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Canjar Filters

Osvaldo Guzmán Michael Hrušák
Arturo Martínez-Celis

Abstract If F is a filter on ω, we say that F is Canjar if the corresponding
Mathias forcing does not add a dominating real. We prove that any Borel Can-
jar filter is Fσ , this solves a problem of Hrušák and Minami. We give several
examples of Canjar and non-Canjar filters, in particular, we construct a MAD
family such that the corresponding Mathias forcing adds a dominating real. This
answers a question of Brendle. Then we prove that in all the “classical” models
of ZFC there are MAD families whose Mathias forcing does not add a dominat-
ing real. We also study ideals generated by branches, and we uncover a close
relation between Canjar ideals and the selection principle S f in (Ω,Ω) on subsets
of the Cantor space.

1 Introduction

Given a filter F and a forcing notion P, we say that P diagonalizes F if it adds a
pseudointersection to F . There are two classical partial orders for diagonalizing a
filter F , the Laver forcing relative to F , denoted by L(F ), which consists of all
trees of height ω that have a stem and above it the set of successors of every node
is a member of F , and there is also the Mathias forcing relative to F , which is de-
fined asM(F ) =

{
(s,A) | s ∈ [ω]<ω ∧A ∈F

}
, the order is given by (s,A)≤ (z,B)

whenever z is an initial segment of s, s− z⊆ B and A⊆ B. These partial orders have
many properties in common, but in general they are distinct forcing notions; for ex-
ample, it is easy to see that L(F ) always adds a dominating real, while this is not
necessarily the case for M(F ). It is folklore knowledge that if U is a Ramsey ul-
trafilter, then M(U ) is equivalent to L(U ), hence adds a dominating real (this has
been implicitly proved in [13]). On the other hand, under d= c, Canjar constructed
an ultrafilter whose Mathias forcing does not add a dominating real (see [5]). We call
such type of filters Canjar filters. We say that an ideal I is a Canjar ideal if its dual
filter I ∗ = {ω−X | X ∈I } is a Canjar filter. Canjar filters have been investigated
in [7] and [3], this paper is a continuation of that line of research.
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In [7] Hrušák and Minami found a combinatorial reformulation of being Canjar.
If W is a countable set, we denote by f in(W ) as the set of all non empty finite subsets
of W. If I is an ideal on W, we define the ideal I <ω as the set of all A ⊆ f in(W )
such that there is Y ∈ I with the property that a∩Y 6= /0 for all a ∈ A. We will
write f in instead of f in(W ) when is clear of context. Recall that I is a P+-ideal
if every decreasing sequence of positive sets has a positive pseudointersection. The
characterization of Hrušák and Minami is the following.

Proposition 1 ([7]) I is a Canjar ideal if and only if I <ω is a P+-ideal.

In [4] Brendle showed that every Fσ ideal is a Canjar ideal. It was asked by Hrušák
and Minami if every Borel Canjar ideal must be Fσ and one of the main results of this
article is to answer this question positively. In order to achieve this, we will extend a
characterization of Canjar ultrafilters by Blass, Hrušák and Verner in [3].

We say that a MAD family is Canjar if the ideal generated by it is Canjar. In [4]
Brendle showed that under b= c there is a non Canjar MAD family, and asked if it is
possible to construct one in ZFC. We show that this is indeed the case. We then turn
our attention to constructing a Canjar MAD family, and we show that in many of the
“classical” models of ZFC there is one. We do not know if this is true in general.

We also study ideals generated by branches, and we show that there is a connec-
tion between Canjar ideals and selection principles on the Cantor space.1

Using the previous ideas, in [? ] we gave alternative proofs of the consistency of
b< a and b< s (which were proved by Shelah [19]).

Our notation is standard and follows mostly [1], by I + we will denote the set
of subsets of ω that are not in I and are called the positive sets with respect to I
or I -positive sets. Whenever a,b are two sets, a− b will denote the set theoretic
difference of a and b. The definition of the basic cardinal invariants such as a, b, c,
d, r, non(M ) and cov(M ) may be consulted in [2].

2 Canjar Ideals

Given A ⊆ f in, we denote by C (A) as the set of all X ⊆ ω such that a∩X 6= /0 for
all a ∈ A. We may identify ℘(ω) 2 with 2ω , which is homeomorphic to the Cantor
set endowed with the product topology. In this way, we can talk about topological
properties (like compact, Fσ or Borel) of families of subsets of ω. The next lemma
is easy and its proof is left to the reader.

Lemma 1 1. If A ⊆ f in, then C (A) is compact, and if A ∈ (I <ω)+ then
C (A)⊆I +.

2. If C ⊆℘(ω) is compact and X ⊆ω intersects every element of C , then there
is F ∈ [X ]<ω such that F intersects every element of C .

3. If C1, . . . ,Cn are compact, then D = {A1∩ . . .∩An | Ai ∈ Ci} is also compact.

A slightly less trivial lemma is the following.

Lemma 2 Let F be a filter , X ⊆ f in be such that C (X) ⊆F and D compact
with D ⊆F . Then, for every n∈ω there is S ∈ [X ]<ω such that if A0, . . . ,An ∈C (S)
and F ∈D then A0∩ . . .∩An∩F 6= /0.

Proof Given s ∈ X define K (s) as the set of all (A0, . . . ,An) ∈ C (s)n+1 with the
property that there is F ∈D such that A0∩ . . .∩An∩F = /0, this is a compact set by the
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previous lemma. Note that if (A0, . . . ,An) ∈
⋂

s∈X
K (s) then A0, . . . ,An ∈ C (X) ⊆F

and there would be F ∈ D ⊆F such that A0 ∩ . . .∩ An ∩ F = /0 which is clearly
a contradiction. Since the K (s) are compact, there must be S ∈ [F ]<ω such that⋂
s∈S

K (s) = /0. It is easy to see that this is the S we are looking for.

Now we prove the theorem of Canjar using the characterization of Hrušák and Mi-
nami. This is an elaboration of the proof that there is a P-point under d = c (see
[2]).

Proposition 2 ([5]) If d= c then there is a Canjar ultrafilter.

Proof Let
〈
Xα | α ∈ c

〉
be an enumeration of all decreasing sequences of subsets

of [ω]<ω . Recursively, we will construct a continuous increasing sequence of filters
〈Uα | α ∈ c〉 such that for all α < c,

1. Uα is the union of less than d compact sets,
2. either Xα is not a sequence of U <ω positive sets or it has a pseudointersec-

tion P such that C (P)⊆Uα+1.

