
FRÉCHET-LIKE PROPERTIES AND ALMOST DISJOINT
FAMILIES

CÉSAR CORRAL AND MICHAEL HRUŠÁK

Abstract. We study the relationship between αi properties and strong
Fréchet-like properties in Ψ-spaces associated to almost disjoint fam-
ilies. In particular, we will prove that under some mild assumptions
(e.g. c ≤ ℵ2) there is an almost disjoint family A such that Ψ(A) is
Fréchet, α3 and not bisequential, answering a question of G. Gruen-
hage.

1. Introduction

Recall that a point x in a topological space X is a Fréchet point if when-
ever x ∈ A ⊆ X, there is a sequence {xn : n ∈ ω} ⊆ A such that xn → x.
A space X is Fréchet if every point x ∈ X is a Fréchet point.

Recall also ([1]) that a point x ∈ X is an αi-point (i = 1, 2, 3, 4) if given
a family {Sn : n ∈ ω} of sequences converging to x, there is a sequence
S → x (we identify a convergent sequence with its range) such that

(α1) S \ Sn is finite for all n ∈ ω,
(α2) S ∩ Sn 6= ∅ for all n ∈ ω,
(α3) |S ∩ Sn| = ω for infinitely many n ∈ ω,
(α4) S ∩ Sn 6= ∅ for infinitely many n ∈ ω.
Notice that for an α2-point, it is equivalent that |S ∩ Sn| = ω for every

n ∈ ω. With this in mind, it should be obvious that the properties get
progressively weaker. A space X is an αi-space if every point x ∈ X is an
αi-point. We say that a space X is αi-FU if X is both Fréchet and αi.
Definition 1.1. [1] A space X is absolutely Fréchet if every x ∈ X is a
Fréchet point in every (equiv. in some) compactification bX of X.
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Given a family A ⊆ P(X) we will say that x ∈ A if x ∈ A for every
A ∈ A. A filter base G converges to a point x ∈ X if for every neighborhood
U of x, there is a G ∈ G such that G ⊆ U . We then write G → x.

Definition 1.2. [5] X is bisequential at x ∈ X if for every filter F in X
such that x ∈ F there is a decreasing sequence {Gn : n ∈ ω} ⊆ F+ such
that Gn → x. A space X is bisequential if it is bisequential at every point.

These properties were introduced by A. Arhangel’skii [1] resp. E. Michael
[5], in order to study when the product of Fréchet spaces is Fréchet.

All these concepts are related; every bisequential space is absolutely
Fréchet and every absolutely Fréchet space is, of course, Fréchet [1]. Con-
cerning the αi-properties, every absolutely Fréchet space is α4, and every
bisequential space is α3.

Most of the properties defined so far impose certain conditions such that
the product is Fréchet. For instance, if X is bisequential and Y is α4-FU,
then X × Y is Fréchet [1].

A family A ⊆ [ω]ω is almost disjoint (ad) if A ∩ B is finite for every
A,B ∈ A. A is a mad family if it is an ad family and is maximal with
respect to this property. The ideal I(A) generated by A is the set of all
subsets of ω that can be covered by finitely many elements of A together
with a finite subset of ω. Given an ideal I ⊆ P(ω), I+ = P(ω) \ I, and
given a family W ⊆ P(ω), W⊥ = {X ⊆ ω : ∀W ∈ W |X ∩W | < ω}.

Given an ad family A the Mrówka-Isbell space Ψ(A) is the space ω ∪ A
where ω is discrete and the basic open neighborhoods of an A ∈ A are
of the form {A} ∪ A \ n, i.e. the set {n ∈ ω : n ∈ A} converges to A
for every A ∈ A. This space is locally compact, ψ(A)∗ = ψ(A) ∪ {∞}
will denote its one-point compactification. Following [6], we will call the
subspace ω ∪ {∞} of Ψ(A)∗ the ad space generated by A. For more on ad
families and Mrówka-Isbell spaces see [10, 9].

