
n-Luzin gaps

Osvaldo Guzmán González
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Abstract

We introduce the notion of an n-Luzin gap, which is a natural
generalization of a Luzin gap. We prove that under Martin’s Axiom,
every AD family A of size less than c contains an n-Luzin gap or the
corresponding Mrówka-Isbell space Ψ(A) is normal.

0 Introduction

An infinite family A ⊂ P(ω) is almost disjoint (AD) if the intersection of any
two distinct elements of A is finite. It is maximal almost disjoint (MAD) if
it is not properly included in any larger AD family or, equivalently, if given
an infinite X ⊆ ω there is an A ∈ A such that ∣A ∩X ∣ = ω. Given an almost
disjoint family A and two subfamilies B,C of A we say that a set X ⊆ ω
separates B and C if A ⊆∗ X for every A ∈ B and A ∩X =∗ ∅ for every A ∈ C.

∗2000 AMS Classification: 03E17, 03E40
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One of the first constructions of almost disjoint families with special prop-
erties is the construction of Luzin [12] of an uncountable almost disjoint fam-
ily A such that no two uncountable subfamilies of A can be separated. The
ingenious property used in the proof deserves a name:

Definition 0.1 An almost disjoint family A is Luzin if it can be enumerated
as {Aα ∶ α < ω1} so that ∀α < ω1 ∀n ∈ ω {β < α ∶ Aα ∩Aβ ⊆ n} is finite.

Abraham and Shelah [1] called (and so do we) an almost disjoint family A
inseparable if no two uncountable subfamilies can be separated. It is easy to
see thatA is inseparable if and only if for every B,C ∈ [A]

ω1 the set ⋃B∩⋃C is
infinite. The point of Luzin’s proof was that, Luzin families are inseparable.
Abraham and Shelah proved that (1) assuming CH, there is an inseparable
AD family which contains no Luzin subfamily, while (2) under MA + ¬CH
every inseparable AD family is a countable union of Luzin subfamilies.

Roitman and Soukup in [14] introduced the notion of an anti-Luzin fam-
ily: An AD family A is an anti-Luzin family if for every B ∈ [A]ℵ1 there are
C,D ∈ [B]ℵ1 which can be separated (or equivalently, A does not contain un-
countable inseparable families) and proved that assuming MA + ¬CH, every
AD family is either anti-Luzin or contains an uncountable Luzin subfam-
ily, and assuming q1, there is an uncountable almost disjoint family which
contains no uncountable anti-Luzin and no uncountable Luzin subfamilies.

More recently, Dow [6] showed that PFA implies that every MAD family
contains an uncountable Luzin subfamily. Dow and Shelah in [7] showed that
Martin’s Axiom does not suffice by showing that it is relatively consistent
with MA + ¬CH that there is a maximal almost disjoint family which is
ω1-separated, i.e. any disjoint pair of ≤ ω1-sized subfamilies are separated.

To every almost disjoint family one can naturally associate the so called
Mrówka-Isbell space:

Definition 0.2 Given an AD family A, define a space Ψ(A) as follows: The
underlying set is ω∪A, all elements of ω are isolated and basic neighborhoods
of A ∈ A are of the form {A} ∪ (A ∖ F ) for some finite set F .

It follows immediately from the definition that Ψ(A) is a separable, scat-
tered, zero-dimensional, first countable, locally compact Moore space [13].
Normality of Ψ-spaces is characterized using separation as follows:

1Recall that q is the following weakening of CH: There is a family S ⊆ [ω1]
ω of size ℵ1

such that every uncountable subset of ω1 contains an element of S.
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Proposition 0.3 ([17]) Ψ(A) is normal if and only if B and A ∖ B can be
separated for every B ⊆ A.

Abusing notation we will call A normal if the space Ψ(A) is normal. A
natural choice would be to call A completely separated, but unfortunately a
very similar term is already in use [16, 8, 4].

Up until recently Luzin families were often referred to as Luzin gaps.
However, that name has recently [18, 9] been used to describe a weaker
notion.

Definition 0.4 ([18]) A pair A = {Aα ∶ α < ω1}, B = {Bα ∶ α < ω1} of
subfamilies of [ω]ω is called a Luzin gap if there is an m ∈ ω such that

1. Aα ∩Bα ⊆m for all α < ω1, and

2. Aα ∩Bβ is finite yet (Aα ∩Bβ) ∪ (Aβ ∩Bα) /⊆m for all α ≠ β < ω1.

Every Luzin family A contains many Luzin gaps: given a pair {Aα ∶ α <

ω1}, {Bα ∶ α < ω1} of subfamilies of A, there is an uncountable X ⊆ ω1 such
that {Aα ∶ α ∈ X}, {Bα ∶ α ∈ X} forms a Luzin gap. The basic property
of a Luzin gap is that the two families A and B can not be separated, and
the property of being a Luzin gap is indestructible by forcing preserving ω1

(see [18, 9] or section 1). Hence, the space Ψ(A) can not be normal (in any
forcing extension preserving ω1) for any AD family A containing a Luzin gap.
The notion of a Luzin gap suggest the following generalization,

Definition 0.5 Let n ∈ ω and Bi = {Biα ∣ α ∈ ω1} be disjoint subfamilies of an
AD family A for i < n. We call ⟨Bi∣i < n⟩ an n-Luzin gap if there is m ∈ ω
such that

1. Bi
α ∩B

j
α ⊆m for all i ≠ j, α < ω1 and

2. ⋃
i≠j

(Bi
α ∩B

j
β) /⊆m for all α ≠ β < ω1.