We begin by setting U0 to be the cofinite subsets of ω and we take the union at
limit stages. Assume that we have already defined Uα , we will see how to define
Uα+1. In case Xα = 〈Xn | n ∈ ω〉 is not a sequence of U <ω positive sets we just do
Uα+1 =Uα . Now assume that each Xn ∈U +, which implies that C (Xn)⊆U +, we
will find a compact set D such that Uα ∪D generates a filter, and this will be Uα+1,
by point 3 of lemma 1, Uα+1 will be generated by less than c compact sets.

In case there is n ∈ ω such that C (Xn) is not contained in Uα , we choose
Y ∈ C (Xn)−Uα and define D ={ω−Y} . In this way, Xα is no longer a se-
quence of positive sets. So assume C (Xn) ⊆ Uα for each n ∈ ω. Let Uα =

⋃
β∈κ

Cβ

where Cβ is compact and κ is less than d. By the previous lemma, for every
β < κ we can define a function fβ : ω −→ ω such that for every n ∈ ω there is
S ∈ [Xn]

<ω with S ⊆℘
(

fβ (n)
)

such that if A0, . . . ,An+1 ∈ C (S) and F ∈ Cβ then
A0 ∩ . . .∩ An+1 ∩ F 6= /0. Since

{
fβ | β < κ

}
is not dominating, there is g that is

not dominated by any of the fβ . Let P =
⋃

n∈ω

℘(g(n))∩Xn. It is clear that P is a

pseudointersection. Now we claim that Uα ∪C (P) generates a filter. For this, let
F ∈ Uα and B0, . . . ,Bn ∈ C (P). We must show B0 ∩ . . .∩Bn ∩F 6= /0. Pick β < κ

such that F ∈ Cβ , and since g�∗ fβ , there is m > n such that g(m)> fβ (m) . By the
construction, then there is S ∈ [Xm]

<ω with S ⊆℘
(

fβ (m)
)
⊆℘(g(m)) such that if

A0, . . . ,An+1 ∈ C (S) then A0∩ . . .∩An+1∩F 6= /0, but clearly B0, . . . ,Bn ∈ C (S) so
we are done.

Finally, let U =
⋃

α<c
Uα . Then, by the construction, U is a Canjar ultrafilter.

In [11] Laflamme introduced the following notion for ultrafilters.

Definition 1 We say that I is a strong P+-ideal if for every increasing se-
quence 〈Cn | n ∈ ω〉 of compact sets with Cn ⊆ I +, there is an interval partition
P = 〈Pn | n ∈ ω〉 such that if 〈Xn | n ∈ ω〉 is a sequence with Xn ∈ Cn for all n ∈ ω

then
⋃

n∈ω

(Xn∩Pn) ∈I +.
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Laflamme noted without a proof that Canjar ultrafilters were strong P+-filters and
asked if these two notions were equivalent. This was answered positively by Blass,
Hrušák and Verner in [3]. We will now extend their result to the general case.

Definition 2 We say that I is a coherent strong P+-ideal if for every increasing
sequence 〈Cn | n ∈ ω〉 of compact sets with Cn ⊆I +, there is an interval partition
P = 〈Pn | n ∈ ω〉 such that if 〈Xn | n ∈ ω〉 is a sequence with the following “coher-
ence property” for P ,

1. Xn ∈ Cn for all n ∈ ω,
2. if n < m then Xm∩Pn ⊆ Xn∩Pn.

then
⋃

n∈ω

Xn∩Pn ∈I +.

Note that the coherence property is satisfied if the 〈Xn | n ∈ ω〉 is decreasing, as
well as, when I is the dual of an ultrafilter. We will now prove that an ideal is Canjar
if and only if it satisfies the coherent strong P+-ideal property.

Proposition 3 ([3] for ultrafilters) An ideal I is Canjar if and only if I is a
coherent strong P+-ideal.

Proof First assume that I is a Canjar ideal. Let 〈Cn | n ∈ ω〉 be an increasing
sequence of compact sets with Cn ⊆I +. For every n ∈ ω define An as the set of all
a ∈ [ω]<ω such that if X ∈ Cn then a∩X 6= /0. We will see that An ∈ (I <ω)+ . Let
B ∈I . We must find an element of An that is disjoint from B. For every y /∈ B define
Vy = {X ∈ Cn | y ∈ X}. Since Cn ⊆ I +, we conclude that

〈
Vy | y /∈ B

〉
is an open

cover of Cn so there is a finite a⊆ω−B such that Cn =
⋃

y∈a
Vy. Therefore a ∈ An and

a∩B = /0.
In this way 〈An | n ∈ ω〉 is a decreasing sequence of positive sets and since I is

Canjar, there is A ⊆∗ An with A ∈ (I <ω)+ . We may as well assume that A ⊆ A0.
Define an interval partition P = 〈Pn | n ∈ ω〉 in such a way that for all n ∈ ω if
a ∈ A−An then a ⊆

⋃
i<n

Pi. We will see that this is the partition we are looking for.

Let 〈Xn | n ∈ ω〉 be a sequence with the coherence property for P . We will show
that X =

⋃
n∈ω

Xn ∩Pn ∈I +. It is enough to show that X intersects every element of

A (because if X ∈I then A will be in I <ω which is a contradiction). Let a ∈ A and
define n=max{m | a∩

⋃
i≤m

Pi 6= /0}. Since a*
⋃

i<n
Pi, a must be in An, hence a∩Xn 6= /0.

By the coherence property, we know that
⋃

i≤n
Xn∩Pi ⊆

⋃
i≤n

Xi∩Pi ⊆ X so a∩X 6= /0.

Now assume that I is a coherent strong P+-ideal. We shall show that I <ω is a
P+-ideal. Let 〈An | n ∈ ω〉⊆ (I <ω)+ be a decreasing sequence. We must find a pos-
itive pseudointersection. For every n∈ω define Cn = {X ⊆ω | ∀a∈ An(a∩X 6= /0)}.
Since Cn is an intersection of compact sets, it is compact and it is easy to see
that Cn ⊆ I +. Let P = 〈Pn | n ∈ ω〉 be an interval partition witnessing that I
is a coherent strong P+-ideal. Call En =

⋃
i≤n

Pi and define A =
⋃

n∈ω

(An∩℘(En)).