Notice that the study of αi-spaces could be restricted to countable spaces
since a space X is αi if and only if every countable subset of X is. Indeed,
in the class of Fréchet spaces, a meta-theorem in the area says that for
every compact example illustrating a convergence property, there is one of
the form ψ(A), equivalently, there is an ad-space example. We will say that
an ad family A satisfies a topological property P if the ad space associated
ω ∪ {∞} does.
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We will deal with G. Gruenhage’s question of whether the properties of
α3-FU and bisequentiality are equivalent for ad spaces [6]. As a by-product
we also solve some questions of Nyikos [16], and the construction gives new
consistent examples of absolutely Fréchet spaces with strong αi-properties
which are not bisequential.

We will say that an ad family A is hereditarily α3 if for every B ⊆ A, B
is α3. Since B ⊆ A is Fréchet for every Fréchet A, hereditarily α3-FU is
the same as Fréchet and hereditarily α3.

Question. [6] Is every α3-FU (hereditarily α3-FU) ad family A bisequen-
tial?

Recall that if A is bisequential then it is hereditarily α3-FU [6] and of
course every hereditarily α3-FU is α3-FU.

First countable

α1

α2

bisequential her. α3 α3

absolutely Fréchet α4

Fréchet

Figure 1. Fréchet-like properties.

The diagram shows ZFC implication between these properties (of course,
hereditarily α3 only makes sense for almost disjoint families).

Our set theoretic notation is standard and follows e.g. [12]. The defini-
tions and further information concerning cardinal invariants of the contin-
uum can be found in [3] and [4].
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2. AD spaces and bisequentiality

A large class of ad families is bisequential, namely, those that are R-
embeddable. Recall that an ad family A is R-embeddable [8, 7] if there is
a one-to-one function f : ω → Q which extends to a continuous one-to-one
f̂ : ψ(A)→ R. However, there are ZFC examples of bisequential ad families
A which are not R-embeddable.

On the other hand, under b = c, there is an ad family which is not even
α3 ([16]). We will prove that under the same assumption, the three concepts
of A being bisequential, hereditarily α3-FU and α3-FU are different. We
shall give combinatorial characterizations of these properties for ad families
first. Since ω is a discrete subspace of the ad space of A, the only point of
interest is ∞. A sequence X ⊆ ω converges to ∞ if and only if X ∈ A⊥.
Also, ∞ ∈ X if and only if X ∈ I(A)+. Then, an ad family A is Fréchet iff
it is nowhere maximal [19], i.e., for every X ∈ I(A)+, there exists Y ∈ A⊥
such that |Y ∩X| = ω. A is α3 iff for every sequence {Xn : n ∈ ω} ⊆ A⊥
there is an X ∈ A⊥ which intersects infinitely many Xn’s in an infinite set.
We will need the following fact:

Theorem 2.1. [3] The cardinal non(M) is the size of the smallest family
F ⊆ ωω such that

∀g ∈ ωω ∃f ∈ F ∃∞n ∈ ω (f(n) = g(n)).

�

So for every family F ⊆ ωω of size less than non(M), there is a function
g ∈ ωω which is eventually different from F , i.e., for every f ∈ F and all
but finitely many n ∈ ω, g(n) 6= f(n). Moreover, a slight modification to
the proof shows that for every such family F , the set of functions which are
eventually different from F is not meager. Therefore we get the following
corollary:

Corollary 2.2. For every F ⊆ ωω of size less than non(M) and every
dense Gδ subset G ⊆ ωω, there exists a function g ∈ G which is eventually
different from F . �

Notation 2.3. A column in ω×ω will be a set of the form {n}×ω for some
n ∈ ω. For an indexed set H = {Hα : α < κ} and η < κ we denote the
restriction of H to η by Hη = {Hα : α < η}.
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Theorem 2.4. (non(M) = c) There is an α3-FU ad family A such that A
is not hereditarily α3-FU.

Proof. We will build recursively A = {Aα : α < c} as a family of subsets of
ω × ω. Moreover, Aα will be the graph of a function for every ω ≤ α < c.
For every function f ∈ ωω we will use f both for the function and its graph
as a subset of ω × ω. Enumerate ([ω × ω]ω)ω = {Dα : ω ≤ α < c} and
[ω × ω]ω = {Xα : ω ≤ α < c}.

