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Abstract The notion of strongmeasure zero is studied in the context of Polish groups
and general separable metric spaces. An extension of a theorem of Galvin, Mycielski
and Solovay is given, whereas the theorem is shown to fail for the Baer–Specker
group Z
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and Steprāns (Ann Pure Appl Logic 140(1–3):52–59, 2006).
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1 Introduction

All spaces considered are separable and metrizable.
By the definition due to Borel [7], a metric space X has strong measure zero (Smz)

if for any sequence 〈εn : n ∈ ω〉 of positive numbers there is a cover {Un : n ∈ ω} of
X such that diamUn � εn for all n.

In the same paper Borel conjectured that every Smz set of reals is countable. A
consistent counterexample to his conjecturewas given rather quickly bySierpiński [32]
who showed that the continuum hypothesis implies the existence of a counterexample
by noting that every Luzin set (an uncountable set of reals every meager subset of
which is countable) has strong measure zero.

As is well known now, the Borel Conjecture turned out to be independent of the
usual axioms of set theory. Richard Laver in his ground-breaking work [22] proved
that the Borel Conjecture is relatively consistent with ZFC. Not only did he answer
a longstanding famous problem, but the method of the proof eventually led to the
development of proper forcing and the consistency of strong forcing axioms [10,11,
26,35]. It was proved by Carlson [8] that the Borel Conjecture actually implies a
formally stronger statement that all separable Smz metric spaces are countable.

Galvin, Mycielski, and Solovay [13] confirmed a conjecture of Prikry by proving
that a set A ⊆ R is of strong measure zero if and only if A+M �= R for every meager
set M ⊆ R. Recently Kysiak [21] and Fremlin [12] showed that an analogous theorem
is true for all locally compact metrizable groups (see also the second author’s PhD
thesis [37]). Here we give a proof of Kysiak and Fremlin’s result and consider the
natural question as to how far the result can be extended.

On the other hand, we show that the theorem does not hold for all Polish groups.
This, of course, depends on further set-theoretic axioms, as the result obviously holds
for all Polish groups assuming, e.g., the Borel Conjecture. In particular, we show that
the result consistently fails for the Baer–Specker group Z

ω.
Cardinal invariants associated with strong measure zero sets on R, ωω, and 2ω have

been studied rather extensively in recent decades [2,15,38]. We present a study of
the uniformity invariant of the σ -ideal Smz(X) of strong measure zero subsets of a
general metric space X . With respect to strong measure zero, separable metric spaces
seem to split into two disjoint classes, the dividing line being given by the so-called
small ball property (sbp) introduced by Behrends and Kadets [3]. Via (fragments of)
Galvin–Mycielski–Solovay type theorems this study connects to the investigation of
the so-called transitive coefficient cov∗(M) in Polish groups [2,9,25]. In particular,
we answer several questions concerning cov∗(M) posed by Miller and Steprāns in
[25].
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Strong measure zero in separable metric spaces and Polish groups 107

We include a section dealing with the small ball property in some detail. In particu-
lar, we characterize thesbp subsets of theBaire space, calculate the cardinal invariants
of sbp, and show that a metrizable space has the Menger Property if and only if it has
the small ball property in every compatible metric.

2 Notation and preliminary results

2.1 Set-theoretic notation

Our set-theoretic notation is mostly standard and follows e.g. [18,20]. In particular,
the set of finite ordinals will be identified with the set of non-negative integers and
denoted by ω. In the same vein, the non-negative integers themselves are identified
with the set of smaller non-negative integers, in particular 2 = {0, 1}.

2.2 Metric spaces

All spaces considered here will be separable and metrizable, hence second countable,
typically endowed with an unspecified metric, often denoted d. We say that a metric d
is compatible with the topology of a topological space X if it generates the topology
of the space. We denote by B(x, ε) the closed ball with radius ε centered at x , the
corresponding open ball will be denoted by B◦(x, ε).

The metrizable spaces we shall deal with are often of the type Aω for some finite or
countable set A—the Cantor cube 2ω, naturally identified with the countable product
of the two-element group, the Baire space ωω, and the Baer–Specker group Z

ω.
All of thesemaybe endowedwith themetric of least difference definedbyd( f, g) =

2−| f ∧g|, where f ∧ g = f � n for n = min{k : f (k) �= g(k)}. The topology induced
by this metric is the product topology of countably many copies of discrete A. The
space is compact if and only if A is finite, otherwise it is nowhere locally compact.
Basic clopen sets in the space Aω can be conveniently represented by nodes of the
tree A<ω: Given s ∈ A<ω, we let 〈s〉 = { f ∈ Aω : s ⊆ f }. Also, closed sets
in Aω can be represented by subtrees of A<ω: Given a subtree T of A<ω, we let
[T ] = { f ∈ Aω : ∀n ∈ ω f � n ∈ T } be the set of branches of T .

A metric space is analytic if it is a continuous image of ωω; it is Borel (absolutely
Gδ , resp.) if it is Borel (Gδ , resp.) in its completion.

2.3 Separable metric groups

By a Polish group we understand a separable, completely metrizable topological
group. A compatible metric d on a separable metrizable group G is left-invariant if
d(zx, zy) = d(x, y) for any x, y, z ∈ G. Locally compact (equivalently, σ -compact)
Polish groups admit a complete left-invariant compatible metric. On the other hand
not all Polish groups do: A separable group G is a CLI group if it admits a complete
left-invariant compatible metric. Note that CLI groups include all locally compact as
well as all abelian Polish groups.
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108 M. Hrušák et al.

2.4 Cardinal invariants

Given a family I of subsets of a set X—usually an ideal—the following are the
standard cardinal invariants associated with I:

non(I) = min{|Y | : Y ⊆ X ∧ Y /∈ I},
add(I) = min{|A| : A ⊆ I ∧ ⋃A /∈ I},
cov(I) = min{|A| : A ⊆ I ∧ ⋃A = X},
cof(I) = min{|A| : A ⊆ I ∧ (∀I ∈ I)(∃A ∈ A)(I ⊆ A)}.

Wedenote byM,N the ideals ofmeager andLebesgue null subsets of 2ω, respectively.
For f, g ∈ ωω, we say that f �∗ g if f (n) � g(n) for all but finitely many n ∈ ω (the
order of eventual dominance). A family F ⊆ ωω is bounded if there is an h ∈ ωω such
that f �∗ h for all f ∈ F ; and F is dominating if for any g ∈ ωω there is f ∈ F such
that g �∗ f . The cardinal invariants related to eventual dominance are b (the minimal
cardinality of an unbounded family) and d (the minimal cardinality of a dominating
family).

We shall make use of two more, very similar, cardinal invariants. Following [25],
we denote1 by eq:

eq = min{|F | : F ⊆ ωω bounded, ∀g ∈ ωω ∃ f ∈ F ∀n ∈ ω f (n) �= g(n)}.