Clearly A ⊆∗ An for every n ∈ ω so it remains to show that A is positive. Assume
this is not the case, so there is B ∈ I that intersects every element of A. Define
Xn = (B∩En)∪ (ω−En) and note that Xn ∈ Cn and 〈Xn | n ∈ ω〉 satisfies the co-
herence property for P. In this way B =

⋃
n∈ω

(Xn∩Pn) ∈ I + which is a contradic-

tion.
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As an application, we will show that all Fσ ideals are Canjar.

Proposition 4 ([4]) Every Fσ ideal is a Canjar ideal.

Proof Let I be an Fσ ideal. We will show that it is a coherent strong P+-
ideal. By a theorem of Mazur (see [15]) there is a lower semicontinuous submeasure
ϕ :℘(ω)−→ [0,∞] 3 such that I ={A | ϕ (A)< ω} .

Let 〈Cn | n ∈ ω〉 be an increasing sequence of compact positive sets. Since each
Cn is compact, it is easy to recursively construct an interval partition 〈Pn | n ∈ ω〉
such that ϕ (Pn∩Y )> n for each Y ∈Cn. In this way, it is clear that

⋃
n∈ω

Xn∩Pn ∈I +,

whenever Xn ∈ Cn.

Actually, in [4] Brendle showed that if I is the union of less than d compact sets,
then I is Canjar. In [7] it was asked if every Borel Canjar ideal is Fσ , in the next
section we will prove that this is indeed the case.

3 Borel Canjar Ideals

Recall another notion introduced by Laflamme and Leary in [12]. We say that a tree
T ⊆ ([ω]<ω)<ω is an I +-tree of finite sets if for every t ∈ T, there is Xt ∈I + such
that sucT (t) = [Xt ]

<ω .

Definition 3 We say that I is a P+(tree)-ideal if for every I +-tree of finite sets
T, there is b ∈ [T ] such that

⋃
n∈ω

b(n) ∈I +.

We will show that Canjar ideals are P+ (tree) ,

Proposition 5 If I is Canjar, then I is P+ (tree) .

Proof Let T ⊆ ([ω]<ω)<ω be an I +-tree of finite sets. For convenience, denote
by ω↗ω the set of all increasing finite sequences of natural numbers. We define a
subtree T ′ = {ts | s ∈ ω↗ω} ⊆ T in the following way,

1. t /0 = /0,
2. t〈n〉 = X/0∩ [0,n) for every n ∈ ω,
3. t〈n0,...,nm+1〉 = Xt〈n0 ...nm〉 ∩ [nm,nm+1).

Let Y/0 = X/0. If s_ 〈n〉 ∈ ω↗ω define Ys_〈n〉 = (Ys∩n) ∪ (Xs_〈n〉 − n). Call
Cn = {Ys | s ∈ ω↗ω ∧ |s| ≤ n}. It is easy to see that 〈Cn | n ∈ ω〉 is an increasing
sequence of compact positive sets (for example, one may note that if Y ∈ Cn+1 then
either Y ∈ {Ys | |s|= n+1} or it is in the closure of Cn). Find P = 〈Pn | n ∈ ω〉 an
interval partition that witnesses that I is Canjar. Define the function l : ω −→ ω

where l (n) is the right end-point of Pn and consider the branch b =
〈
tl�n
〉
. We will

see that
⋃

n∈ω

tl�n ∈ I +. Note that Yl�n ∈ Cn and
〈
Yl�n | n ∈ ω

〉
satisfie the coherence

property for P so
⋃

n∈ω

Yl�n ∩Pn ∈ I + but
⋃

n∈ω

Yl�n ∩Pn =
⋃

n∈ω

tl�n which is what we

were looking for.

However, being Canjar is a stronger notion than being P+ (tree) , we will later see an
example of an ideal that is P+ (tree) but not Canjar.

Theorem 1 If I is a Borel ideal, then the following are equivalent,
1. I is Canjar,
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2. I is Fσ ,
3. I is P+ (tree) .

Proof The equivalence between 2 and 3 was proved by Hrušák and Meza in [8]
and the other equivalence follows from the previous results.

In [5] Canjar proved that if a forcing notion adds a dominating real, then it must have
size at least d. It follows that every ideal generated by less than d sets is Canjar, since
its Mathias forcing has a dense set of size less than d. With this observation and the
previous theorem, we can conclude the following result of Veličković and Louveau,

Corollary 1 (Veličković, Louveau see [14]) If I is a Borel non Fσ -ideal then
co f (I )≥ d.

Note that there are Borel (non Fσ ) ideals of cofinality d, one example is
FIN ×FIN which is the ideal in ω ×ω generated by all columns Cn = {(n,m) |
m ∈ ω} and all A⊆ ω×ω such that A intersects every Cn in a finite set.

4 Canjar MAD Families

Given an almost disjoint family A , we denote by I (A ) the ideal generated by
A . We say A is Canjar if I (A ) is Canjar. In [4] Brendle constructed a non
Canjar MAD family under b = c and asked if it is possible to construct one without
additional axioms. We now answer his question in the affirmative.

Proposition 6 There is a non Canjar MAD family.

Proof Let P = {An | n ∈ ω} be a partition of ω . For every n ∈ ω choose Bn an
almost disjoint family of subsets of An. Construct a tree T ⊆ ([ω]<ω)<ω such that for
every t ∈ T there is nt ∈ω with the property that suc(t) = [Ant ]

<ω and make sure that
if t 6= s then nt 6= ns, and for every m there is a t such that nt = m. For every branch
b ∈ [T ] let Ab =

⋃
n∈ω

b(n) and note that A = {Ab | b ∈ [T ]}∪
⋃
{Bn | n ∈ ω} is an

almost disjoint family and P ⊆I (A )++ . Let A ′ be any MAD family extending
A . Note that P ⊆I (A ′)+ so T is an I (A ′)+-tree of finite sets but it has no
positive branch.