We say that A contains an n-Luzin gap if there is an n-Luzin gap ⟨Bi∣i < n⟩
where each Bi is a subfamily of A. We will see that any family contanining
an n-Luzin gap is not normal, and our main theorem states that the converse
is also true assuming Martin’s Axiom:
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Theorem 0.6 Assume MA. Let A be an AD family. Then A is normal if
and only if ∣A∣ < c and A does not contain n-Luzin gaps for any n ∈ ω.

Assuming PFA the theorem can be strenghten. We also show that the
result does not follow from MA(σ-centered), as

Theorem 0.7 It is consistent with MA(σ-centered) that there is an insep-
arable AD family of size ω1 which does not contain Luzin gaps for every
n ∈ ω.

The situation is reminiscent of ω1-trees and Hausdorff gaps, an insep-
arable family that does not contain n-Luzin gaps for any n ∈ ω being the
equivalent of a Suslin tree or a ccc destructible gap. A Suslin tree can be
destroyed by two different means: (1) one can force with the tree an add
an uncountable branch and (2) one can specialize the tree by a ccc forcing
making it a union of countably many antichains. Similar situation occurs
with ccc destructible Hausdorff gaps ([?] see [15]) a destructible Hausdorff
gaps can be either (1) filled or (2) frozen, both by ccc forcing. Here, an
inseparable family with no n-Luzin gaps can be either (1) forced normal or
(2) frozen by forcing it to contain a Luzin gap, both by a ccc forcing.

An early (probably the first) example of a Ψ-space appears in [2]: A
topology of the real line is refined by declaring all rational points isolated. To
each irrational point a convergent sequence is chosen and the cofinite subsets
of the given convergent sequence are declared basic open neighborhoods of
the irrational number.

We call an almost disjoint family A R-embeddable (see [10]) if there is an
injection e ∶ ω → Q such that for every A ∈ A there is an rA ∈ R such that
e[A] converges to rA and, moreover, rA ≠ rB whenever A ≠ B. Evidently, this
is equivalent that there is an injective and continous f ∶ Ψ (A) Ð→ R such
that f (n) ∈ Q for every n ∈ ω. Using Tietze’s theorem, it is easy to show that
every normal family is R-embedabble.

The notion of R-embeddability together with a strengthening of the no-
tion of an anti-Luzin family are the main tools here.

Definition 0.8 An almost disjoint family A is partially separated if given
a pair B = {Bα ∶ α < ω1}, C = {Cα ∶ α < ω1} of pairwise disjoint subfamilies
of A there is an uncountable X ⊆ ω1 such that the families {Bα ∶ α ∈ X},
{Cα ∶ α ∈X} are separated.
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We call an AD family A potentially P (for a property P) if there is a
ccc forcing P such that ⊩P “A has P”. Similarly, we say that A is inde-
structibly P, if A has property P in all ccc forcing extensions. We show
that

Theorem 0.9 The following are equivalent for an AD family A:

1. A is does not contain n-Luzin gaps for any n ∈ ω,

2. A is potentially normal,

3. A is potentially R-embeddable,

4. A is potentially partially separated.

Dow and Shelah’s [7] result mentioned above shows that it is consistent
with MA that there is a MAD family which is potentially normal, while
assuming PFA ([6]) all MAD families contain Luzin families, hence, also Luzin
gaps. It is worth mentioning that Aviles and Todorcevic studied gaps of
higher dimensions in [3].

1 Forcing an AD to be normal

In the following, A will always be an AD family. Given B,C disjoint subsets
of A, we will define a forcing that adds a set separating B from C. Let SBC
be the set of all (s,F ,G) such that,

1. s ∈ <ω2, F ∈ [B]
<ω
, G ∈ [C]

<ω
.

2. If B ∈ F and C ∈ G then B ∩C ⊆ ∣s∣ .

We say (s,F ,G) ≤ (s′,F ′,G′) if and only if,

1. s′ ⊆ s, F ′ ⊆ F , G′ ⊆ G.