It is a theorem of Bartoszyński and Judah [2, 2.4.1] that omitting “bounded” yields
cov(M). We need a cardinal invariant similar to eq, only that partial functions take
the place of functions (say that f is an infinite partial function if f ∈ ωA for some
A ∈ [ω]ω):

ed = min{|F | : F is a bounded family of infinite partial functions,

∀g ∈ ωω ∃ f ∈ F ∀n ∈ dom f f (n) �= g(n)}.

As shown in [17, Lemma 3.9], this cardinal invariant is actually equal to the unifor-
mity number non∗(EDfin) of the ideal EDfin. We denote it ed to avoid the lengthy
non∗(EDfin) and also to emphasize the similarity with eq. The provable inequalities
between the listed cardinals are summarized in the following diagram (see [2,17]
for proofs). As usual, the arrows in the diagram point from the smaller to the larger
cardinal.

b �� d

add(M) ��

��

cov(M) ��

��

ed �� eq �� non(N )

1 The definition of eq comes from Miller’s [23] (see also [2, 2.7.14]) and the notation from [25].
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Strong measure zero in separable metric spaces and Polish groups 109

Moreover, add(M) = min{b, eq} = min{b, ed} and cov(M) = min{d, ed}, while
cov(M) < min{d, eq} is consistent with ZFC by a theorem of Goldstern et al. [15].

2.5 Strong measure zero in metric spaces and groups

The notion of strong measure zero is in general neither a topological nor a metric
property, it is a uniform property; in particular, a uniformly continuous image of a
Smz set is Smz. Also, if X uniformly embeds into Y , then any set A ⊆ X that is not
Smz in X is not Smz in Y either. This has the following immediate corollary that
will be relevant later on:

Lemma 2.1 (i) If f : X → Y is uniformly continuous onto Y , then non(Smz(X))

� non(Smz(Y )).
(ii) If X uniformly embeds into Y , then non(Smz(X)) � non(Smz(Y )).

Another important observation deals with groups. As all left-invariant metrics on a
separable metrizable group are uniformly equivalent, it does not matter which metric
one chooses, so the notion becomes “topological”: a subset S of a topological group
G is Rothberger bounded if for every sequence 〈Un : n ∈ ω〉 of neighbourhoods of
1G there is a sequence 〈gn : n ∈ ω〉 of elements of the group G such that the family
〈gn · Un : n ∈ ω〉 covers S. It is easy to see [12] that a subset of a Polish group G

is Rothberger bounded if and only if it is strong measure zero w.r.t. some (any) left-
invariant metric onG. Many of the results stated here could be phrased in the language
of uniformities and/or in terms of the property of being Rothberger bounded (see [12]
for such treatment). Extensions of Borel Conjecture to larger classes of non-separable
groups were recently considered by Galvin and Scheepers [14].

Whenever G is a Polish group, Smz(G) denotes the strong measure zero sets with
respect to any left-invariant metric (i.e., the Rothberger bounded sets as described
above). In case of a metrizable space of the type Aω, Smz(Aω) denotes the strong
measure zero sets with respect to the least difference metric (which is left-invariant in
case of the groups 2ω and Z

ω, and therefore conforms with the above).
Cardinal invariants of strong measure zero were studied in quite some detail for

two important, yet particular instances of separable metric spaces: the Cantor cube 2ω

and the Baire space ωω (both equipped with the metric of least difference) [2,15,38].
Here we shall concentrate on the uniformity number non(Smz(X)).

For a general separable metric space X there is a lower estimate of non(Smz(X))

found by Rothberger [31] in 1941 and an upper estimate found by Szpilrajn [33] in
1934. The uniformity invariantnon(Smz(X)) for X = 2ω and X = ωω was calculated
by Bartoszyński and Judah [2], and Fremlin and Miller [24], respectively.

Theorem 2.2 Let X be a separable metric space.

(i) [31] cov(M) � non(Smz(X)),
(ii) [33] if X is not of universal measure zero,2 then non(Smz(X)) � non(N ),
(iii) [2,24] non(Smz(ωω)) = cov(M) and non(Smz(2ω)) = eq.

2 Recall that a metric space X is of universal measure zero if there is no probability Borel measure on X
vanishing on singletons.
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3 The Galvin–Mycielski–Solovay theorem revisited

In this section we examine to what extent the Galvin–Mycielski–Solovay theorem can
be extended to Polish groups other than R. We denote by M(G) the ideal of meager
subsets of G. We begin by recalling an old result of Prikry:

Theorem 3.1 (Prikry [28]) Let G be a separable group equipped with a left-invariant
metric d and let S ⊆ G be such that S ·M �= G for all M ∈ M(G). Then S has strong
measure zero with respect to d (i.e., S ∈ Smz(G)).

Proof Let S be as above and let δn↘0 be given. Let {En : n ∈ ω} be a family of
open sets such that diam En < δn and E = ⋃

n En is dense in G. Then E−1 is also
dense open in G, hence, M = G\E−1 is nowhere dense. By the assumption, there is
z ∈ G\S · M . Routine calculation yields S ⊆ z · E = ⋃

n z · En . Since the metric
is left-invariant, diam(z · En) < δn and thus S is covered by a sequence of open
sets of diameters below δn . As this is true for every sequence δn↘0, we have that
S ∈ Smz(G). ��

Motivated by Prikry’s result we introduce the following notation:

Definition 3.2 Let G = (G, ·) be a topological group. Let

Pr(G) = {A ⊆ G : ∀M ∈ M(G) A · M �= G}.

In otherwords, Prikry’s result states thatPr(G) ⊆ Smz(G) for any separablemetric
group. As mentioned in the introduction, Galvin, Mycielski, and Solovay answered
Prikry’s question by showing that the reverse inclusion holds for R. The same was
recently proved to hold for all locally compact groups by Kysiak [21] and Fremlin
[12].We shall present a proof of the theorem here. Themain point is that Polish groups
which are locally compact or carry an invariant metric admit a converse of Prikry’s
result with meager replaced by uniformly meager.

Definition 3.3 A subset N of a separable metric space X is uniformly nowhere dense
if for every ε > 0 there is a δ > 0 such that for every x ∈ X there is a y ∈ X such that
B(y, δ) ⊆ B(x, ε)\N. A set M is uniformly meager if it can be written as a union of
countably many uniformly nowhere dense sets.

We shall denote the collection of all uniformly meager subsets of X by UM(X) (or
just UM).

Theorem 3.4 Let G be a Polish group which is either locally compact, or equipped
with a complete invariant metric d, and let S ⊆ G be Smz with respect to d (i.e.,
S ∈ Smz(G)). Then S · M �= G for all M ∈ UM(G).

Proof The proof of the case of a locally compact group is provided below in Sect. 6.
It follows from Theorem 6.3 and the fact that in a locally compact group every meager
set is uniformly meager (Proposition 3.6).
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Strong measure zero in separable metric spaces and Polish groups 111

When the group admits a complete invariantmetricd, then every uniformly nowhere
dense set N in the group G satisfies the following condition:

∀ε > 0 ∃δ > 0 ∀x, y ∈ G ∃z ∈ G B(z, δ) ⊆ B(x, ε)\(B(y, δ) · N ).

