mi| ≤ k <
∑

i<j+1 |mi| and assume k =
∑

i<j |mi| + k′

with 0 ≤ k′ < |mj|. Then wk(x) is the reduced word obtained from the word

xsgn(mj)(|mj |−k
′−1) · gj+1 · xmj+1 · ... · xmi−1 · gl · g0 · xm0 · ... · gj · xsgn(mj)k

′
,

and w−1k is simply its inverse.

Now let n∗ be large enough so that for all n ≥ n∗ the following hold:

(i) the values

n, (F (f)sgn(ml−1) · gl)(n),

(F (f)sgn(ml−2)·2 · gl)(n), ..., (F (f)ml−1 · gl)(n), ...,

(F (f)m0−sgn(m0) · g1 · ... · gl−1 · F (f)ml−1 · gl)(n),
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and in case gl 6= Id also gl(n), and in case g0 6= Id also

(F (f)m0 · g1 · ... · gl−1 · F (f)ml−1 · gl)(n),

are all distinct as well as

(ii) for each k <
∑

i<l |mi| with k =
∑

i<j |mi|+ k′, if

n′ = (F (f)−sgn(mj)·k
′ · g−1j · ... · F (f)−m0 · g−10 )(n),

then f(2n′) 6= πw−1
k (x)(f � 2n′).

By induction hypothesis, and since there are only finitely many k and for

each k only finitely many n′ for which (ii) can fail, it is clear that there is

such an n∗. We claim that w(f)(n) 6= n for each n ≥ n∗.

Assume this were not the case and fix n ≥ n∗ with w(F (f))(n) = n. For

each k <
∑

i<l |mi| with k =
∑

i<j |mi|+ k′, let

nk = min{(f sgn(mj)(|mj |−k′−1) · .... · fml−1 · gl)(n),

(f sgn(mj)(|mj |−k
′) · ... · fml−1 · gl)(n)}.

Now note that by (i), there can be at most two values k0 and k1 for k

such that nk is maximal; and if there are two they must be adjacent; i.e.,

k1 = k0+1 without loss. Let j < l be such that this (these) maximal value(s)

nk occur(s) at k =
∑

i<j |mi|+k′ for some k′. We need to consider four cases.

Case 1. mj > 0, and either there are k1 = k0 + 1 such that nk0 = nk1 is

maximal in which case we let k = k1, or there is a unique k such that nk
is maximal and one has nk = (f sgn(mj)(|mj |−k

′) · .... · fml−1 · gl)(n). Note that

in the former case nk must necessarily have the value (f sgn(mj)(|mj |−k
′) · ... ·

fml−1 · gl)(n). Also note that since we assume w(f)(n) = n we additionally

have nk = (f−sgn(mj)k
′ · ... · f−m0 · g−10 )(n). Now,

πwk(x)(f �nk+1) = wk(f �nk+1)(nk)

because the right-hand side is indeed defined by maximality of nk. w(f)(n) =

n clearly entails

wk(f �n+1)(nk) = f−1(nk).

However, by (ii), we get

πwk(x)(f �nk+1) 6= f(nk),

a contradiction.

Case 2. mj < 0, and either there are k1 = k0 + 1 such that nk0 = nk1 is

maximal in which case we let k = k0, or there is a unique k such that nk
is maximal and one has nk = (f sgn(mj)(|mj |−k

′−1) · .... · fml−1 · gl)(n). In this

case use πw−1
k (x)(f �nk+1) to derive a contradiction.

Case 3. mj > 0 and there is a unique k such that nk is maximal and one

has nk = (f sgn(mj)(|mj |−k
′−1) · ... · fml−1 · gl)(n). Use πw−1

k (x)(f �nk).
Case 4. mj < 0 and there is a unique k such that nk is maximal and one



10 M. ARCIGA-ALEJANDRE, M. HRUŠÁK, C. MARTINEZ-RANERO

has nk = (f sgn(mj)(|mj |−k
′) · ... · fml−1 · gl)(n). Use πwk(x)(f �nk+1). These

contradictions complete the proof of the theorem. �

We recall the following definitions from [6].

Definition 3.5. We say that a MAD familyA isK-uniform ifA ≤K A � X
for every X ∈ J+(A).

Definition 3.6. We say that a MAD family A is tight (weakly tight) if for

every 〈Xn : n ∈ ω〉 ⊆ J+(A) there is A ∈ A so that ∀n (∃∞n), |A∩Xn| = ω.

The following proposition from [6] shows that (weakly) tight MAD fam-

ilies are almost maximal in the Katětov order.

Proposition 3.7. Let A be a weakly tight MAD family and let B be a MAD

family. If A ≤K B then there exists an X ∈ J+(A) such that B ≤K �X.

Recently Raghavan and Steprans [11], using a novel technique of Shelah,

showed that assuming s ≤ s there is a weakly tight MAD family.

We are now in position to prove the main theorem of the paper.

Theorem 3.8. Assuming t = c. There exists a MAD family maximal in the

Katětov order.