Interestingly, we do not know if there is a Canjar MAD family in ZFC. Obvi-
ously they exist under a < d. We will now give some sufficient conditions for the
existence of a Canjar MAD family. Usually, we will construct a MAD family
A = {Aα | α ∈ κ} recursively and in such case we will denote by Aα = {Aξ |
ξ < α}. Call Part the set of all interval partitions (partitions in finite sets) of ω. We
may define an order on Part as follows: given P,Q ∈ Part we say that P ≤∗ Q
if for almost all Q ∈Q there is P ∈P such that P ⊆ Q. In [2] it is proved that the
smallest size of a dominating family of interval partitions is d.

First we will give a combinatorial reformulation of min{d,r} .

Proposition 7 If κ is an infinite cardinal, then κ < min{d,r} if and only if for
every 〈Pα | α ∈ κ〉 family of interval partitions of ω , there is an interval partition
Q = {Qn | n ∈ ω} with the property that there are disjoint A,B ∈ [ω]ω such that for
all α < κ, both

⋃
n∈A

Qn and
⋃

n∈B
Qn contain infinitely many intervals of Pα .
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Proof Let κ < min{d,r} and 〈Pα | α ∈ κ〉 be a family of interval partitions. We
may assume that for every Pα and n ∈ ω there is a Pβ such that every interval
of Pβ contains n intervals of Pα . Define fα : ω −→ ω such that fα (n) is the left
point of Pα (so fα (0) = 0). Since κ < d, there is g : ω −→ ω such that g is not
dominated by any fα , we may as well assume that g is increasing and g(0) = 0.
Define the interval partition Q = {Qn | n ∈ ω} where Qn = [g(n) ,g(n+1)). Let
Mα be the set of all n ∈ ω such that Qn contains an interval of Pα .

Claim 1 Mα is infinite for every α < κ.

By the assumption on our family, it is enough to show that each Mα is not empty.
Since g�∗ fα , there is n ∈ ω such that fα (n)< g(n) . But then it follows that some
interval of Pα must be contained in one Qm with m < n.

Since κ < r , we know that {Mα | α < κ} is not a reaping family, so there are
disjoint A,B ∈ [ω]ω such that ω = A∪B and for every α, both Mα ∩A and Mβ ∩B
are infinite. It is clear that A and B are the sets we were looking for.

Now we must show that the conclusion of the proposition fails for κ = d and
κ = r. Let R = {Mα | α ∈ r} be a reaping family. Define Pα such that every
interval of Pα contains one point of Mα . Assume there is an interval partition
Q = {Qn | n ∈ ω} and A,B ∈ [ω]ω as in the proposition. Let X =

⋃
n∈A

Qn. Then

no Mα reaps X , which is a contradiction since R was a reaping family.
Finally, let 〈Pα | α ∈ d〉 be a dominating family of partitions and let Q be any

other partition. Then there is a Pα such that every interval of Pα contains two intervals
of Q, so obviously there can not be any A and B as required.

Using the proposition, we may prove the following result.

Proposition 8 If d= r = c then there is a Canjar MAD family of size continuum
(In particular, there is one if b= c or cov(M ) = c).

Proof Let B be a MAD family of size c. Enumerate
〈
Xα | ω ≤ α < c

〉
the set

of decreasing sequences of chains of finite subsets of ω and let [ω]ω = {Yα |
ω ≤ α < c}. We will recursively construct a MAD family A = {Aα | α ∈ c} and
P ={Pα | α ∈ c} such that,

1. for every Aξ ∈ Aα there is Bξ ∈B such that Aξ ⊆ Bξ . In this way, Aα is
almost disjoint but it is not MAD,

2. if Xα is a decreasing sequence of positive sets of (I (Aα)
<ω)+ then Pα is a

pseudointersection,
3. if β ≤ α then Pα ∈ (I (Aα)

<ω)+,
4. if Yα is almost disjoint with Aα then Aα ⊆ Yα .

It should be obvious that if we manage to do the construction, then we would
have built a Canjar MAD family. We start by taking any partition {An | n ∈ ω} of ω

in infinite sets. Assume that we have already defined Aα , we will see how to find
Aα . If Xα is not a sequence of elements in (I (Aα)

<ω)+ then we define Pα = f in.
Otherwise, (since d= c) we may find Pα a positive pseudointersection.

Now assume that Yα is almost disjoint with Aα (if not, take as Yα any other set
almost disjoint from Aα , note there is always one since Aα is not MAD). Call D the
set of all finite unions of elements of Aα and for every ξ ≤ α and B ∈ D define an
interval partition Pξ B =

{
Pξ B (n) | n ∈ ω

}
with the following properties:
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1. for every n ∈ ω there is s⊆ Pξ B (n) such that s ∈ Pξ and s∩B = /0,
2. every Pξ B (n) contains an element of Yα .

Since
〈
Pξ B | ξ ≤ α ∧B ∈B

〉
has size less than max{d,r}, by the previous

result, there is an interval partition Q = {Qn | n ∈ ω} and C,D disjoint such that
both

⋃
n∈C

Qn and
⋃

n∈D
Qn contains infinitely many intervals of each Pξ B. Define

A′α =
⋃

n∈C
(Qn∩Yα), then A′α satisfies all the requirements except that it may not be

contained in some element of B. However, since B is MAD we may find Bα ∈B
such that A′α ∩Bα is infinite and then we just define Aα = A′α ∩Bα .

Given an almost disjoint family A , we will denote by (I (A )<ω)++ the set of all
X ∈ (I (A )<ω)+ such that there is {An | n ∈ ω} ⊆ A with the property that each
An contains infinitely many elements of X . Note that if A ′ is an almost disjoint
family with A ⊆A ′ and X ∈ (I (A )<ω)++ then X ∈ (I (A ′)<ω)+. The purpose
of this definition is the following: assume that we want to construct (recursively)
A = {Aα | α ∈ κ} a Canjar MAD family, at some stage α of the construction, we
may look at some decreasing sequence 〈Xn | n ∈ ω〉 ⊆ (I (Aα)

<ω)+ and somehow
we manage to find Pα a pseudointersection with Pα ∈ (I (Aα)

<ω)+, we must make
sure that P remains positive in the future extensions of Aα . In the previous proof,
we made sure that at each step of the construction, we preserved the positiveness of
all the Pα . Another approach would be to make sure that Pα ∈ (I (Aα)

<ω)++.

Lemma 3 If A is an almost disjoint family such that for every decreas-
ing sequence 〈Xn | n ∈ ω〉 of (I (A )<ω)+ then there is a pseudointersection
P ∈ (I (A )<ω)++, then A is a Canjar MAD family.