2. If i ∈ dom (s) ∖ dom (s′) then,

a) If i ∈ ⋃F ′ then s (i) = 1.

b) If i ∈ ⋃G′ then s (i) = 0.
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It is easy to prove that for all n ∈ ω, B ∈ B and C ∈ C the sets {(s,F ,G) ∣ ∣s∣ ≥ n} ,
{(s,F ,G) ∣ B ∈ F} and {(s,F ,G) ∣ C ∈ G} are dense, so SBC adds a set sepa-
rating B from C.

Lemma 1.1 If A is partially separated, then SBC is ccc.

Proof. Let {pα ∣ α ∈ ω1} be a set of conditions, and write pα = (sα,Fα,Gα) .
With out lose of generality, we may assume that there are n,m ∈ ω such that
∣Fα∣ = n and ∣Gα∣ =m for every α ∈ ω1. Let us enumerate Fα = {Fα (i) ∣ i < n}
and Gα = {Gα (i) ∣ i <m} .

Let B0 = {Fα (0) ∣ α ∈ ω1} and C0 = {Gα (0) ∣ α ∈ ω1}, since A is partially
separated, there are Z0 ∈ [ω1]

ω1 and k0 such that Fα (0) ∩ Gβ (0) ⊆ k0 for
every α,β ∈ Z0. Now let B1 = {Fα (0) ∣ α ∈ Z0}, C1 = {Gα (1) ∣ α ∈ Z0} and
find Z1 ∈ [Z0]

ω1 , k1 ∈ ω such that Fα (0) ∩ Gβ (1) ⊆ k1 for every α,β ∈ Z1.
Repeating this process (mn times) we conclude there is Z ∈ [ω1]

ω1 and k
such that Bα (i) ∩Cβ (j) ⊆ k for every α,β ∈ Z and i < n, j <m.

For every α ∈ Z, take s′α such that (s′α,Fα,Gα) ≤ (sα,Fα,Gα) and k < ∣s′α∣ .
Naturally, there are s ∈ <ω2 and α,β ∈ Z with the property that s = sα = sβ.
We claim that (s,Fα,Gα) and (s,Fβ,Gβ) are compatible (and then, so are pα
and pβ). To prove this, we only need to note that (s,Fα ∪Fβ,Gα ∪ Gβ) is a
condition, but this is trivial since k < ∣s′α∣ .

Now, we will prove that R-embedabbility implies partial separability.

Proposition 1.2 If A is R-embeddable, then it is partially separated.

Proof. Let h ∶ Ψ (A) Ð→ R witness that A is R-embeddable and take
B ={Bα ∣ α ∈ ω1} , C ={Cα ∣ α ∈ ω1} disjoint subsets of A. Fix D a countable
base for R and for every α ∈ ω1, find disjoint Uα, Vα ∈D such that h (Bα) ∈ Uα
and h (Cα) ∈ Vα. We may also choose mα ∈ ω such that h [Bα ∖mα] ⊆ Uα and
h [Cα ∖mα] ⊆ Vα. Now, let X ∈ [ω1]

ω1 be such that there are U,V ∈D and m
with the property that Uα = U, Vα = V and mα = m for all α ∈ X. It is clear
that if α,β ∈X then Bα ∩Cα ⊆m.

We may conclude even more from the above, note that being R-embeddable
is an indestructible property, so an R-embeddable family is actually inde-
structibly partially separated. In this way, we may conclude,
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Corollary 1.3 The following are equivalent,

1. A is potentially R-embeddable,

2. A is potentially indestructibly partially separated ,

3. A is potentially normal.

Proof. We already note that 1 implies 2 and it is clear that 3 implies 1. Let
us prove that 2 implies 3, let P be a ccc forcing such that 1P forces that A is
indestructibly partially separated . In this way, the forcings SBC will always
be ccc (under any extension) so we may iterate them and get a model where
A is normal.

As a consequence, under Martin’s Axiom, the small almost disjoint fam-
ilies that can become normal, are precisely those that are already normal.

Corollary 1.4 Assume MA. Let A be an AD with ∣A∣ < c, then A is poten-
tially normal if and only if A is normal.

Proof. Let A be potentially normal and of size less than c. We must prove
that every B,C disjoint subsets of A can be separated. Since we are assuming
MA, it is enough to show that the forcing SBC is ccc (because we only need
∣B∣+ ∣C∣+ω dense sets to do the job). Now, let P be a ccc forcing such that A
is partially separated in V [G] for every generic filter G ⊆ P. Note that SBC is

the same as SV [G]
BC and since A is partially separated, then it is ccc in V [G] .

This implies that it SBC is ccc in V (since any uncountable antichain in V
would still be an uncountable antichain in V [G]).

Assuming MA, we may get another equivalence of potentially normal,

Corollary 1.5 Assume MA. A is potentially normal if and only if A is in-
destructibly partially separated .

Proof. Let A be potentially normal, P a ccc forcing and G ⊆ P a generic
filter. We must prove that A is partially separated in V [G]. For this, it is
enough to see that every subfamily of A of size ω1 is partially separated. In
this way, in V [G] choose A′ ∈ [A]

ω1 and since P is ccc, then there is A′′ ∈ V
a subset of A of size ω1 such that A′ ⊆ A′′. Since MA is true in V , then A′′

is R embedabble, so it is partially separated in V [G] and also A′.