To see this note that, as the metric is both left- and right-invariant, B(y, δ) · N =
B(1, δ) · y · N and y · N is uniformly nowhere dense (witnessed by some δ which is
independent of y). If δ is such a witness, then it is easy to see that δ

2 works for the
property above.

An immediate consequence is that given an increasing sequence 〈Nn : n ∈ ω〉 of
uniformly nowhere dense sets in a group equipped with a complete invariant metric d
(an increasing sequence of compact (uniformly) nowhere dense, resp.) there is a se-
quence 〈εn : n ∈ ω〉 of positive reals, without loss of generality converging to 0, such
that for every n > 0

∀x, y ∈ G ∃z ∈ G B(z, εn) ⊆ B(x, εn−1)\(B(y, εn) · Nn). (1)

Now, fix a Smz set S and a uniformly meager set M written as the union of an
increasing sequence 〈Nn : n ∈ ω〉 of uniformly nowhere dense sets, (compact nowhere
dense sets, resp.). Let 〈εn : n ∈ ω〉 be the sequence given by (1). As S is Smz, there
is a cover {Un : n ∈ ω} of S such that diamUn � εn , for all n ∈ ω, and such that
each s ∈ S is contained in infinitely many of the Un’s. Applying (1) recursively (note
that for each n ∈ ω there is a y ∈ G such that Un ⊆ B(y, εn)) one gets a sequence
〈xn : n ∈ ω〉 of elements of G such that for every n ∈ ω

B(xn+1, εn+1) ⊆ B(xn, εn)\(Un+1 · Nn+1).

The sequence 〈xn : n ∈ ω〉 is a Cauchy sequence, hence has a limit x which is the
only point of

⋂
n∈ω B(xn, εn). Then x �∈ ⋃

n∈ω Un · Nn ⊇ S · M . To see the last
inclusion note that, as the sequence 〈Nn : n ∈ ω〉 is increasing and each element of S
is contained in infinitely many of theUn’s, for every (s,m) ∈ S×M there is an n ∈ ω

such that s ∈ Un and m ∈ Nn . ��
An immediate corollary of the theoremand the followingproposition is theFremlin–

Kysiak result.

Theorem 3.5 (Fremlin [12], Kysiak [21]) Pr(G) = Smz(G) for every locally com-
pact group G.

On the other hand, Theorem 3.4 does not provide a proof of the Galvin–Mycielski–
Solovay theorem for any group which is not locally compact, also by the following
proposition.

Proposition 3.6 (i) M(X) = UM(X) for any locally compact metric space X.
(ii) M(X) �= UM(X) for every nowhere locally compact complete metric space X.
(iii) Hence, a Polish group G is locally compact if and only if M(G) = UM(G).

123
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Proof (i) It is easy to verify that it is sufficient to prove that every nowhere dense subset
of a compact space is, in fact, uniformly nowhere dense. To that end fix a nowhere
dense subset N of a compact space K and ε > 0. Let F be a finite subset of K such
that K = ⋃

x∈F B(x, ε
2 ). For every x ∈ F let yx ∈ B(x, ε

2 ) and δx > 0 be such that
B(yx , δx ) ⊆ B(x, ε

2 )\N . Then δ = min{δx : x ∈ F} works as B(x, ε
2 ) ⊆ B(z, ε)

whenever z ∈ B(x, ε
2 ).

(ii) As the space is nowhere locally compact, i.e., nowhere totally bounded, for
every U with non-empty interior there is an εU > 0 and a pairwise disjoint family
{VU

k : k ∈ ω} of open balls of radius εU contained in U . We want to construct a
nowhere dense set N which is not uniformly meager. In order to do that we recursively
construct a family {Us : s ∈ ω<ω} of non-empty regular closed sets (i.e., for each s,
the closure of the interior of Us equals Us) satisfying the following properties:

(1) diamUs � 2−|s| for every s ∈ ω<ω,
(2)

⋃
n∈ω Us�n ⊆ Us for every s ∈ ω<ω,

(3) Us�n ∩Us�m = ∅ for every s ∈ ω<ω and any two distinct m, n ∈ ω,
(4) int(Us \⋃

n∈ω Us�n) �= ∅ for every s ∈ ω<ω,

(5) for all s ∈ ω<ω and k ∈ ω and x ∈ VUs
k there is a n ∈ ω such that Us�n ⊆

B(x, 2−k).

Such a family can be constructed by a routine recursion.
Having fixed a family as above let N = ⋂

j∈ω

⋃
|s|= j Us . We claim that this is the

set we are looking for.
First, N is nowhere dense: a non-empty open set U is either disjoint from N , or

contains Us for some s ∈ ω<ω. Then, however, ∅ �= int(Us \⋃
n∈ω Us�n) ⊆ U \N

[see property (4) above].
Now we will prove that N is not uniformly meager in X . The set N is naturally

homeomorphic toωω [see properties (1)–(3) above], hence satisfies the Baire Category
Theorem. Aiming toward a contradiction assume that N ⊆ ⋃

l∈ω Nl , where each Nl

is a closed uniformly nowhere dense subset of X . By the Baire Category Theorem
applied to N there is an s ∈ ω<ω and an l ∈ ω such that Us ∩ N ⊆ Nl , hence Us ∩ N
is uniformly nowhere dense. So, there is a δ > 0 as in the definition of uniformly
nowhere dense corresponding to εUs . Consider VUs

k , for 2−k < δ. Then, on the one

hand there is an x ∈ VUs
k such that B(x, 2−k) ⊆ VUs

k \N , and on the other hand, there
is [see property (5) above] an n ∈ ω such that ∅ �= N ∩ Us�n ⊆ B(x, 2−k), which is
a contradiction.

(iii) Follows directly from (i) and (ii). ��

It is not clear to us whether Theorem 3.4 holds for all Polish groups. As in locally
compact groups every meager set is uniformly meager, one has to wonder whether
Prikry’s result—Theorem 3.1—may hold with meager replaced by uniformly meager.
It turns out that this is not the case, at least not in general. We give a (consistent)
counterexample for the Baer–Specker group Z

ω.

Proposition 3.7 (CH) There is a set X ⊆ Z
ω such that X + M �= Z

ω for every
M ∈ UM(Zω), and yet X /∈ Smz(Zω).
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Strong measure zero in separable metric spaces and Polish groups 113

Proof Suppose {Mα : α < ω1} is a list of all uniformly meager Fσ subsets of Z
ω, and

let {(sα
n )n∈ω : α < ω1} be a list of all sequences (sn)n∈ω satisfying sn ∈ Z

n+1 for all
n ∈ ω.