Proof The proof is left to the reader.

Lemma 4 Let A = {An | n ∈ ω} be an almost disjoint family and let 〈Xn |
n ∈ ω〉 in (I (A )<ω)+ be a decreasing sequence. Then there is an increasing
f : ω −→ ω such that for every n ∈ ω there is sn ∈℘( f (n)− f (n−1))∩Xn and
sn∩ (A0∪ . . .∪An) = /0 (for ease of writing, assume that f (−1) = 0).

Proof Easy.

Moreover, note that f can be obtained in a completely definable way. We must also
remark that if we define P =

⋃
n∈ω

Xn ∩℘( f (n)) and B =
⋃

n∈ω

( f (n) −A0 ∪ . . .∪An)

then P will be a positive pseudointersection of {Xn : n ∈ ω}, B will contain infinitely
many elements of P and A ∪{B} will be an AD family.

The following guessing principle was defined in [16].

♦(b): For every Borel coloring C : 2<ω1 −→ ωω there is a G : ω1 −→ ωω such
that for every R ∈ 2ω1 the set {α |C (R � α) ∗ �G(α)} is stationary (such G
is called a guessing sequence for C).

Recall that a coloring C : 2<ω1 −→ωω is Borel if for every α, the function C � 2α

is Borel. It is easy to see that ♦(b) implies that b= ω1 and in [16] it is proved that it
also implies a= ω1.

Proposition 9 Assuming ♦(b) , there is a Canjar MAD family.
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Proof For every α < ω1 fix an enumeration α = {αn | n ∈ ω} . With a suitable
coding, the coloring C will be defined on pairs t = (At ,Xt) where At =

〈
Aξ | ξ < α

〉
and Xt = 〈Xn | n ∈ ω〉. We define C (t) to be the constant 0 function in case At is not
an almost disjoint family or if Xt is not a decreasing sequence of (I (A )<ω)+.
In the other case, let C (t) be the function obtained by the previous lemma with
A ={Aαn | n ∈ ω} and Xt . Using ♦(b), let G : ω1 −→ ωω be a guessing sequence
for C. By changing G if necessary, we may assume that all the G(α) are increasing
and if α < β then G(α)<∗ G(β ) .

We will now define our MAD family: start by taking {An | n ∈ ω} a partition of
ω. Having defined Aξ for all ξ < α, we proceed to define

Aα =
⋃

n∈ω

(
G(α)(n)−Aα0 ∪ . . .∪Aαn

)
in case this is an infinite set, otherwise take any Aα that is almost disjoint from Aα .
We will see that A is a Canjar MAD family. Let X = 〈Xn | n ∈ ω〉 be a decreasing
sequence in (I (A )<ω)+. Consider the branch R =

(〈
Aξ | ξ < ω1

〉
,X
)

and pick
β 0,β 1,β 2, . . . such that C (R � β n) ∗ � G(β n) . Choose α bigger than all the β n and
define h = G(α) and P =

⋃
n∈ω

℘(h(n))∩Xn. It is clear that P is a pseudointersection

of X . We will now just show that P∈ (I (Aα)
<ω)++ and we will do this by proving

that each Aβ n contains infinitely many elements of P.
Fix n ∈ ω and Let t = R � β n. Since C (t) ∗ � G(β n) we may find m such

that C (t)(m) < G(β n)(m) < h(m) . In such case (by the property of C (t)) there
is s ∈℘(C (t)(m))∩Xm disjoint from Aβ n

0
, . . .Aβ n

m
and then s⊆ Aβ n and s ∈ P.

We quote an instance of a very general theorem from [16].

Proposition 10 ([16]) Let 〈Qα | α ∈ ω2〉 be a sequence of Borel proper partial
orders where eachQα is forcing equivalent to℘(2)+×Qα and let Pω2 be the count-
able support iteration of this sequence. If Pω2“b= ω1” then Pω2“♦(b)”.

With the aid of the previous result, we can prove that there are Canjar MAD
families in many of the models obtained by countable support iteration.

Corollary 2 Let 〈Qα |α ∈ω2〉 be a sequence of Borel proper partial orders where
each Qα is forcing equivalent to ℘(2)+×Qα and let Pω2 be the countable support
iteration of this sequence. Let G ⊆ Pω2 be generic, then there is a Canjar MAD
family in V [G] .

Proof If in V [G] happens that b is ω2 then we already know there is a Canjar MAD
family. Otherwise b = ω1 and then ♦(b) holds in V [G] so there is a Canjar MAD
family.

Recall that a forcing is ωω -bounding if it does not add unbounded reals (or, equiv-
alently, the ground model reals still form a dominating family). Given a forcing P
and a Canjar MAD family A , we say that A is P MAD-Canjar indestructible if
it remains Canjar MAD after forcing with P. We will see that under CH, no proper
ωω -bounding forcing of size ω1 can destroy all Canjar MAD families. If P is a par-
tial order, ȧ is a P name and G ⊆ P is a generic filter, we will denote by ȧ [G] the
evaluation of ȧ according to the generic filter G.
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Proposition 11 Assume CH and let P be a proper ωω -bounding forcing of size
ω1. Then there is a P MAD-Canjar indestructible family.

Proof Using the Continuum Hypothesis and the properness of P, we may find a set
H = {(pα ,Ẇα) | α ∈ ω1} such that for all p and Ẋ , if p forces that Ẋ is a decreasing
sequence, then there is α such that p≤ pα and pα  “Ẇα = Ẋ”.