We remark that the previous corollary can not be proved in ZFC, as we
will see in section 3.

7



2 n-Luzin gaps

We start by proving some elementary facts about n-Luzin gaps.

Lemma 2.1 If ⟨Bi∣i < n⟩ is an n-Luzin (with Bi = {Biα ∣ α ∈ ω1}) then, for
every X ∈ [ω1]

ω1 and k ∈ ω, there are α,β ∈X such that ⋃
i≠j

(Bi
α ∩B

j
β) /⊆ k.

Proof. Let m ∈ ω testify that ⟨Bi ∣ i < n⟩ is n-Luzin. With out losing gener-
ality, we may assume κ > m. First, we find Y ∈ [X]

ω1 such that if α,β ∈ Y
and i < n, then Bi

α ∩ k = Bi
β ∩ k. Take α,β ∈ Y distinct, we know there are

i ≠ j such that Bi
α ∩B

j
β ⊈m, but since Bi

α ∩ k = B
i
β ∩ k and Bj

β ∩B
i
β ⊆m ⊆ k,

then Bi
α and Bj

β must intersect above k.

With the aid of this lemma, we can prove,

Lemma 2.2 If A is partially separated, then it does not contain n-Luzin
gaps for any n ∈ ω.

Proof. LetA be partially separated and take {Bn
α ∣ n ∈ ω} such thatBi

α∩B
j
α ⊆

m when i ≠ j. Since A is partially separated, we may find X ∈ [ω1]
ω1 and

k ∈ ω such that Bi
α ∩B

j
α ⊆ k for all α,β ∈ X. In this way, A can not contain

n-Luzin gaps by the previous lemma.

Since normal families are partially separated, we immediately conclude:

Corollary 2.3 If A contains an n-Luzin gap, then it is not normal.

Using this, we will be able to give a nice combinatorial reformulation of
potential normality of AD families. First, we will introduce a forcing that
makes A an R-embeddable family. Instead of trying to embedd Ψ (A) into R,
we will try to do it in the Cantor space ω2, identifying the rational numbers
with the eventually 0 functions. It is easy to see that this is enough. Let
R (A) be the set of all (s,F) such that,

1. s ∈ <ωQ is injective and F ∈ [A]
<ω
.

2. If A,B ∈ F then A ∩B ⊆ ∣s∣ .

And (s,F) ≤ (s′,F ′) if,
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1. s′ ⊆ s, F ′ ⊆ F .

2. If i ∈ dom (s) ∖ dom (s′) and there is A ∈ F ′ such that i ∈ A and
j = max{A ∩ dom (s′)} then ∆ (s (i) , s′ (j)) ≥ ∣s′∣ (where ∆ (x, y) is
the first n such that x (n) ≠ y (n)).

Note that the A as is unique since (s′,F ′) is a condition.

Lemma 2.4 If R (A) is ccc, then A is potentially R-embeddable.

Proof. Given n ∈ ω, it is easy to prove that the set Dn = {(s,F) ∣ n < ∣s∣}
is dense (this is due to the fact that if A,B ∈ F then A ∩B ⊆ F , so we may
extend the condition (s,F) without changing F). Also, if A ∈ A then the
set EA = {(s,F) ∣ A ∈ F} is dense. Given (s,F) we first find m ∈ ω such
that X ∩ Y ⊆ m for every X ≠ Y ∈ F∪{A} and then we extend (s,F) to a
condition (s′,F) such that m < ∣s′∣ . In this way, (s′,F∪{A}) is smaller than
(s,F) .

Fix G a generic filter for R (A) , we will prove that A is R-embeddable in
V [G] . Let e = ⋃

(s,F)∈G
s since the Dn are dense, then e is a function from ω to

R. We will show that if A ∈ A then e [A] is a convergent sequence. For this,
just note that if A ∈ F and A∩dom (s) ≠ ∅ then (s,F) ⊩ “if x, y ∈ A∖dom (s) ,
then ė (x) ↾ ∣s∣ = ė (y) ↾ ∣s∣”.

Let us call rA ∈ ω2 the limit of e [A] . It remains to see that rA ≠ rB
whenever A ≠ B. Let DAB be the set of the (s,F) that force rA to be different
from rB. It is enough to show that this set is dense. Take (s,F) a condition,
without loosing generality, we may assume A,B ∈ F and A ∩ dom (s) , B ∩

dom (s) are not empty. Now, it is easy to extend this condition in such a
way that rA and rB belong to different clopen sets.

We are finally ready to prove one of the main results.

Theorem 2.5 A is potentially normal if and only if A does not contain
n-Luzin gaps for any n ∈ ω.