Claim 3.8 Suppose (sn)n∈ω is a sequence satisfying sn ∈ Z
n+1 for all n ∈ ω, and

(Fn)n∈ω are closed uniformly nowhere dense sets. Then there exists an x ∈ Z
ω such

that x /∈ ⋃
n∈ω Fn and x /∈ ⋃

n∈ω[sn].
Proof First note that whenever F is uniformly nowhere dense and t ∈ Z

<ω, there is
an l ∈ ω such that for every k ∈ Z there is a t ′ ⊇ t�〈k〉 with |t ′| � l and [t ′] ∩ F = ∅.

Let A = Z
ω\⋃n∈ω[sn]. Since A is closed, we can fix a tree T ⊆ Z

<ω such that the
set [T ] of its branches is A. Note that T has the following property: whenever t ∈ T
and l ∈ ω, there is a k ∈ Z (actually, this holds for all but at most l many k’s) such
that for all t ′ ⊇ t�〈k〉 with |t ′| � l, we have t ′ ∈ T .

By the above, we can construct a sequence t0 � t1 � · · · such that tn ∈ T
and [tn] ∩ Fn = ∅ for each n ∈ ω. Let x = ⋃

n<ω tn ; then x /∈ ⋃
n∈ω Fn , and

x ∈ [T ] = Z
ω\⋃

n∈ω[sn], as desired. ��
We are now prepared to construct the set X = {xα : α < ω1} together with an

auxiliary sequence (zα)α<ω1 as follows. At step α, we first pick

zα /∈
⋃

β<α

(xβ + Mα) (2)

(this is possible since any countable collection of meager sets does not cover the whole
group), and then pick

xα /∈
⋃

β�α

(zβ − Mβ) (3)

such that
xα /∈

⋃

n∈ω

[
sα
n

]
(4)

(this is possible by Lemma 3.8, just note that zβ − Mβ is uniformly meager for each
β � α < ω1, so there are countably many closed uniformly nowhere dense sets Fn
with

⋃
β�α(zβ − Mβ) ⊆ ⋃

n∈ω Fn).
It is easy to derive from (2) and (3) that the resulting set X satisfies X + M �= Z

ω

for any M ∈ UM(Zω): since each uniformly meager set is contained in one of the
Mα’s, it suffices to show that X + Mα �= Z

ω for any α; actually, zα /∈ X + Mα , where
zα /∈ xβ + Mα holds due to (2) (for β < α) and (3) (for β � α).

Moreover, X /∈ Smz(Zω): if it were strong measure zero, there would be (sn)n∈ω

with sn ∈ Z
n+1 for all n ∈ ω such that X ⊆ ⋃

n∈ω[sn]; pick α < ω1 such that
(sα

n )n∈ω = (sn)n∈ω and recall that xα ∈ X satisfies xα /∈ ⋃
n∈ω[sn] by (4), a contra-

diction. ��
Nowwe turn toward the main negative result. To that end we introduce three related

properties. We shall call a Polish group G

(1) GMS if it satisfies the Galvin–Mycielski–Solovay theorem absolutely, i.e., there
is a ZFC proof of the fact.
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114 M. Hrušák et al.

(2) strongly GMS if for every nowhere dense M ⊆ G there is a 〈εn : n ∈ ω〉 ∀〈Un :
n ∈ ω〉 such that diamUn < εn there is a g ∈ G such that (g·⋃n∈ω Un)∩M = ∅.

(3) weakly GMS if for every closed nowhere dense M ⊆ G there is a 〈εn : n ∈ ω〉
∀〈Un : n ∈ ω〉 such that diamUn < εn there is a g ∈ G such that (g ·⋃n∈ω Un)∩
M is not dense in M .

The property of being a GMS group is intentionally somewhat vague. Perhaps,
a technically better property would be “G satisfies the Galvin–Mycielski–Solovay
theorem [i.e., Pr(G) = Smz(G)] after collapsing the continuum to ω1 (with a σ -
closed forcing)”. The advantage would be that we could talk about the very same
group G, not having to worry about in which way G should be definable. We hope
that the need for any such definition will soon be eliminated by a suitable theorem.

It is useful to explicitly state the negation of being weakly GMS:
A group G is not weaklyGMS if there is a closed nowhere dense M ⊆ G such that

∀〈εn : n ∈ ω〉 ∃〈Un : n ∈ ω〉with diamUn < εn such that ∀g ∈ G (g ·⋃n∈ω Un)∩M
is comeager (or, equivalently, dense) in M .

We will show that, as the names suggest, stronglyGMS ⇒ GMS ⇒ weaklyGMS.

To prove the first implication, assume that a Polish group G is not GMS, that is,
it is consistent that there are a Smz set S and a meager set M such that S · M = G.
It follows from the proof of [25, Proposition 2,3] that there is a nowhere dense set N
and a countable set C such that M ⊆ C · N . Then of course S ·C · N = G, while S ·C
is Smz. Hence, M can actually be chosen nowhere dense.

Working in such model, given a sequence 〈εn : n ∈ ω〉, let 〈Un : n ∈ ω〉 be such
that diamUn < εn which covers S. Now, for any g ∈ G there are u ∈ ⋃

n∈ω Un and
m ∈ M−1 such that g−1 = u ·m−1. Thenm = g ·u, hence (g ·⋃n∈ω Un)∩M−1 �= ∅.

The following proposition proves the second implication.

Proposition 3.9 (cov(M)=c) If G is Polish and not weakly GMS, then

Pr(G) �= Smz(G).

Proof The proof proceeds by transfinite recursion. Enumerate the group G as {gα :
α < c} and also enumerate all decreasing sequences 〈εn : n ∈ ω〉 of real numbers
converging to 0 as {〈εα

n : n ∈ ω〉 : α < c}. Fix a closed nowhere dense set M which
witnesses that G is not weakly GMS. For each α < c fix a corresponding sequence
〈Uα

n : n ∈ ω〉 such that diamUα
n < εα

n and such that for all g ∈ G, (g ·⋃n∈ω Uα
n )∩M

is comeager in M . Let Uα = ⋃
n∈ω Uα

n .
As cov(M) = c, the intersection of fewer than c relatively dense open subsets of

M is not empty. In particular, for every α < c, there is an

mα ∈ M ∩
⎛

⎝g−1
α ·

⋂

β�α

Uβ

⎞

⎠ .

There is then an xα ∈ ⋂
β�α Uβ such that mα = g−1

α · xα . That is

gα = xα · m−1
α . (5)
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Let X = {xα : α < c}. Then G = X · M−1, so X �∈ Pr(G). Let us argue that
X ∈ Smz(G): Given a decreasing sequence 〈εn : n ∈ ω〉 consider 〈ε2n : n ∈ ω〉.
This sequence is listed as 〈εα

n : n ∈ ω〉 for some α < c and, by construction, every
xγ ∈ Uα for γ � α. On the other hand, X \Uα ⊆ {xβ : β < α}, hence has size less
than cov(M) = c. By Theorem 2.2(i), X \Uα is a Smz set, hence can be covered by
balls of diameters ε2n+1, n ∈ ω. We conclude that X has strong measure zero. ��

In fact, the proof of the second implication (GMS ⇒ weaklyGMS) requires a little
bit more of an argument: Assume that G is not weakly GMS in some model V of set
theory. By σ -closed forcing collapse the continuum of V to ω1 in a generic extension
V [G]. Note that the property of being weakly GMS is projective, hence absolute for
extension by σ -closed forcing. Hence,G is not weaklyGMS in the model V [G] either,
while the continuum hypothesis (in particular, cov(M) = c) holds in V [G]. By the
claim, V [G] |� “The Galvin–Mycielski–Solovay theorem fails for G”, hence G is not
GMS.