At step α ≥ ω we will define Aα together with two functions Yα, Zα ∈
ωω so that Yα, Zα ∈ A⊥α and Aα ∈ A⊥α ∩ Y⊥α ∩ Z⊥α . For n ∈ ω define
An = {n} × ω. Assume that we have defined Aβ for β < α and Yβ, Zβ for
ω ≤ β < α.

If Xα ∈ I(Aα)+, the set

G = {f ∈ ωω : |f ∩Xα| = ω}
is Gδ and dense in ωω. Hence we can find Yα ∈ ωω such that Yα ∈ A⊥α and
|Yα ∩Xα| = ω. Otherwise, define Yα ∈ A⊥α arbitrarily.

If Dα ⊆ A⊥α , then Dα(n) intersects infinitely many columns for every
n ∈ ω. Thus the set

G = {f ∈ ωω : ∀n ∈ ω (|f ∩Dα(n)| = ω)}
is a dense Gδ subset of ωω. Applying Corollary 2.2, we can find a function
Zα ∈ ωω such that Zα ∈ A⊥α and |Zα ∩ Dα(n)| = ω for all n ∈ ω. If
Dα * A⊥α define Zα ∈ ωω such that Zα ∈ A⊥α arbitrarily.

Finally, if there are infinitely many n ∈ ω such that |Xα ∩ An| = ω, in
particular Xα ∈ I(Aα)+ and we already know that the set

G = {f ∈ ωω : |f ∩Xα| = ω}
is Gδ and dense. Then we can find Aα ∈ (Aα ∩ Yα ∩ Zα)⊥ such that
|Aα ∩Xα| = ω. Otherwise, chose Aα ∈ (Aα ∩ Yα ∩ Zα)⊥ arbitrarily.

From the definition it is clear that A = {Aα : α < c} is almost disjoint.
Given X ∈ I(A)+ there exists α < c such that X = Xα and |Yα ∩X| = ω
since I(A)+ ⊆ I(Aα)+. Moreover, since Aβ ∈ Y⊥β for every β > α, it
follows that Yα ∈ A⊥. Hence A is Fréchet. The same idea shows that A is
α3 (even α2) using Zα as a witness for the sequence of convergent sequences
Dα.

Now define B = A \ Aω. Then An ∈ B⊥ for every n ∈ ω but for every
possible witness X ⊆ ω × ω for the property α3, i.e., for every X such
that |X ∩ An| = ω for infinitely many n ∈ ω, there exists ω ≤ α < c such
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that X = Xα and then Aα ∈ B satisfies that |Aα ∩X| = ω and X /∈ B⊥.
Therefore A is not hereditarily α3. �

Let A be an α3 ad family, assume B ⊆ A is not α3 and take {Dn : n ∈
ω} ⊆ B⊥ witnessing this fact. We can assume that Dn /∈ A⊥ and then
there is A(n) ∈ A \ B such that Dn ⊆ A(n) for every n ∈ ω by shrinking
Dn if necessary. Thus A \ {An : n ∈ ω} ⊇ B is not α3. Hence A fails to be
hereditarily α3 iff there is a countable subfamily B ⊆ A such that A \ B is
not α3. Recall that F := (fin× fin)∗ is the dual filter of the ideal

fin× fin = {A ⊆ ω × ω : ∃n ∈ ω ∀m > n (|{j ∈ ω : (m, j) ∈ A}| < ω)}.
For every X ⊆ ω × ω and every family W ⊆ [ω × ω]ω let

T (X,W) = {W ∈ W : |X ∩W | = ω},
and define T (W) = {X ⊆ ω × ω : |T (X,W)| ≤ ω}. The use of the set
ω×ω is not essential in the previous definition and we will use the notation
T (·, ·) and T (·) for other countable sets which will be understood from the
context.

Recall that for f, g ∈ ωω, f ≤∗ g iff {n ∈ ω : f(n) > g(n)} is finite and b
is the least cardinality of a ≤∗-unbounded family in ωω.

Theorem 2.5. (b = c) There is a hereditarily α3-FU ad family A such that
A is not bisequential.