Proof. If A contains an n-Luzin gap, then A still contains it in any forcing
extension that preserves ω1. Since this families are not normal, we may
conclude that A can not be potentially normal. Now, we only need to prove
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that if A does not contain n-Luzin gaps then it is potentially normal, or
equivalently that it is potentially R-embeddable. For this, we just need to
see that R (A) is ccc.

Assume this is not the case, then there is a set {(sα,Fα) ∣ α ∈ ω1} of
pairwise incompatible conditions. We may assume there is s ∈ <ω R such
that sα = s for all α ∈ ω1 and {Fα ∣ α ∈ ω1} forms a ∆ system with root
R. Note that since (s,Fα) and (s,Fβ) are incompatible so are (s,Fα ∖R)

and (s,Fβ ∖R) . In this way, we may assume that R is the empty set and
all Fα are of the same size, say n. We may also assume that if i < n then
Fα (i) ∩m = Fβ (i) ∩m for all α,β ∈ ω1.

Enumerate Fα = {Fα (i) ∣ i < n} and let Bi = {Fα (i) ∣ α ∈ ω1} . Note that,
since each (s,Fα) is a condition, then Fα (i) ∩ Fα (j) ⊆ m. Since A does
not contain n-Luzin gaps, there are α ≠ β such that if i ≠ j then Fα (i) ∩
Fβ (j) ⊆m. We claim that (s,Fα) and (s,Fβ) are compatible, which will be a
contradiction. Note that (s,Fα ∪Fβ) may fail to be a condition, since there
could be A,B ∈ Fα ∪Fβ such that A ∩B ⊈ ∣s∣ = m. But in this case, A must
be of the form Fα (i) and B must be Fβ (i) (because (s,Fα) and (s,Fβ) are
conditions and Fα (i) ∩ Fβ (j) ⊆ m when i ≠ j). However, since Fα (i) and
Fβ (i) agree up to m, it is easy to extend (s,Fα ∪Fβ) to a condition.

Evidently, we may conclude,

Corollary 2.6 If A is partially separated then it is potentially R-embeddable.

We may also prove the promised result,

Theorem 2.7 Assume MA. Let A be an AD family. Then A is normal if
and only if ∣A∣ < c and A does not contain n-Luzin gaps for any n ∈ ω.

Proof. The forward implication is clear, for the converse, just recall that
under MA normality and potential normality are equivalent for families of
size less than c.

We will show that, under the Proper Forcing Axiom, we may “remove the
n” from the previous result. Assume B ={Bα ∣ α ∈ ω1} , C ={Cα ∣ α ∈ ω1} are
disjoint subfamilies of A and let X = {(Bα,Cα) ∣ α ∈ ω1} . For every m ∈ ω we
define the “coloring”,
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cm ∶ [X]
2
Ð→ 2

cm ((Bα,Cα) , (Bβ,Cβ)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if (Bα ∩Cβ) ∪ (Bβ ∩Cα) ⊈m

1 if (Bα ∩Cβ) ∪ (Bβ ∩Cα) ⊆m

We may see X as a subset of the polish space ω2 ×ω 2, so it carries a
natural topology. In this way, note that c−1 ({0}) ⊆ X2 is an open set. Let
us recall Todorcevic’s Axiom (see [19]),

TA) If X is a separable metric space and c ∶ [X]
2
Ð→ 2 is such that c−1 ({0})

is open, then one of the following holds,

⋆) There is M ∈ [X]
ω1 that is monochromatic of color 0 (i.e. c restricted to

[M]
2

is the constant 0).

⋆⋆) X may be cover by ω monochromatic sets of color 1.

For us, it will be enough to observe that TA implies that (given X is
uncountable) there is always an uncountable monochromatic set in one color.
Note that our X is indeed a separable metric space, since polish spaces are
hereditarily separable. The following result may be seen as a consequence of
theorem 13.5 in [19], but we prove it for the sake of completeness.

Proposition 2.8 ([19]) If TA is true, then every almost disjoint family is
partially separated or contains a Luzin gap.

Proof. AssumeA is not partially separated, so there are two disjoint subfam-
ilies B ={Bα ∣ α ∈ ω1} , C ={Cα ∣ α ∈ ω1} of A such that for every Y ∈ [ω1]

ω1

and n ∈ ω, there are α,β ∈ Y with the property that Bα ∩ Cβ ⊈ n. We may
assume there is m ∈ ω such that Bα ∩Cα ⊆m for all α ∈ ω1.

Let X, and cm be defined as above. In this way, the previous remark tells
us that there are no uncountable 1 monochromatic sets, so TA implies the
existence of an uncountable 0 monochromatic set Y. Clearly {Bα ∣ α ∈ Y } ,
{Cα ∣ α ∈ Y } is a Luzin gap.
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The above result can not be proven in ZFC, since it is consistent with
MA (σ − centered) that there are 3-Luzin gaps that do not contain Luzin
gaps. It is well known that PFA implies both TA and MA, so we may conclude
the following,

Corollary 2.9 Assume PFA. Let A be an AD family. Then A is normal if
and only if ∣A∣ < c and A does not contain Luzin gaps.