We will construct a MAD family A = {Aα | α ∈ ω1} such that if pα forces that
Ẇα is a decreasing sequence of positive sets in (I (Aα)

<ω)+, then there is q ≤ pα

with the property that there is Ṗα such that q forces that Ṗα is a pseudointersection of
Ẇα and that Ṗα is in (I (Aα)

<ω)++ (hence q will force that Ṗα is in (I (A )<ω)+).
First take {An | n ∈ ω} a partition of ω. Assume that we have defined Aα . We

will see how to define Aα+ω . In case pα does not force that Ẇα is a decreas-
ing sequence of positive sets in (I (Aα)

<ω)+ then take Aα+ω be any almost
disjoint family extending Aα . Now assume otherwise, write α = {αn | n ∈ ω}
and let G ⊆ P be a generic filter with pα ∈ G. Since Aα is countable and
Ẇα [G] =

〈
Ẇα (n) [G] | n ∈ ω

〉
∈ V [G] is a sequence of positive sets in V [G] ,

there is an interval partition P = {Pn | n ∈ ω} ∈V [G] such that for all n ∈ ω, there
is sn ⊆ Pn such that sn ∈ Ẇα (n) [G] and sn is disjoint from Aα0 ∪ . . .∪Aαn . Define
Pα =

⋃(
Pn∩Ẇα (n) [G]

)
. Let q′ ≤ pα force that Ṗ is an interval partition and

every Ṗn contains an element in Ẇα (n) disjoint from Aα0 ∪ . . .∪ Aαn . Since P is
ωω -bounding, there is q ≤ q′ and Q ={Qn | b ∈ ω} a ground model partition such
that q  “Ṗ ≤Q”. Let {Dn | n ∈ ω} be a partition of ω with Dn =

{
di

n | i ∈ ω
}
.

Define Aα+n =
⋃

n∈ω

(
Pdi

n
−Aα0 ∪ . . .Aαn

)
, then Aα+ω is an AD family and q forces

that each Aα+n contains infinitely many elements of Ṗα .

Corollary 3 There are Canjar MAD families in the Cohen, Random, Hechler,
Sacks, Laver, Miller and Mathias model.

Proof We have already proved it for the models obtained by countable support
iteration and in the Cohen and Hechler models since cov(M ) is equal to c. It only
remains to check it for the Random real model. Assume CH and denote by B(κ)
the forcing notion for adding κ random reals. Let G⊆ B(ω2) be a generic filter, we
want to see that there is a Canjar MAD family in V [G] . By the previous proposition,
we know there is A a B(ω1) MAD-Canjar indestructible family. It is easy to see
that A is B(ω2) MAD-Canjar indestructible (since every new real in V [G] appears
in an intermediate extension after adding only ω1 random reals).

Although there still may be models without Canjar MAD families, it is easy to show
that there are always uncountable Canjar almost disjoint families. Let Cn = {n}×ω

and given a family of increasing functions B ={ fα | α ∈ ω1} ⊆ ωω such that if
α < β then fα <∗ fβ define AB = B∪{Cn | n ∈ ω} and note that it is an almost
disjoint family.

Proposition 12 There is a family B ={ fα | α ∈ ω1} such that AB is Canjar, so
there is an uncountable Canjar almost disjoint family.

Proof If ω1 < d then any B will do, so assume that d=ω1. Let B ={ fα | α ∈ ω1}
be a well-ordered dominating family. For every α < ω1 define Lα = {(n,m) |
m < fα(n)} and for a given X define X (α) = X ∩ [Lα ]

<ω . We will show that
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I (AB)<ω is a P+-ideal and to show that, we will need the following “reflection
property” due to Nyikos (see [17]),

Claim 2 If X ∈ (I (A )<ω)+ then X (α) ∈ (I (A )<ω)+ for some α < ω1.

Assume this is not the case, so for every α < ω1 the set X (α) ∈ I (AB)<ω ,
which means there is Fα ∈ [α]<ω and nα ∈ ω such that Zα =

⋃
ξ∈Fα

fξ ∪
⋃

i≤nα

Ci in-

tersects every element of X (α) . By a trivial application of elementary submodels,
there are S⊆ ω1 a stationary set, F a finite subset of ω1 and n ∈ ω such that F = Fα

and nα = n for every α ∈ S, call Z =
⋃

ξ∈F
fξ ∪

⋃
i≤n

Ci ∈I (AB) .

Given s⊆ ω×ω , define π (s) = {n | ∃m((n,m) ∈ s)} . As X ∈ (I (AB)<ω)+ we
may find a sequence Y = {xn | n ∈ ω} ⊆ X such that xn ∩Z = /0 and max(π (xn)) <
min(π (xn+1)) for all n∈ω. Since B is a well-ordered dominating family of increas-
ing functions, there is α ∈ S such that the set Y ∩Lα is infinite. Note that Zα = Z so
xn∩Zα = /0 for all xn ∈ Y ∩Lα which contradicts the choice of Fα and nα .

We are ready to show that I (AB)<ω is a P+-ideal. Let 〈Xn | n ∈ ω〉 be a de-
creasing sequence of positive sets. Find α such that Xn (α) ∈ (I (A )<ω)+ for all
n ∈ ω (this is possible because if β < γ and Xn (β ) is positive Xn (γ) is positive).
Let α = {αn | n ∈ ω}. For every n ∈ ω choose xn ∈ Xn such that xn is disjoint from⋃
i≤n

fαi ∪
⋃

i≤n
Ci then it is easy to see that X = {xn | n ∈ ω} is a positive pseudointer-

section.

In particular,

Corollary 4 There is a non Borel Canjar ideal generated by ω1 sets.

Proof By the previous result, we know there is B ={ fα | α ∈ ω1} such that
I (AB) is Canjar, it is enough to show it is not Fσ . Assume otherwise, so it must be
Fσ . Let I (AB) =

⋃
n∈ω

Cn where each Cn is a compact set. Clearly, there is n ∈ ω

such that Cn contains uncountably many elements of B. Note that Cn∩B =Cn∩ωω

so A = Cn ∩B is a Borel set. For a given Z subset of a Polish space, recall the fol-
lowing definition (see [20])

OCA(Z): If c : Z2 −→ 2 is a coloring such that c−1 (0) is open, then either Z has
an uncountable 0-monochromatic set, or Z is the union of countable many
1-monochromatic sets.

In [20] it is proved that OCA(Z) is true for every analytic set, so in particular
OCA(A) is true. However, we will arrive to a contradiction using the same argument
that OCA implies that b= ω2 (see [20]).

5 Ideals Generated by Branches

If b ∈ 2ω we denote by b̂ = {b � n | n ∈ ω} . Let A be a dense, co-dense subset of 2ω .
We define IA the branching ideal of A as the set of all X ⊆ 2<ω such that there are
b1, . . . ,bn ∈ A with the property that X ⊆ b̂1∪ . . .∪ b̂n. Clearly, if M ∈ [b̂]ω with b /∈ A
then M ∈I +

A , and also every infinite antichain, is positive.

Lemma 5 IA is P+ for every A⊆ 2ω .