Proof. Similar to the proof of Theorem 2.4, enumerate

([ω × ω]ω)ω = {Dα : ω ≤ α ∈ c},
[ω × ω]ω = {Xα : ω ≤ α ∈ c}

and
{G ∈ (F+)ω : G is decreasing} = {Gα : ω ≤ α ∈ c}.

Fix a mad family E = {eα : α < c}. Again, we will construct our family
A = {Aα : α < c} ⊆ [ω×ω]ω recursively and for α ≥ ω, Aα will be a partial
function and will be accompanied by a function Yα ∈ ωω and a set Zα ⊆
ω × ω. In addition, these elements will satisfy that Aα ∈ (Aα ∩ Yα ∩ Zα)⊥

and Yα, Zα ∈ A⊥α . For every n ∈ ω define An = {n}×ω. Assume ω ≤ α < c
and we have defined Aα,Yα and Zα.

If Xα /∈ I(Aα)+ and since non(M) ≥ b = c apply theorem 2.1 and
find Yα ∈ ωω ∩ A⊥α arbitrarily. Otherwise, if Xα ∈ I(Aα)+, then the set
L = {f ∈ ωω : |f ∩X| = ω} is Gδ and dense in ωω and applying corollary
2.2 there is a function Yα ∈ L ∩ A⊥α .
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If {Dα(n) : n ∈ ω} * T (Aα) define Zα ∈ (eα×ω)∩A⊥α arbitrarily. This
is possible since a ≥ b = c and then Aα is not maximal when restricted to
eα×ω (notice that this restriction is an infinite ad family since the elements
of Aα are partial functions). Otherwise we have two cases:

• Case 1: If Dα(i) ∈ A⊥ω for infinitely many i ∈ ω, the set

M = {f ∈ ωω : ∃∞i ∈ ω(|f ∩Dα(i)| = ω)}

is Gδ and dense in ωω and applying corollary 2.2 we can find a
function Zα ∈M ∩ A⊥α .
• Case 2: If Dα(i) /∈ A⊥ω for all but finitely many i ∈ ω, we can find
for all but finitely many i ∈ ω a k(i) such that |Dα(i) ∩Ak(i)| = ω.
We shall consider two subcases.
– Subcase 2.1: If there exists n ∈ ω such that ∃∞i ∈ ω (k(i) = n)

define Zα = An.
– Subcase 2.2 For every n ∈ ω there are only finitely many
i ∈ ω such that k(i) = n. In this case let {mi : i ∈ ω}
be increasing and such that {k(mi) : i ∈ ω} is also increas-
ing. Define for every ω ≤ β < α a function fβ ∈ ωω such
that fβ(n) = max(Aβ ∩ An). Since b = c there is a function
f ∈ ωω such that f ≥∗ fβ for all ω ≤ β < α. Let γ(α) such
that Γ(α) := eγ(α) ∩ {k(mi) : i ∈ ω} is infinite. Thus define
Zα = {(p, q) : p ∈ Γ(α) ∧ q > f(p)}.

Finally suppose that Gα ∈ (F+)ω is a decreasing sequence. Notice that
G ∈ F+ if and only if G intersects infinitely many An’s in an infinite
set. Then the set R = {f ∈ ωω : ∀n ∈ ω(f ∩ Gα(n) 6= ∅) is Gδ and
dense in ωω. Hence there is a function f ∈ R ∩ (Aα ∪ Yα+1 ∪ Z∗α+1)

⊥

where Z∗α = {Z ∈ Zα : Z ∈ ωω}. In other words, Z∗α is the subset
of the elements of Zα defined by case 1. If Gα is not decreasing define
f ∈ (Aα ∪ Yα+1 ∪ Z∗α+1)

⊥ arbitrarily. Now let B = {kn} be a set with its
increasing enumeration such that f(kn) ∈ Gα(n)) for every n ∈ ω and take
dα ∈ [B]ω ∩{eγ(β) : β ≤ α}⊥, assuming eγ(β) = ∅ if it has not been defined.
Set Aα := f � dα.

Then the elements of the set Y = {Yα : ω ≤ α < c} witness that A is
nowhere MAD like in the proof of theorem 2.4.