Theorem 3.10 The group Z
ω is not weakly GMS.

Proof Enumerate Z
<ω as {tn : n ∈ ω} and let {sn : n ∈ ω} ⊆ Z

<ω be such that

(1) sn end-extends tn , and
(2) for every m ∈ ω there is at most one n ∈ ω such that sn ∈ Z

m .

Let

N = Z
ω\

⋃

n∈ω

〈sn〉.

The set N is then closed nowhere dense [by (1)]. Let T = {h � n : h ∈ N }.
Claim 3.11 ∀ε > 0 ∀m ∈ ω ∃Mm

ε ∈ ω ∀x, y ∈ Z
ω x ∧ y ∈ Z

m ∩ T and |x(m) −
y(m)| � Mm

ε implies that N ∩ (B(x, ε) ∪ B(y, ε)) �= ∅.
Proof Define (for s ∈ T ) G(s) as the minimal δ > 0 such that every ball with radius δ

contained in the cone/ball 〈s〉 intersects N . Note that G is well-defined and, moreover,
lims∈T G(s) = 0 by (2), i.e., for every ε > 0 the set Rε = {s ∈ T : G(s) > ε} is finite.
Note, by (2) again, that if s ∈ T then s�n ∈ T for all but (possibly) one n ∈ Z. Let
Mm

ε be large enough so that for every s ∈ T ∩ Z
m the set {n : s�n ∈ Rε} ∪ {n : s ∈ T

and s�n ∈ Z
m+1\T } is contained in the interval (−Mm

ε /2, Mm
ε /2).

If x ∧ y ∈ Z
m ∩ T and |x(m) − y(m)| � Mm

ε , at most one of x � m + 1, y � m + 1
belongs to Rε ∪ {sn : n ∈ ω}, hence N ∩ B(x, ε) �= ∅ or N ∩ B(y, ε) �= ∅, and the
claim is proved. ��

Now, given a decreasing sequence 〈εn : n ∈ ω〉 and n ∈ ω, let

U2n = B
(
tn

�0̄, ε2n
)
and U2n+1 = B

(
tn

�M |tn |
ε2n+1

�
0̄, ε2n+1

)
.

All that needs to be checked is that for every h ∈ Z
ω and every s ∈ T

N ∩ 〈s〉 ∩
(

h +
⋃

n∈ω

Un

)

�= ∅.
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To see this fix h and s ∈ T and let t = s − h. Then t = tn for some n ∈ ω.
Apply the above claim for ε = ε2n+1 and m = |tn|. Note that x = h + tn�0̄ and
y = h + tn�Mm

ε
�0̄ satisfy x ∧ y = s ∈ Z

m ∩ T and |x(m) − y(m)| = Mm
ε , hence

N ∩ 〈s〉 ∩ (h +U2n) �= ∅ or N ∩ 〈s〉 ∩ (h +U2n+1) �= ∅. ��
The properties strongly GMS and weakly GMS are related to recent work done by

van Mill [36]. The result relevant for us is that an analytic group which is not Polish
admits a meager set M and a countable set C such that for any g ∈ G M ∩C · g �= ∅.
From vanMill’s result one can deduce that an analytic group is either Polish or meager
in itself, hence among analytic groups only the Polish ones have a chance to satisfy
the Galvin–Mycielski–Solovay theorem.

We have seen that every locally compact group is GMS, hence, weakly GMS.
Essentially the same proof gives that a compact group is strongly GMS.

Another class of related properties comes from the study of continuous actions of
Polish groups [4,30,34]. A Polish group G is said to have the Bergman property if any
left-invariant compatible metric on G is bounded. We suggest the following strong
negation of the Bergman property: A group G is elastic if any open set has infinite
diameter in some left-invariant compatible metric. That is, a group is non-elastic if it
contains an open setwhich is bounded in all left-invariant compatiblemetrics. Trivially,
each locally compact group is non-elastic, whereas each compact group is Bergman.

Proposition 3.12 Every non-discrete stronglyGMS group has the Bergman property.

Proof Suppose G is not Bergman and fix an unbounded left-invariant metric d on G.
Let 〈B(xn, εn) : n ∈ ω〉 be a sequence of disjoint balls with diameters converging to
0 whose union is a dense subset of G and let M = {xn : n ∈ ω} be the discrete set
of centers of the balls. To see that G is not strongly GMS (witnessed by M , which is
nowhere dense since the group is not discrete, i.e., has no isolated points), first note
that

∀ε > 0 ∃D > 0 ∀x, y ∈ G d(x, y) � D ⇒ (B(x, ε) ∪ B(y, ε)) ∩ M �= ∅.

To see this note that there are only finitely many n such that εn > ε/3. Let D be twice
the diameter of

⋃{B(xn, εn) : εn > ε/3}. Such D obviously works. This finishes the
proof as one does not even need the infinite sequence of ε’s/balls, two suffice. ��

So we have the following diagram of implications for non-discrete Polish groups
(we omit the trivial implication locally compact ⇒ non-elastic):

locally compact �� GMS �� weakly GMS non-elastic

compact

��

�� strongly GMS

��

�� Bergman

��

It is not clear at the moment which implications can be reversed, other than, of course,
no condition on the upper level implies any on the lower level, the real line being
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a counterexample. It is also not clear to us whether a (weakly) GMS group must be
non-elastic.

For tangible examples, it would be interesting to knowwhich properties are satisfied
by the group Sym(ω) of permutations of ω. In particular, is Sym(ω) a GMS group?
Of course the main remaining question is the following:

Question 3.13 Is there a Polish group which is (weakly) GMS but not locally com-
pact?

We conjecture the answer to be negative.

Recall that Proposition 3.9 and Theorem 3.10 tell us the following: if G is a group
which is not locally compact (e.g., the Baer–Specker group Z

ω), X ∈ Smz(G) (i.e.,
X strong measure zero with respect to any left-invariant metric) does not necessarily
imply X being Prikry, i.e., X ∈ Pr(G).

We are going to prove that the above implication becomes true for all Polish groups
if X ∈ Smz(G) is replaced by the following stronger property: A topological space X
has the Rothberger Property if for every sequence 〈Un : n ∈ ω〉 of open covers there
are Un ∈ Un such that {Un : n ∈ ω} is a cover of X . Fremlin and Miller [24] proved
that a metrizable space X has the Rothberger Property if and only if X has strong
measure zero with respect to every compatible metric. In particular, every set X ⊆ G

with the Rothberger Property is in Smz(G). The following theorem was suggested to
the authors by the anonymous referee.