However, we do not know if we really need PFA (TA) for the strenghten
result, so the following question is unanswered,

Questions 2.10 Does the previous corollary holds assuming MA?

3 Schizophrenic AD Families

Recall that A is inseparable if for every B,C ∈ [A]
ω1 the set ⋃B∩⋃C is

infinite or equivalently, for every m ∈ ω there are B ∈ B and C ∈ C such that
B ∩C ⊈m. Clearly, every uncountable subfamily of an inseparable family is
inseparable and A is inseparable if and only if all of its subfamilies of size ω1

are inseparable.

Let us introduce a forcing aiming to add a Luzin family. Assume A =

{Aα ∣ α ∈ ω1} and for every p ∈ [ω1]
<ω

let mp be the smallest integer such that
Aα ∩Aβ ⊆ mp for all α,β ∈ p distinct. We define the poset SR (A) = [ω1]

<ω

(see [14]) and we say p ≤ q if and only if,

1. q ⊆ p,

2. If α ∈ p ∖ q and there is β ∈ q with α < β, then Aβ ∩Aα ⊈mq.

Lemma 3.1 ([14]) If SR (A) is ccc, then A potentially contains a Luzin
family.

Proof. For every α ∈ ω1 define Dα = {p ∣ p ⊈ α} . It is easy to see that this
set is dense, since if p ⊆ α then p ∪ {α} ≤ p. Let G be a generic filter and in
V [G] define B = {Aα ∣ α ∈ ⋃G} , then B is uncountable (since the forcing is
ccc) and it is easy to see that it is indeed a Luzin family.

With the aid of the previous result, we may obtain the following charac-
terization due to Roitman and Soukup in [14].
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Proposition 3.2 ([14]) A is inseparable if and only if every uncountable
subfamily of A potentially contains a Luzin family.

Proof. First, assume every uncountable subfamily of A potentially contains
a Luzin family. Let B,C be uncountable subfamilies of A and define A′ =
B ∪ C. We know there is P a ccc forcing such that 1P forces that A′ contains
a Luzin family. Aiming for a contradiction, assume there is m ∈ ω such that
B ∩ C ⊆ m for every B ∈ B and C ∈ C. Let G ⊆ P be a generic filter and
in V [G] find D = {Xα ∣ α ∈ ω1} ⊆ A′ be a Luzin family. Clearly, there is
α ∈ ω1 such that Xα ∈ B and {Xξ ∣ ξ < α} ∩ C is infinite, but then the set
{ξ < α ∣Xα ∩Xξ ⊆m} is infinite, which contradicts that D is a Luzin family.

For the other implication, it is enough to prove that if A is inseparable
of size ω1, then SR (A) is ccc. We will proceed by contradiction, suppose
{pα ∣ α ∈ ω1} is an antichain, we may assume it forms a ∆ system with root
r, every pα ∖ r has size n and and there is m ∈ ω such that mpα = m for all
α ∈ ω1. Furthermore, thinning our family, we may assume that for all α, every
member of r is below every member of pα∖r and if α < β, then every member
of pα ∖ r is below every member of pβ ∖ r. Write pα ∖ r = {pα (i) ∣ i < n} and
we may suppose there is k > m such that pα (i) ∩ (k ∖m) ≠ ∅ for all α ∈ ω1.
Thinning our family again, we may assume pα (i) ∩ k = pβ (i) ∩ k for all
α,β ∈ ω1.

We will now see that there are X0, Y0 ∈ [ω1]
ω1 such that if α ∈ X0 and

β ∈ Y0 then pα (0)∩ pβ (1) ⊈m. Suppose this is false, then for every x >m, at
least one of the sets Bx = {α ∣ x ∈ pα (0)} , Cx = {α ∣ x ∈ pα (1)} is countable
(and they are disjoint, since x is bigger than m). Let B be the set of all
the pα (0) such that α ∉ ⋃

∣Bx∣≤ω
Bx and C be the set of all pα (1) such that

α ∉ ⋃
∣Cx∣≤ω

Cx. In this way, B and C are two uncountable subfamilies of A.

However, if B ∈ B and C ∈ C then B ∩C ⊆ m, which contradicts that A was
inseparable.

Repeating this process several times, we find there are X,Y ∈ [ω1]
ω1 such

that if α ∈ X and β ∈ Y then pα (i) ∩ pβ (j) ⊈ m when i ≠ j. However,
we already knew that pα (i) ∩ pβ (i) ⊈ m, since pα (i) ∩ k = pβ (i) ∩ k and
pα (i) ∩ (k ∖m) ≠ ∅. This implies that pα ∪ pβ is a common extension of pα
and pβ, which is a contradiction.