To see that A is hereditarily α3 take B ⊆ A and assume that A \ B is
countable. Then for every sequence D = {Dn : n ∈ ω} ⊆ B⊥ ⊆ T (A)
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there exists α < c such that D = Dα and since T (A) ⊆ T (Aα) it follows
from the definition that |Zα ∩ Dα(i)| = ω for infinitely many i ∈ ω. Also
Zα ∈ A⊥α and for β ≥ α, if Zα was defined by case 1, Zα ∈ Z∗α+1, if it
was defined by case 2.1, Zα is a column and if it was defined in case 2.2
|dom(Aβ) ∩ eγ(α)| < ω, in any case, |Aβ ∩ Zα| < ω and then Zα ∈ A⊥.

On the other hand, since the elements of A are either functions or
columns of the form {n} × ω, it follows that ∞ ∈ F . However, if G =
{Gn : n ∈ ω} ⊆ F+ is a decreasing sequence, there exists α < c such that
G = Gα and Aα witnesses that G does not converge to ∞. �

Corollary 2.6. (b = c) The three concepts of A being α3, hereditarily α3

and bisequential are each different from the others.

We will now isolate the combinatorial properties of the almost disjoint
family constructed in Theorem 2.4 for future constructions.

Remark 2.7. An almost disjoint family A = 〈Aα : α < κ〉 ⊆ [ω]ω is α3-FU
and non-hereditarily α3 iff

(1) A is nowhere MAD.
(2) ∀〈Dn : n ∈ ω〉 ⊆ A⊥∃Y ∈ A⊥(|{n ∈ ω : |Y ∩Dn| = ω}| = ω).
(3) ∀Y ∈ [ω]ω ((|{n ∈ ω : |X ∩An| = ω}| = ω)⇒ (∃A ∈ A|A ∩X| = ω))

modulo a permutation of A in order to satisfy property 3.

3. The splitting and unbounding numbers

A mad family is said to be completely separable if for every X ∈ I(A)+

there is an A ∈ A such that A ⊆ X. It was shown by Balcar and Simon (see
[2]) that completely separable mad families exists under one of the following
axioms: a = c, b = d, d ≤ a and s = ω1. A more general theorem was
proved by Shelah, who proved that completely separable mad families exists
if either s < a or if s = a and a certain PCF-hypothesis holds or if s > a
and a stronger PCF-hypothesis holds. The method of Shelah is a powerful
tool to construct almost disjoint families and was improved by Mildenberg,
Raghavan and Steprāns in [14], eliminating the PCF-hypothesis in the case
s = a.

Theorem 3.1. ([18],[14]) Assume s ≤ a. Then there is a completely sepa-
rable mad family. �

This improvement was the result of the introduction of a new cardinal
invariant sω,ω which turned out to be equal to s. Recall that a family
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S ⊆ [ω]ω is splitting if for every X ∈ [ω]ω there is S ∈ S such that |X∩S| =
|X \ S| = ω and we will say that it is (ω, ω)-splitting if for every sequence
〈Xn : n ∈ ω〉 ⊆ [ω]ω, there is S ∈ S such that the sets {n ∈ ω : |Xn∩S| = ω}
and {n ∈ ω : |Xn \ S| = ω} are both infinite. Thus, s is the least size of
a splitting family and sω,ω is the least size of a (ω, ω)-splitting family. In
[14], it is proved that s = sω,ω. The key feature of an (ω, ω)-splitting family
S is that if X ∈ I(A)+ where A is an ad family, then there is S ∈ S
such that S ∩ X ∈ I(A)+ and X \ S ∈ I(A)+. The cardinal sω,ω was
introduced in [17] in order to construct a weakly tight mad family using
the method of Shelah just mentioned. A mad family A is tight if for every
family {Xn : n ∈ ω} ⊆ I(A)+ there is A ∈ A such that |A ∩Xn| = ω for
every n ∈ ω. It is shown in [11] that the existence of a tight mad family is
equivalent to the existence of a Cohen-indestructible mad family and the
notion of weakly tight mad family is introduced: A mad family A is weakly
tight if for every collection {Xn : n ∈ ω} ⊆ I(A)+ there is A ∈ A such that
|A ∩Xn| = ω for infinitely many n ∈ ω.