Theorem 3.14 SupposeG is a non-discretePolish group. If X ⊆ Ghas theRothberger
Property, then X ∈ Pr(G), i.e., X · M �= G for each M ∈ M(G).

Proof Suppose X ⊆ G has the Rothberger Property. Given M ∈ M(G), fix a de-
creasing family of dense open sets {Dn : n ∈ ω} such that

⋂
n∈ω Dn ⊆ G\M .

Let ρ and d be, respectively, a complete and a right-invariant metric on G.
Construct non-empty open sets Is , Js ⊆ G for s ∈ ω<ω such that

(1) Is · Js ⊆ D|s|,
(2) Is ⊆ Is ⊆ It whenever s � t ,
(3) diameter of Is (with respect to ρ) is less than 1

|s|+1 ,
(4) {Js�n : n ∈ ω} covers G.

This can be done, e.g., as follows. Fix s ∈ ω<ω and suppose Is and Js are constructed.
Put m = |s| + 1. First let I ′

s be non-empty open such that I ′
s ⊆ Is and diameter of I ′

s
in ρ is below 1

m+1 . This will ensure (2) and (3). For ε > 0 let

Aε = {y ∈ Dm : d(y, G\Dm) > ε}.

Since I ′
s is open, the family U = {x−1Aε : x ∈ I ′

s, ε > 0} covers G. Since d is
right-invariant, we also have Bd(x, ε) · x−1Aε ⊆ Dm : indeed, if z ∈ Bd(x, ε) and
y ∈ Aε, then d(y, zx−1y) = d(x, z) < ε and thus, for any u /∈ Dm , d(zx−1y, u) �
d(y, u) − d(y, zx−1y) > ε − ε = 0 and zx−1y ∈ Dm follows.

Since G is Lindelöf, U has a countable subcover {x−1
n Aεn : n ∈ ω}. Let Is�n =

Bd(xn, εn) ∩ I ′
s and Js�n = x−1

n Aεn .
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According to a game characterization of Pawlikowski [27] (namely the fact that an
uncountable set X has theRothbergerProperty if andonly if the respective gameG∗σ (X)

is undetermined; see the main theorem of [27], and the subsequent discussion about
equivalent games), there exists f ∈ ωω such that X ⊆ ⋂

m∈ω

⋃
n>m J f �n . Pick

g ∈ ⋂
n∈ω I f �n ; then we have

g · X ⊆ g ·
⋂

m∈ω

⋃

n>m

J f �n ⊆
⋂

n∈ω

Dn ⊆ G\M.

So X has the following property: for each M ∈ M(G) there is a g ∈ G such that
g · X ⊆ G\M . A short computation shows that this is equivalent to X ∈ Pr(G). ��

Denote by Rbg(X) the family of all Rothberger subsets of a metrizable space X .
Combining the above theorem with Prikry’s Theorem 3.1 we get the following corol-
lary:

Corollary 3.15 If G is a non-discrete Polish group equipped with a left-invariant
metric, then Rbg(G) ⊆ Pr(G) ⊆ Smz(G).

By Theorem 3.10 and Proposition 3.9, the rightmost inclusionmay be proper. Since
there are (consistently)Smz sets on the line that are not Rothberger, the leftmost inclu-
sionmay be proper as well (see [24]). One just has to wonder if there is any topological
or uniform combinatorial property between Rothberger (which is a topological prop-
erty) and strong measure zero (which is a uniform property) that characterizes the
Prikry sets.

4 The small ball property

The following notion introduced in [3] is closely related to strong measure zero, as
we shall see in the next section.

Definition 4.1 A metric space (X, d) has the small ball property (sbp) if for every
ε > 0 there is a sequence of balls B(xn, εn) that covers X and such that ε � εn for
all n and εn → 0.

In [3], the notion is investigated within the framework of Banach spaces. Let us
notice first thatSmz obviously impliessbp, and second, thatσ -totally bounded (hence
in particular σ -compact) implies sbp.

We begin with establishing several equivalent definitions. Recall that a countable
family G of subsets of X is termed a λ-cover of Y ⊆ X if every y ∈ Y is contained
in infinitely many G ∈ G. We will also need a notion of Hausdorff measure. A right-
continuous, nondecreasing function g : (0,∞) → (0,∞) with limr→0 g(r) = 0 is
called a gauge. Given a gauge g and Y ⊆ X , the g-dimensional Hausdorff measure of
Y is defined thus:

Hg(Y ) = sup
δ>0

inf

{
∑

E∈E
g(diam E) : Y ⊆

⋃
E ∧ ∀E ∈ E (diam(E) � δ)

}

.
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The Hausdorff measure is an outer Borel measure. General reference: [29].

Lemma 4.2 The following are equivalent.

(i) X has sbp,
(ii) there is a family {En : n ∈ ω} that is a λ-cover of X and diam En → 0,
(iii) X admits a base {Bn : n ∈ ω} such that diam Bn → 0,
(iv) for every sequence 〈εm : m ∈ ω〉 of positive reals there is a sequence 〈Fm : m ∈

ω〉 of finite sets such that
⋃

m∈ω{B(x, εm) : x ∈ Fm} covers X,
(v) there is a gauge g such that Hg(X) = 0.

Proof (i)⇒ (ii) For each k ∈ ω let {B(xki , ε
k
i ) : i ∈ ω} be a cover of X such that

limi→∞ εki = 0 and εki < 2−k for all i ∈ ω. Then {B(xki , ε
k
i ) : i ∈ ω, k ∈ ω} is the

required family.
(ii)⇒ (iii) For each n ∈ ω choose xn ∈ En and let rn = diam En + 2−n (the extra

2−n is added to treat the case diam En = 0). A straightforward argument proves that
the family {B◦(xn, rn) : n ∈ ω} of open balls is the required base.

(iii)⇒ (iv)Wemay clearly assume that the sequence 〈εm : m ∈ ω〉 strictly decreases
to zero. With no harm done suppose that the base given by (iii) consists of open balls
B◦(xn, rn) with rn < ε0 and rn → 0. Let Fm = {xn : εm+1 � rn < εm}.

(iv)⇒ (v) For k, n ∈ ω let εkn = 2−n−k . By (iv) there is, for each k, a sequence
〈Fk

n : n ∈ ω〉 of finite sets such that {B(x, εkn) : x ∈ Fk
n , n ∈ ω} covers X . Let g be a

gauge satisfying, for all j ∈ ω,

g(21− j ) � 2− j

max
n+k= j

|Fk
n | .

For each k consider the cover Bk = {B(x, εkn) : x ∈ Fk
n , n ∈ ω}. It consists of sets of

diameter at most 21−k and clearly

∑

B∈Bk

g(diam B) �
∑

n∈ω

∑

x∈Fk
n

g
(
2εkn

)
=

∑

n∈ω

|Fk
n |g(21−n−k) �

∑

n∈ω

2−n−k = 21−k .