13



Now, we will introduce an interesting class of families,

Definition 3.3 We say that an AD family A is schizophrenic if it is insep-
arable and potentially normal.

Schizophrenic families are rather peculiar, since there is a ccc forcing that
makes them normal, and another one that freezes them by adding them a
Luzin gap, so it become not indestructibly not normal! In this way we have
the following result,

Corollary 3.4 If A is schizophrenic, then R (A) and SR (A) are two ccc
forcings such that R (A) × SR (A) is not ccc.

In this way, MA implies that there are no schizophrenic families (another
way to prove this, is to remember that MA implies that potentially normal
entails indestructibly partially separated , and partially separated families
does not contain Luzin gaps). In the next section, we will see that the
existence of schizophrenic families is consistent with ZFC.

While there are no a schizophrenic families under MA, we will prove that
they may exist under MA (σ − centered) . We will denote the Cohen forcing
C = <ω2.

Lemma 3.5 If Ȧ is a C name for an uncountable subset of ordinals, then
there is s ∈ C and X ∈ V uncountable such that s ⊩ “X ⊆ Ȧ”. In other
words, any new uncountable set of ordinals contains an old uncountable set
of ordinals.

Proof. For every s ∈ C, let As = {a ∣ s ⊩ “a ∈ A”} . Clearly, if G ⊆ C is
generic, then A = ⋃

s∈G
As and since A is uncountable, then one of the As must

be uncountable.

Now we will prove,

Theorem 3.6 The existence of an schizophrenic family is consistent with
MA (σ − centered) .
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Proof. Let A ={Aα ∣ α ∈ ω1} be an inseparable family (take a Luzin family,
for example) and let D ⊆ ω be a Cohen real over V. In V [D] define A ↾ D to
be the set of all Aα∩D with α ∈ ω1. We will show that this is an schizophrenic
family (note first that A ↾ D is still an almost disjoint family).

Let us see that it is inseparable. In V [D] , let B ={Bα ∣ α ∈ ω1} , and
C ={Cα ∣ α ∈ ω1} be uncountable subfamilies of A. In this way, we may define
h ∶ ω1 Ð→ ω1 × ω1 in such a way that Bα = Ah(α)0 ∩D and Cα = Ah(α)1 ∩D
where h (α) = (h (α)0 , h (α)1) . By the previous lemma, there is s ∈ C and
X ∈ [ω1]

ω1 (in V ) such that s knows h ↾ X. We will find an extension of s
that forces what we need.

Fix m ∈ ω, we need to show that there are α,β ∈ ω1 such that Bα ∩Cβ =
(Ah(α)0 ∩Ah(β)1) ∩ D is not contained in m. Let B′ = {Ah(α)0 ∣ α ∈X} and

C′ = {Ah(α)1 ∣ α ∈X} since A is inseparable, there are α,β ∈ X and k >m, ∣s∣
such that k ∈ Ah(α)0 ∩Ah(β)1 . If s′ is any extension of s such that s′ (k) = 1,
then s′ ⊩ “k ∈ Bα ∩Cβ” and we are done.

Now, we will prove that it is potentially normal, or equivalently, that there
are no n-Luzin gaps for any n ∈ ω. Let n ∈ ω and assume for every i < n we
have ⟨Bi

α ∣ α ∈ ω1⟩ subfamilies of A ↾ D such that there is m ∈ ω with the
property that Bi

α ∩ B
j
α ⊆ m whenever i ≠ j. As before, define a function

h ∶ ω1 Ð→ ωn1 such that Bi
α = Ah(α)i ∩D (with the same notation as before).

Find s ∈ C that forces all of this, and an uncountable X ∈ V such that s
knows h ↾X. Let l = ∣s∣ and we may assume m < l.

Find α,β ∈ X distinct such that Ah(α)i ∩ l = Ah(β)i ∩ l for all i < n. Note
that if i ≠ j then Ah(α)i ∩ Ah(β)j ∩ l = Ah(α)i ∩ Ah(α)j ∩ l ⊆ m. Let r > l such
that Ah(α)i ∩ Ah(β)j ⊆ r when i ≠ j. Choose s′ any extension of s such that

r < ∣s′∣ and if x ∈ dom (s′) ∖ dom (s) then s′ (x) = 0. In this way, s′ forces
Bi
α ∩B

j
β ⊆m for all i ≠ j, so it is not an n-Luzin gap.

To finish the proof, assume MA holds in V, then MA (σ − centered) is still
true after we add a Cohen real (this is a theorem of Roitman, see [5] theorem
3.3.8).

Using the same ideas as above, we will (consistently) construct a 3-Luzin
gap that does not contain Luzin gaps. Recall that a family D ⊆ ω is inde-
pendent if for any distinct A0, ...,An,B0, ...,Bm ∈ D the set A0 ∩ ... ∩ An ∩
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(ω ∖B0) ∩ ... ∩ (ω ∖Bm) is infinite. We say that D separates points if for
every distinct n,m ∈ ω, there is D ∈ D such that {n,m} ∩D has size 1.