It is an open problem whether weakly tight mad families exist in ZFC.
Raghavan and Steprāns showed that they exist assuming s ≤ b:

Theorem 3.2. [17] (s ≤ b) There is a weakly tight mad family. �

The proof of their theorem actually shows that under s ≤ b, there is a
weakly tight mad family A such that for every countable collection {Xn :
n ∈ ω} ⊆ I(A)+ there are c-many A ∈ A such that |A ∩ Xn| = ω for
infinitely many n ∈ ω. We will take advantage of this fact in the next
theorem.

Theorem 3.3. (s ≤ b) There is an α3-FU ad family A which is not hered-
itarily α3. In particular it is not bisequential.

Proof. Let E = {eα : α < c} ⊆ [ω]ω be a weakly tight mad family such that
for every {Xn : n ∈ ω} ⊆ I(E)+ there are c-many e ∈ E such that |e∩Xn| =
ω for infinitely many n ∈ ω. We can assume that {en : n ∈ ω} forms a
partition of ω. Enumerate [ω]ω = {Xα : α < c} and ([ω]ω)ω = {Dα : α < c}.
Define recursively A = {Aα : α < c} ⊆ E and {Yα,i : α < c ∧ i ∈ 2} ⊆ E
such that Aβ 6= Aα 6= Yη,i for all α, β ∈ c with α 6= β, ω ≤ η < c and i ∈ 2.

For n ∈ ω we start by defining An = en. Let ω ≤ α < c. If Xα ∈ I(Aα)+

there exists Yα,0 ∈ E \ (Aα ∪ Yα) where Yα = {Yβ,i : β < α ∧ i ∈ 2} such
that |Yα,0 ∩Xα| = ω. Similarly if {Dα(n) : n ∈ ω} ⊆ A⊥ ⊆ A⊥ω ⊆ I(Aα)+,
there exists Yα,1 ∈ E \ (Aα ∪Yα) such that |Yα,1 ∩Dα(n)| = ω for infinitely
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many n ∈ ω. Finally, if |Xα ∩ An| = ω for infinitely many n ∈ ω, then
X ∈ I(Aα)+ and there is Aα ∈ E \ (Aα ∪ Yα+1) such that |Aα ∩Xα| = ω.
Therefore, A is α3-FU but not hereditarily α3. �

Combining Theorems 2.4 and 3.3 and since s ≤ non(M) we get the
following corollary.

Corollary 3.4. (c ≤ ℵ2) There is an α3-FU ad family which is not bise-
quential. �

4. Weak ♦ principles

The almost disjoint families constructed so far have all size c. We will
use the parametrized diamond ♦(b) (see [15]) to construct counterexamples
to Gruenhage’s questions of size ω1. Recall that this principle is defined as
follows:

♦(b) ≡ ∀F : 2<ω1 → ωω Borel ∃g : ω1 → ωω ∀f ∈ 2ω1

{α ∈ ω1 : g(α) �∗ F (f � α))} is stationary.

Theorem 4.1. ♦(b) implies the existence of an α3-FU non-hereditarily α3

ad family.

Proof. Let {An : n ∈ ω} be a partition of ω into infinite sets. For every
infinite ordinal δ < ω1 fix a bijection eδ : ω → δ. We will define a Borel
function F into the set ωω and such that its domain is the set of tuples
(Aδ+1,Yδ, X) where:

(1) δ is an infinite countable ordinal.
(2) Aδ+1 = 〈Aα : α ≤ δ〉 is an almost disjoint family.
(3) Yδ = 〈Yα : ω ≤ α < δ〉 ⊆ A⊥δ .
(4) X ∈ ([ω]ω × 2) ∪ ([ω]ω)ω.
(5) If X ∈ ([ω]ω)ω then X(n) ∈ A⊥δ+1 for every n ∈ ω.
(6) If X = (x, i) ∈ ([ω]ω × 2) then x ∈ I(Aδ+1)

+. Moreover, if i = 0,
then |x ∩An| = ω for infinitely many n ∈ ω.