Since this holds for any k ∈ ω, it follows that Hg(X) = 0.
(v)⇒ (i) SupposeHg(X) = 0. Then there is, for any ε > 0, a cover {En} such that

diam En � ε for all n ∈ ω and
∑

n∈ω g(diam En) < 1. In particular, g(diam En) → 0
and a fortiori diam En → 0, as required. ��

It is worthwhile noticing that modifications of (ii)–(v) yield characterizations of
Smz. For instance, X is Smz if and only ifHg(X) = 0 for every gauge g [5,6].

Let X be a space that does not have sbp and denote sbp(X) the family of all sbp
subsets of X . It is easy to see that sbp(X) is a σ -ideal. Later on it will turn useful
to know its cardinal invariants. In order to calculate them we first describe a base of
sbp(X). Denote d the metric of X . Fix a countable dense set {zm : m ∈ ω} ⊆ X . For
f ∈ ωω define

G f = {
x ∈ X : ∀k ∈ ω ∃n � k ∃m < f (n) d(x, zm) < 2−n} .
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Lemma 4.3 (i) Y ∈ sbp(X) ⇔ ∃ f ∈ ωω Y ⊆ G f . In other words, the family
{G f : f ∈ ωω} is a base of sbp(X).

(ii) f �∗ g ⇒ G f ⊆ Gg.

Proof (i) The family {B◦(zm, 2−n) : n ∈ ω,m < f (n)} is clearly a λ-cover of G f

with diameters going to zero. Therefore G f has sbp by Lemma 4.2(ii).
On the other hand, if Y has sbp, then there is, again by Lemma 4.2(ii), a λ-cover

{E j : j ∈ ω} of Y such that diam E j → 0. Since {zm : m ∈ ω} is dense, there
is, for every j ∈ ω, a number m j such that diam({zm j } ∪ E j ) → 0. Let ε j =
diam({zm j } ∪ E j ) + 2− j . For n ∈ ω set An = { j ∈ ω : 2−n−1 � ε j < 2−n}
and f (n) = max j∈An m j + 1. If j ∈ An , then E j ⊆ B◦(zm j , ε j ) ⊆ ⋃Gn

f , where
Gn

f = {B◦(zm, 2−n) : m < f (n)}. Since {E j : j ∈ ω} is a λ-cover of Y , it follows
that Y ⊆ G f .

(ii) If x ∈ G f , and n0 is such that f (n) � g(n) for all n � n0, then clearly ∀k � n0
∃n � k ∃m < f (n) � g(n) d(x, zm) < 2−n , i.e., x ∈ Gg . ��

Consider the following mapping: for x ∈ X define x̃ ∈ ωω by

x̃(n) = min
{
m ∈ ω : d(x, zm) < 2−n} .

Lemma 4.4 x /∈ G f ⇔ f �∗ x̃ .

Proof We have

x /∈ G f ⇔ ∃k ∀n � k ∀m < f (n) d(x, zm) � 2−n

⇔ ∃k ∀n � k ∀m (d(x, zm) < 2−n ⇒ f (n) � m)

⇔ ∃k ∀n � k f (n) � x̃(n) ⇔ f �∗ x̃ . ��

Corollary 4.5 Y ∈ sbp(X) if and only if Ỹ = {ỹ : y ∈ Y } is not dominating.
Proof Clearly, Ỹ is not dominating iff ∃ f ∀y ∈ Y f �

∗ ỹ. The latter is by Lemma 4.4
equivalent to ∃ f ∀y ∈ Y y ∈ G f , i.e., ∃ f Y ⊆ G f , and Lemma 4.3(i) finishes the
proof. ��

It is worthwhile noticing that Y is σ -totally bounded if and only if Ỹ is eventually
bounded in ωω.

Proposition 4.6 If X does not have sbp, then

(i) non(sbp(X)) = cof(sbp(X)) = d,
(ii) add(sbp(X)) = cov(sbp(X)) = b.

Proof d � non(sbp(X)): Let Y ⊆ X , |Y | < d. The family {ỹ : y ∈ Y } is not
dominating, hence Y has sbp by Corollary 4.5.

cof(sbp(X)) � d: Let D ⊆ ωω be dominating, |D| = d. The family {G f : f ∈ D}
is cofinal in sbp(X) by Lemma 4.3.
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b � add(sbp(X)): Let κ < b and let {Yα : α < κ} ⊆ sbp(X). By Lemma 4.3(i)
there are fα such that Yα ⊆ G fα . The set { fα : α < κ} ⊆ ωω is bounded, there-
fore there is f such that fα �∗ f for all α < κ . By Lemma 4.3(ii)

⋃
α<κ Yα ⊆⋃

α<κ G fα ⊆ G f , and the latter set has sbp by Lemma 4.3(i).
cov(sbp(X)) � b: Let B ⊆ ωω be unbounded, |B| = b. Then X = ⋃

f ∈B G f ; if
not, fix x ∈ X such that ∀ f ∈ B x /∈ G f ; it follows from Lemma 4.4 that f �∗ x̃ for
all f ∈ B, i.e., x̃ is an upper bound of B: a contradiction. ��
Proposition 4.7 For a subset X ⊆ ωω, the following are equivalent:

(i) X has sbp,
(ii) no isometric copy of X in ωω is dominating,
(iii) no uniformly continuous image of X in ωω is dominating.

Proof Let us prove first that if X has sbp, then it is not dominating. By Lemma 4.2(iii)
there is a countable base consisting of cones, say {〈s〉 : s ∈ S}, such that {s ∈ S : |s| =
n} is finite for all n. Therefore there is f ∈ ωω such that s(n) < f (n) for all s ∈ S
such that |s| = n + 1. Since {〈s〉 : s ∈ S} is a base for X , ∀x ∈ X ∃∞s ∈ S s ⊆ x and
therefore

∀x ∈ X ∃∞n ∈ ω x(n) � f (n). (6)

Thus f witnesses that X is not dominating. (i)⇒ (iii) now easily follows from the
obvious fact that a uniformly continuous image of a sbp set is sbp.

(iii)⇒ (ii) is trivial. In order to prove (ii)⇒ (i) it is, by Corollary 4.5, enough to
prove that the mapping ˜ : ωω → ωω is an isometry.

Recall that x∧y denotes the common initial segment of x, y ∈ ωω and that themetric
on ωω is given by d(x, y) = 2−|x∧y|. Let n = |x̃ ∧ ỹ| and j = x̃(n). Suppose without
loss of generality that j = x̃(n) < ỹ(n). Then, by the definition of ˜, d(z j , x) < 2−n ,
while d(z j , y) � 2−n . Hence ∀i � n z j (i) = x(i), while ∃i � n z j (i) �= y(i). It
follows that ∃i � n x(i) �= y(i), i.e., |x ∧ y| � n, and thus d(x, y) � d(x̃, ỹ).