Proof This result follows since IA is the ideal generated by an infinite almost
disjoint family.
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We will now investigate when IA is P+ (tree) and Canjar.

Proposition 13 If A is the union of less than d compact sets, then IA is Canjar.

Proof Assume that A =
⋃

α<κ

Cα where Cα is compact and κ < d moreover, we

may assume that for every b1, . . . ,bn ∈ A there is a Cα such that b1, . . . ,bn ∈ Cα .
We will show that I <ω

A is a P+-ideal. Before starting the proof we must do
an important observation: assume that Y ∈

(
I <ω

A

)+ and for every a ∈ Y define
Ua = {b ∈ 2ω | a∩ b̂ = /0} and since a is finite then Ua is open and 〈Ua | a ∈ Y 〉 is an
open cover of A. Therefore, every Cα is contained in only a finite number of Ua.

Let 〈Xn | n ∈ ω〉 be a decreasing family of positive sets of I <ω

A . For every α < κ

we define fα : ω −→ [2<ω ]<ω such that for every if n ∈ ω then fα (n) ⊆ Xn and
Cα ⊆

⋃
a∈ fα (n)

Ua. Since κ < d, there is f : ω −→ [2<ω ]<ω such that f (n) ⊆ Xn and

for all α < κ it happens that fα (n) ⊆ f (n) for infinitely many n ∈ ω. It is easy to
see that

⋃
n∈ω

f (n) is a positive pseudointersection of 〈Xn | n ∈ ω〉.

Given a topological space X , we say that an open cover U is an ω-cover if for every
x0, . . . ,xn ∈ X there is U ∈U such that x0, . . . ,xn ∈U . We say that X is S f in (Ω,Ω) if
for every sequence 〈Un | n ∈ ω〉 of ω-covers, there are Fn ∈ [Un]

<ω such that
⋃

n∈ω

Fn

is an ω-cover (see [18] for more information concerning this type of spaces). The
following was noted by Ariet Ramos.

Proposition 14 IA is Canjar if and only if A is S f in (Ω,Ω) .

Proof First assume that A is S f in (Ω,Ω) and let 〈Xn | n ∈ ω〉 ⊆
(
I <ω

A

)+ be a de-
creasing sequence. Given any a we define Ua = {b | a∩ b̂ = /0}. Since each Xn is pos-
itive, Vn = {Ua | a ∈ Xn} is an ω-cover of A. In this way, 〈Vn | n ∈ ω〉 is a sequence
of ω-covers, so there are Fn ∈ [Xn]

<ω such that {Ua | a ∈
⋃

n∈ω

Fn} is an ω-cover. It is

easy to see that P =
⋃

n∈ω

Fn is a positive pseudointersection of 〈Xn | n ∈ ω〉.

Now, assume that IA is Canjar and let 〈Un | n ∈ ω〉 be a sequence of ω-
covers. Given an open set U, define YU = {a | ∀b(b̂∩ a = /0 −→ b ∈ U)}. Define
Xn =

⋃
U∈Un

YU . Since Un is an ω-cover, each Xn is positive. Since IA is Canjar, there

are Fn ∈ [Xn]
<ω such that P =

⋃
n∈ω

Fn is a positive pseudointersection. For every

a ∈ Fn choose Ua ∈Un with the property that a ∈ YUa . It is not difficult to check that
{Ua | a ∈ Fn∧n ∈ ω} is an ω-cover.

Given an ideal I we define L F (I ) the Laflamme Game on I as follows,
I X0 X1 X2 X3 · · ·
II s0 s1 s2 · · ·

where each Xn ∈I + and sn is a finite subset of Xn. The player II wins the game
if
⋃

sn ∈ I +. Laflamme proved in [12] that I is a P+ (tree) ideal if and only if
player I does not have a winning strategy in L F (I ) . In case of branching ideals,
the Laflamme game can be simplified. Given A⊆ 2ω define the game L F ′ (I ) as
follows,

I b0 b1 b2 b3 · · ·
II s0 s1 s2 · · ·
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where each bn /∈ A, sn is an initial segment of bn, sn ( sn+1 and bn+1 ∈ 〈sn〉 . The
player II wins the game if

⋃
sn /∈ A. The analogue of the result of Laflamme is the

following.

Proposition 15 IA is a P+ (tree) ideal if and only if player I does not have a
winning strategy in L F ′ (I ) .

Proof It is easy to see that if I has a winning strategy in L F ′ (I ) then she has
one in L F (I ) so I is not P+ (tree) . For the other direction, assume that I does
not have a winning strategy and let T be a I +

A tree. We will show that there is b∈ [T ]
such that

⋃
b � n ∈I +

A .
Case 1. For all s ∈ T and n ∈ ω there is t an extension of s such that

⋃
i<|t|

t � i can

not be covered by n branches.
In this case, we simply choose s0,s1, . . . such that sn+1 extends sn and it can not

be covered by n branches. It is clear that b =
⋃

sn is as desired.
Case 2. Without loss of generality, there is n ∈ ω such that for every t ∈ T, the

set
⋃

i<|t|
t � i can be covered by n branches.

By an easy compactness argument, for every s ∈ T there are bs
0, . . . ,b

s
n−1 ∈ 2ω

such that Xs ⊆ b̂s
0∪ . . .∪ b̂s

n−1, bs
0 /∈ A and Xs∩ b̂s

0 is infinite. Let T ′ ⊆ T such that for
every t ∈ T ′ there is mt with the property that t = Xt ∩2≤mt .

We say that s prefers t if s extends t, ms > mt and bs
0 ∈
〈
bt

0 � mt
〉
. We also say that

t is totally preferred if for all s≤ t there is s′ ≤ s such that s′ prefers t. We first claim
that there is t ∈ T that is totally preferred. Assume this is not the case, then we do
the following:

1. Let t /0 = /0.
2. Let t1 ≤ t0 such that no extension of t1 prefers t0.
3. Let t2 ≤ t1 such that no extension of t2 prefers t1.

4.
...

We keep this procedure until we find tn+1, but then tn+1 must prefer some ti (with
i ≤ n) which is a contradiction. Now assume t is totally preferred, we will describe
π an strategy for player I.

1. First, player I plays bt
0,

2. if player II plays s0, then I finds n0 ≥ |s0| ,∆(Xt) and let t0 = Xt ∩2≤n0 . Player

I finds t ′0 ≤ t0 such that t ′0 prefers t and I plays b
t ′0
0 .