Given D an independent family that separates points, we define the topo-
logical space (ω, τD) which has D∪{ω −D ∣D ∈ D} as a subbase.

Lemma 3.7 (ω, τD) is homeomorphic to the rationals with the usual topol-
ogy.

Proof. This space is countable, first countable, zero dimentional without
isolated points, and this characterizes Q (This an old result of Sierpiński, see
[11]).

To construct our 3-Luzin gap, we will first construct (in ZFC) a special
type of a Luzin gap, which is interesting on its own,

Lemma 3.8 There is a Luzin gap B ={Bα ∣ α ∈ ω1} , C ={Cα ∣ α ∈ ω1} such
that B and C are R-embeddable.

Proof. Let D ={Dn ∣ n ∈ ω} and E ={En ∣ n ∈ ω} be disjoint families such
that both separate points and D ∪ E is an independent family. As was re-
marked above, (ω, τD) and (ω, τE) are both homeomorphic to the rationals,
and every open set of one topology is dense in the other. Identifying ω with
Q, we may view R as the metric completion of (ω, τD) and (ω, τE). Pick
{rα ∣ α ∈ ω1} a set of distinct irrationals, we will recursively build B and C
such that,

1. In (ω, τD), Bα is a convergent sequence to rα and it is dense in (ω, τE) .

2. In (ω, τE), Cα is a convergent sequence to rα and it is dense in (ω, τD) .

3. Bα ∩Cα = ∅ while Bα ∩Cβ, Bβ ∩Cα are non empty finite sets for every
β < α.

It is clear that if the recursion could be carried out, we would have con-
structed the desired family. Assume Bξ,Cξ had been constructed for every
ξ < α, let’s find Bα and Cα. Let {Un ∣ n ∈ ω} be a local base for rα with
U0 ⊇ U1 ⊇ U2... in (ω, τD) and {Vn ∣ n ∈ ω} a base in (ω, τE) . Enumerate
α = {ξn ∣ n ∈ ω} and we recursively build Bα = {xn ∣ n ∈ ω} ∪ {yn ∣ n ∈ ω} such
that:
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1. xn, yn ∈ Un,

2. xn ∈ Vn ∖ ⋃
m<n

Cξm ,

3. yn ∈ Cξn ∖ ⋃
m<n

Cξm .

It is easy to do that, since each Un is dense in (ω, τE) and all the Vn and
Cξn are dense in (ω, τD) . Cα is build in the same way, just taking care to be
disjoint with Bα.

Mimicking the construction of the schizophrenic family, we will finally
show:

Proposition 3.9 The existence of a 3-Luzin gap without Luzin subgaps is
consistent with MA (σ − centered) .

Proof. Like before, it is enough to see that there is such family after adding
a Cohen real. Let B = {Bα ∣ α ∈ ω1} , C ={Cα ∣ α ∈ ω1} be a Luzin gap with
Ba∩Cα = ∅ such that both B and C are R-embeddable. Assume D is a Cohen
real. In V [D] , define B1 = {Bα ∩D ∣ α ∈ ω1} , B2 = {Bα ∖D ∣ α ∈ ω1} , we will
prove that ⟨B1,B2,C⟩ is the family we are looking for. It is easy to see that
it is indeed a 3-Luzin gap, so it remains to show that it has no Luzin gaps.

In V [D] , let m ∈ ω and X = {Xα ∣ α ∈ ω1} , Y = {Yα ∣ α ∈ ω1} be disjoint
subfamilies of A such that Xα ∩ Yα ⊆ m. We may assume X is a subset of
B1,B2 or C (similarly for Y). However, since B and C are R-embeddable and
every member of B1 is disjoint from every member of B2, then we only need to
consider the case where X is a subset of B1 or B2 and Y is a subset of C. For
concreteness, we will assume X ⊆ B1, while the other case is similar. Find a
function h ∶ ω1 Ð→ ω1×ω1 such that Xα = Bh(α)0∩D and Yα = Ch(α)1 . We know
there is an uncountable W ∈ V and s ∈ U2102 such that s knows h ↾ W, we
may assume m < ∣s∣ = l. Let α,β ∈W dictinct such that Bh(α)0 ∩ l = Bh(β)0 ∩ l
and Ch(α)1l = Ch(β)1l. Let r > l such that Bh(α)0 ∩ Ch(β)1 ,Bh(β)0 ∩ Ch(α)1 ⊆ r
and choose s′ any extension of s such that r < ∣s′∣ and if x ∈ dom (s′)−dom (s)
then s′ (x) = 0. In this way, s′ forces Xα ∩Yβ, Xβ ∩Yα ⊆m so (X ,Y) is not a
Luzin gap.

Acknowledgement We would like to thank Alan Dow for pointing out
a serious mistake in an early version of the paper.
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