If X = (x, 0), there are infinitely many n ∈ ω such that x ∩ Aeδ(n) is
infinite. Let {nk : k ∈ ω} be the increasing enumeration of this set and
define

F (Aδ+1,Yδ, (x, 0))(k) = min

x ∩Aeδ(nk) \ ⋃
i<nk

[
Aeδ(i) ∪ Yeδ(i)

] .
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Analogously, if X = (x, 1), there are infinitely many n ∈ ω such that
the set x ∩ Aeδ+1(n) in nonempty. Redefine {nk : n ∈ ω} as the increasing
enumeration of this set and define

F (Aδ+1,Yδ, (x, 1))(k) = min

x ∩Aeδ+1(nk) \
⋃
i<nk

Aeδ+1(i))

 .

On the other hand if X ∈ ([ω]ω)ω, X(n) ∈ I(Aδ+1)
+ for every n ∈ ω.

Define fn = F (Aδ+1,Yδ, (X(n), 1)). Take g ∈ ωω such that fn ≤∗ g for all
n ∈ ω and define F (Aδ+1,Yδ, X) = g.

Now suppose that g : ω1 → ωω is a ♦(b)-sequence for F and assume
that the entries of g form a <∗-strictly increasing sequence of increasing
functions by making them larger if necessary.

We now construct our almost disjoint family A = 〈Aα : α < ω1〉 together
with a sequence Y = 〈Yα : ω ≤ α < ω1〉 ⊆ A⊥. If 〈Aα : α < δ〉 and
〈Yα : ω ≤ α < δ〉 have been defined for an infinite countable ordinal δ, set

Aδ =
⋃
n∈ω

(
g(δ)(n) ∩Aeδ(n) \

⋃
i<n

[
Aeδ(i) ∪ Yeδ(i)

])

and

Yδ =
⋃
n∈ω

(
g(δ)(n) ∩Aeδ+1(n) \

⋃
i<n

Aeδ+1(i)

)
.

It is clear that Yδ ∈ A⊥δ+1 and that Aδ ∈ (Aδ ∪ Yδ)⊥. Then A is almost
disjoint and Y ⊆ A⊥. Let us prove that A satisfies the properties listed in
remark 2.7.

Let us prove first that A is nowhere mad. Given x ∈ I(A)+ we have that
(Aδ+1,Yδ, (x, 1)) is in the domain of F for every infinite ordinal δ < ω1.
Then suppose that g guesses F (A,Y, (x, 1)) at δ. Let l ∈ ω, we shall find
m > l such that m ∈ Yα ∩ x. Recall that in this case {nk : k ∈ ω} is the
increasing enumeration of the numbers n’s such that Aeδ+1(n) has nonempty
intersection with x. Find k ∈ ω such that [0, l] ⊆

⋃
i<nk

Aeδ+1(i) and
g(δ)(k) > F (Aδ+1,Yδ, (x, 1)). This is possible since {Aeδ+1(n)\

⋃
i<nAeδ(i) :

n ∈ ω} forms a partition of ω and g �∗ F (Aδ+1,Yδ, (x, 1)). Then m =
F (Aδ+1,Yδ, (x, 1)) > l and since m < g(δ)(k) ≤ g(δ)(nk) it follows that
m ∈ Yα ∩ x.
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A similar argument shows that if x is like in point 3 of remark 2.7, then
(Aδ+1,Yδ, (x, 0)) is in the domain of F for every infinite ordinal δ < ω1.
Hence, if g guesses F (A,Y, (x, 0)) at δ we have that |Aδ ∩ x| = ω.

Finally suppose that X ∈ ([ω]ω)ω and let δ ∈ ω1 such that g guesses
F (A,Y, X) at δ. Since g(δ) �∗ F (Aδ+1,Yδ, X) and F (Aδ+1,Yδ, X) ≥∗ fn
for the associated functions fn, it follows that g �∗ fn for every n ∈ ω.
Using the same reasoning as below with fn instead of F , we can prove that
Yδ ∩ X(n) is infinite for every n ∈ ω. Therefore we have proved not only
that A is α3 but α2. �

It is also possible to prove the equivalents of Theorem 2.5 and corollary
2.6 under ♦(b). Since no new ideas are used, we will not give a proof of
these results. The interested reader can prove this by combining the ideas
of the previous theorem and Theorem 2.5.