3. if player II plays s1, then I finds n1 ≥ |s1| ,∆
(

Xt ′0

)
and let t1 = Xt ′0

∩ 2≤n1 .

Player I finds t ′1 ≤ t1 such that t ′1 prefers t and I plays bt ′1
0 .

4.
...

since π is not a winning strategy, there are s0,s1,s2, . . . such that if player II play
sn at round n then he will win in case I follows π. Let d = (π (s0, . . . ,si) � ni). Then⋃

d /∈ A (since II won the game) and d is a branch through T.

We will now give a topological characterization of the sets such that its branching
ideal is P+ (tree) . Recall that a topological space is a Baire space if no non-empty
open sets are meager, and a space is called completely Baire if all of its closed subsets
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are Baire. Hurewicz proved that a space is completely Baire if and only if it does not
contain a closed copy of Q (see [21] pages 78 and 79).

Proposition 16 IA is P+ (tree) if and only if 2ω −A is completely Baire.

Proof Assume that IA is P+ (tree) and suppose that 2ω − A is not completely
Baire, so there is a perfect set C such that A∩C = {dn | n ∈ ω} is countable dense in
C. Consider the following strategy π for I in L F ′ (2ω −A) .

1. I plays d0,
2. if II plays s0, then I plays dn1 where n1 =min{i > 0 | di ∈ 〈s0〉} ,
3. if II plays s1, then I plays dn2 where n1 =min{i > n1 | di ∈ 〈s1〉} ,

4.
...

Since this is not a winning strategy, there are s0,s1,s2, . . . such that if I follows π

and II plays si at the round i, then II will win. Let a =
⋃

n∈ω

sn. Then a ∈ A∩C since

C is compact and II won the game, however, a is different than all the dn, which is a
contradiction.

Now assume that A ∩C is uncountable whenever C is perfect and A ∩C is
dense in C. Aiming for a contradiction, assume that I has π a winning strategy in
L F ′ (2ω −A) . Let D ⊆ 2ω be the set of all b ∈ 2ω such that there are s0,s1, . . . ,sn
with the property that π (s0,s1, . . . ,sn) = b. Since π is a winning strategy, D⊆ A has
no isolated points and C = D is perfect. Since D is countable, there is b ∈ A∩C−D.
Note that b corresponds to a legal play in L F ′ (2ω −A) in which II won (since
b ∈ A) which is a contradiction.

For our next result, we need to recall a result from Kechris, Louveau and Woodin
([9], see also [10] Theorem 21.22).

Proposition 17 ([9]) If A⊆ 2ω is analytic and A∩B = /0 then one of the following
holds,

1. there is F an Fσ set such that separates A from B or,
2. there is a perfect set C ⊆ A∪B such that C∩B is countable dense in C.

With this we can easily prove the following.

Corollary 5 If A is Borel and is not Fσ then IA is not P+ (tree).

Proof If A is Borel but not Fσ then, by the Kechris-Louveau-Woodin theorem,
there is a perfect set C such that C∩ (2ω −A) is countable dense in C, which shows
that IA is not P+ (tree).

An alternative proof of the previous corollary would be to note that if A is Borel but
not Fσ then IA will also be Borel but not Fσ , so it can not be P+ (tree) . The next
result will give us an example of a non Canjar ideal that is P+ (tree) ,

Proposition 18 If B is Bernstein then IB is P+ (tree) but not Canjar.

Proof Since the complement of a Bernstein set is Bernstein, it follows easily by
the topological characterization of P+ (tree) that IB is P+ (tree) . We will now show
it is not Canjar. Build an increasing sequence 〈Cn | n ∈ ω〉 of compact sets in the
following way,

1. we choose b0
0 /∈ B and let C0 = {b̂0

0},
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2. we choose
〈
b01

n
〉

n∈ω
⊆ 2ω − B a convergent sequence to b0

0 and define

C1 = C0∪{b̂01
n | n ∈ ω},

3. for every b01
n we choose

〈
b012

n
〉

n∈ω
⊆ 2ω −B a convergent sequence to b01

n

and define C2 = C1∪{b̂012
n | n ∈ ω},

4.
...

It is clear that each Cn ⊆ I +
B and 〈Cn : n ∈ ω〉 forms an increasing sequence

of compact sets. Let P ={Pn | n ∈ ω} be a finite partition of 2<ω and define D as
the set of all x ∈ 2ω such that there is 〈dn | n ∈ ω〉 with the coherence property with
respect to P and x̂∩Pn = d̂n. It is easy to see that D is an uncountable closed set, so
B∩D 6= /0 and hence IB is not Canjar.

Recall that a Luzin set is an uncountable set that has countable intersection with
every meager set. Luzin sets exist under CH or after adding at least ω1 Cohen reals.
However, it is easy to see that the existence of a Luzin set implies that non(M ) is
ω1, so their existence is not provable from ZFC. By a suitable modification of the
previous argument, one can show the following.

Corollary 6 If L is a (dense) Luzin set, then Iω−L is not Canjar.

6 Open Questions

There are some questions we were unable to answer, probably the most interesting
one is the following.

Problem 1 Is there a Canjar MAD family? Is there one of cardinality continuum?

We proved that if d= r= c then there is a Canjar MAD family of size continuum,
but we do not even know the answer to the following question.

Problem 2 Does d= c implies there is a Canjar MAD family?

The characterization of Canjar ideals suggest the next questions.

Problem 3 Are there coherent strong P+-ideals that are not strong P+?

We know there are P+-ideals that are not P+ (tree) , but we do not know the
answer of the following question.

Problem 4 Is there a Canjar ideal I such that I <ω is not P+ (tree)?4

Notes

1. This connection has recently been further studied in [6].

2. We are using ℘(Z) to denote the power set of Z.

3. We say that ϕ : ℘(ω) −→ [0,∞] is a lower semicontinuous submeasure if ϕ ( /0) = 0,
ϕ (A)≤ϕ (B) whenever A⊆B, ϕ (A∪B)≤ϕ (A)+ϕ (B) , and ϕ (A)= limn−→∞ϕ (A∩n)

4. These questions except the first one have recently been answered by Chodounský, Re-
povš, and Zdomskyy, see [6]
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