Proof. By propotion 3.7, it suffices to construct a tight K-uniform MAD

family. In order to do this, enumerate ([ω]ω)ω as { ~Xα : α < c} in such a

way that each sequence appears cofinally many times. We shall construct

recursively an increasing sequence Aα, α < c of almost disjoint families and

a sequence {α α < c of injective partial functions from ω into ω so that A0

is a partition of ω into infinitely many infinite pieces and f0 = Id for every

α < c:

(1) |Aα| < c,

(2) the set Fα consisting of elements of the form w(fξ1 , ..., fξn) is a par-

tial cofinitary semigroup where w(x1, .., xn) is a reduced word in n

variables and ξ1, ..., ξn < α,

(3) Fα is a strictly increasing sequence of partial cofinitary semigroups

of cardinality < c,

(4) Fα respects Aα, i.e., f−1(A) ∈ Aα for all A ∈ Aα and all f ∈ Fα,

(5) if ~Xα ⊆ J (Aα)++ then there exists A ∈ Aα+1 such that A ∩ ~Xα(n)

is infinite for all n ∈ ω,

(6) if ~Xα(0) ∈ J (Aα)++ then there exists f : ω → ~Xα(0) with f ∈ Fα+1.

For α limit let Fα =
⋃
{Fβ : β < α} and Aα =

⋃
{Aβ : β < α}.

For α = β+1 consider Aβ and Fβ. If ~Xα(0) ∈ J (Aα)++ then, using Lemma

3.3, we can find a bijection f : ω → X between ω and a subset X almost

disjoint from every element of Aβ so that Fβ ∗ f is a partial cofinitary
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semigroup, we set fα = f . It is easy to verify that (1), (2) and (4) holds.

In order to construct Aα, enumerate Fα as {fγ : γ < κ}, and assume that
~Xα ⊆ J (Aα)++. We may assume that ~X is a partition of ω. For each n,

recursively choose a ⊆∗-decreasing sequence T nγ (γ < κ) of infinite subsets

of ~Xα(n) so that:

(i) T n0 ⊆ ~Xα(n) is almost disjoint from all elements of Aα,

(ii) for γ < κ, f−1γ (T nα ) is almost disjoint from every element of Aα,

(iii) for every ξ, η ≤ γ < κ,and for every n,m < ω f−1ξ (Tmγ ) ∩ f−1η (T nγ ) is

finite.

Note that (ii) follows directly from (i) and the fact that Fα respects Aβ.

Assume that T nξ , ξ < γ has been successfully constructed. Choose Sn ∈
[ ~Xα(n)]ω such that Sn ⊆∗ T nξ for ξ < γ. Since Fα is a partial cofinitary

semigroup there exists Sn0 ∈ [Sn]ω so that f−1α (Sn0 ) is almost disjoint from

Aβ. Note that if T nα is a subset of Sn0 then (i) and (ii) are satisfied. In

order to find T nα so that (iii) holds enumerate all pairs ξ, η, ξ, η ≤ α as

{(ξζ , ηζ) : ζ < λ. Note that λ < t. Construct another decreasing sequence

{Snζ : ζ < λ} (Sn0 has already been chosen) so that for all n.m < ω

f−1ξζ (Snζ+1) ∩ f−1ηζ (Smζ+1) =∗ ∅.

Now that is easy to do as Fα is a partial cofinitary semigroup we can always

find an infinite subset of Snζ and Smζ so that their pre images are almost

disjoint. Finally choose T nα ∈ [Sn0 ] so that T nα ⊆∗ Snζ for all ζ < λ. This

finishes the construction.

Let {T nγ : γ < κ, n < ω} be the sequence satisfying the above requirements

(i)-(iii). As κ < t we can find a pseudo-intersection T n of the family {T nγ :

γ < κ} for all n ∈ ω.

Let T =
⋃
Tn. Fix an enumeration {fγ : γ < κ} of Fα+1 and let {(γξ, δ+ξ) :

ξ < κ} be an enumeration of all ordered pairs (γ, δ) ∈ κ×κ. For each ξ < κ

and n < ω, let fnξ be the function from ω into ω defined as follows:

fnξ (k) = max(fγξ([T
n] ∩ fδξ [T k].

Since κ < b we can find h : ω → ω so that fnξ ≤∗ h for all ξ < κ and all

n < ω. Let A =
⋃
n∈ω(T n \ h(n)). Set

Aα+1 = Aα∪{w(fβ1 , ..., fβn)[A] : w(x1, ..., xn) is a reduced word in n variables

and fβ1 , ..., fβn ∈ {fg : γ ≤ α + 1}}.
It is easy to see that Aα+1 is an AD family and satisfies the required prop-

erties. This finishes the proof of the Theorem. �

We will finish with some open questions.

Question 3.9. Does there exists a MAD family maximal in the Katětov

order which is weakly tight but not tight?
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Question 3.10. Is every MAD family maximal in the order of Katětov

weakly tight?

Question 3.11. Is it consistent with ZFC that there are no Katětov max-

imal MAD families?
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