5. Further results

We have used different axioms for building the spaces/ad families studied
so far, namely, non(M) = c, s ≤ b, ♦(b) and in consequence, the results
follow from c ≤ ℵ2 since s, b ≤ non(M). For the remainder of this section
let Φ be any of these axioms.

In [16], Nyikos built under b = c, an ad family A ⊆ [ω × ω]ω consisting
of graphs of functions which fails to be α3 and asked whether it is possible
to construct an α3 non-bisequential ad family of this kind under the same
assumption. Theorem 2.5 provides a positive answer to this question. He
also asked the following:

• Is every compact α3-FU space ℵ0-bisequential?
• Is there a ZFC example of a compact space X that has Fréchet
product with every regular countably compact Fréchet space, but
is not ℵ0-bisequential?

In [1], Arhangel’skii proved that a separable space is ℵ0-bisequential iff
it is bisequential. Since Ψ(A)∗ is compact and separable, we then get the
following:

Corollary 5.1. (Φ) There exists a compact α3-FU space which is not ℵ0-
bisequential.

As Nyikos pointed out, a (consistent) negative answer to the first problem
gives an (consistent) affirmative one to the second question in view of the
next theorem.
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Theorem 5.2. [1] If X is an α3-FU space, then X×Y is Fréchet for every
regular countably compact Fréchet space.

Given a Fréchet ad family A, the space Ψ(A)∗ is compact and Fréchet
since every infinite subset of A converges to ∞. Then an ad family is
Fréchet iff it is absolutely Fréchet. In [1], Arhangel’skii asked the following:

(∗) Is there a (countable) α1-Fréchet space which is not bisequential?

Malyhin has constructed a consistent example for this question under
2ℵ0 < 2ℵ1 [13]. Here we will construct a countable absolutely Fréchet
example under CH by strengthening our previous results in order to get α1.

Theorem 5.3. (CH) There exists a countable α1 and absolutely Fréchet
space which is not bisequential.

Proof. We will construct an α1 absolutely Fréchet ad family A which is not
hereditarily α3. For this purpose we will recursively define A = {Aα : α <
ω1} and B = {Bα,i : ω ≤ α < c} such that A is almost disjoint and B ⊆ A⊥.
Enumerate [ω]ω = {Xα : α < ω1} and ([ω]ω)ω = {Yα : α < ω1}. For every
ω ≤ δ < ω1 let eδ : ω → δ be a bijection. Suppose we have constructed Aδ
and Bδ := {Bα,i : α < δ ∧ i ∈ 2}.

Define X = Xα if Xα ∈ I(Aδ)+ and X = X ′ for some X ′ ∈ I(Aδ)+
otherwise. Pick xn ∈ X \ (

⋃
i<nAeδ(i)) and define Bδ,0 = {xn : n ∈ ω}.

Similarly define Y = Yα if {Yα(n) : n ∈ ω} ⊆ A⊥δ and Y = Y ′ for some
Y ′ ∈ (A⊥δ )ω otherwise. Define

Bδ,1 :=
⋃
n∈ω

⋃
j≤n

Y (j)

 ∩(Aeδ(n) \ ⋃
i<n

Aeδ(i)

) .
Notice that Y (j) \ (

⋃
i<j Aeδ(i)) ⊆ Bδ,1 and

⋃
j≤n Y (j) has finite inter-

section with each Aeδ(n). Hence Bδ,1 is almost disjoint with Aδ and almost
contains each Y (j).

Finally, define Z = Xα if |Xα ∩ An| = ω for infinitely many n ∈ ω and
Z = X ′ for some X ′ satisfying this property otherwise. Let {kn : n ∈ ω} ⊆
ω be an increasing sequence such that |Zα ∩ Aeδ(kn)| = ω for every n ∈ ω.
Pick zn ∈ Z ∩Aeδ(kn) \ (

⋃
i<kn

Aeδ(i)) and define Aδ := {zn : n ∈ ω}.
From the construction it is clear that A is α1 because for every sequence

Y ∈ (A⊥)ω there exists an α < ω1 such that Y = Yα and Bα,1 witnesses
this property. With a similar argument we conclude that A is also Fréchet
(hence absolutely Fréchet) and it is not bisequential.
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