On the other hand, if |x̃ ∧ ỹ| > |x ∧ y|, then there would exist n such that x(n) �=
y(n), but x̃(n) = ỹ(n). Letting j = x̃(n) this would yield z j (n) = x(n) and z j (n) =
y(n) and consequently x(n) = y(n): a contradiction. Therefore |x̃ ∧ ỹ| � |x ∧ y| and
thus d(x, y) � d(x̃, ỹ). ��

Recall that a topological space X has the Menger Property if for every sequence
〈Un : n ∈ ω〉 of open covers there are finite sets Fn ⊆ Un such that

⋃
n∈ω Fn is a

cover of X .
As mentioned above, a metrizable space X has the Rothberger Property if and only

if X isSmzwith respect to every compatible metric. In view of Lemma 4.2(iv) it is no
surprise that the Menger Property is characterized likewise by sbp. It was suggested
to the authors by Marion Scheepers.

Theorem 4.8 A metrizable space X has the Menger Property if and only if X has
sbp with respect to every compatible metric.

Proof The forward implication is trivial: If d is any compatible metric on X and
〈εm : m ∈ ω〉 a sequence of positive reals, consider the sequence 〈{B(x, εm) : x ∈
X} : m ∈ ω〉 of open covers. The Menger Property of X yields (iv) of Lemma 4.2.
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The reverse implication is a bit harder. Let us first recall that a cover V refines a
cover U if for all V ∈ V there is U ∈ U such that V ⊆ U ; that for x ∈ X we define
st(x,V) = ⋃{V ∈ V : x ∈ V } and that V star-refines U if {st(x,V) : x ∈ X}
refines U .

Consider any sequence 〈Un : n ∈ ω〉 of open covers. Since X is metrizable, every
open cover has a star-refinement. Therefore there is a sequence 〈Vn : n ∈ ω〉 of covers
such that Vn+1 star-refines both Vn and Un+1 for all n and moreover we may assume
that limn→∞ sup{diam V : V ∈ Vn} = 0 for some fixed compatible metric on X .

Therefore the number n(x, y) = max{n ∈ ω : ∃V ∈ Vn {x, y} ⊆ V } is well
defined for distinct x, y ∈ X . Let f (x, y) = 2−n(x,y). By assumption n(x, y) < ∞.
Since Vn+1 star-refines Vn for all n, the function f satisfies the following condition:

∀ε > 0 ( f (x, y) < ε ∧ f (y, z) < ε) �⇒ f (x, z) < 2ε.

Consequently, according toFrink’s lemma (see [16, 2.6]), there is a compatiblemetricd
on X such that f (x, y) � d(x, y) � 4 f (x, y). Therefore, if x, y ∈ X and d(x, y) �
2−n−1, then there is V ∈ Vn+1 such that {x, y} ⊆ V ; in other words, B(x, 2−n) ⊆
st(x,Vn). And since Vn star-refines Un , we have the following: For each n ∈ ω, the
cover {B(x, 2−n) : x ∈ X} refinesUn . Since d has sbp, Lemma 4.2(iv) with εn = 2−n

yields the required sequence of finite families. ��

5 Uniformity of Smz in metric spaces and groups

In this section we take a closer look at the uniformity invariant of Smz in general
separable metric spaces. The results of the previous section will be of use here. Recall
that non(Smz(ωω)) = cov(M), while non(Smz(2ω)) = eq [see Theorem 2.2(iii)].
This shows that there are at least two distinct classes of metric spaces concerning their
uniformity invariant. The following results at least partially confirm the suspicion
that there may be exactly two classes of Polish (or even analytic) spaces as far as
non(Smz(X)) is concerned, depending on whether the space in question has the
small ball property:

Theorem 5.1 Let X be a separable metric space. Then:

(i) If X is σ -totally bounded then eq � non(Smz(X)),
(ii) if X is sbp then ed � non(Smz(X)), and
(iii) if X is not sbp then cov(M) � non(Smz(X)) � d.

Proof (i) If X is compact, then there is a continuous mapping f : 2ω → X onto X , see
e.g. [19, Theorem 4.18]. It is of course uniformly continuous, so non(Smz(X)) � eq
by Lemma 2.1(i) and Theorem 2.2(iii). If X is totally bounded, then it has a compact
completion X∗, thus non(Smz(X)) � non(Smz(X∗)) � eq by Lemma 2.1(ii). Since
Smz is a σ -additive property, the same estimate holds for σ -totally bounded spaces.

(ii) Let Y ⊆ X , |Y | < ed. We will show that Y is Smz. Let δn↘0. Let B = {Bj :
j ∈ ω} be a base witnessing that X has the small ball property. For n ∈ ω let

Fn = {B ∈ B : δn+1 < diam B � δn}.
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The sets Fn are clearly finite, because diam Bj → 0. To each x ∈ X assign a partial
function x̃ with range in

∏
n∈ω Fn as follows: given n ∈ ω, if there is B ∈ Fn such that

x ∈ B, let x̃(n) = B; otherwise x̃(n) is undefined. Since B is a base, x̃(n) is defined
for infinitely many n’s. Therefore the set Ỹ = {ỹ : y ∈ Y } is a bounded family of
infinite partial functions, and surely |Ỹ | = |Y | < ed. By the definition of ed there is
f ∈ Bω such that ∀y ∈ Y ∃ny ∈ dom ỹ with ỹ(ny) = f (ny). Let I = {ny : y ∈ Y }.
The family F = { f (n) : n ∈ I } is the required cover of Y : If n = ny ∈ I , then
y ∈ ỹ(n) = f (n), so F indeed covers Y , and also f (n) = ỹ(n) ∈ Fn and thus
diam f (n) � δn .

(iii) The left-hand inequality is Rothberger’s estimate Theorem 2.2(i). The right-
hand one follows at once from Proposition 4.6(i), since a Smz set is clearly
sbp. ��
Proposition 5.2 Let X be an uncountable analytic separable metric space. Then
non(Smz(X)) � eq.

Proof If X is analytic and uncountable, then it contains (by the Perfect Set Theorem) a
(uniform) copy of theCantor space and thereforenon(Smz(X)) � non(Smz(2ω)) =
eq [cf. Lemma 2.1(ii) and Theorem 2.2(iii)]. ��
Corollary 5.3 Let X be an uncountable analytic separable metric space. Then:

(i) If X is σ -totally bounded then non(Smz(X)) = eq,
(ii) if X is sbp then ed � non(Smz(X)) � eq, and
(iii) if X is not sbp then cov(M) � non(Smz(X)) � min{eq, d}.
Proof Follows immediately from Theorem 5.1 and Proposition 5.2. ��

In particular, the above corollary applies to all uncountable Polish spaces. For CLI
Polish groups we can do even better. First we prove the following Hurewicz-type
result.

Lemma 5.4 A Polish group equipped with a complete, left-invariant metric is either
locally compact, or else contains a uniform copy of ωω and, in particular, is not sbp.

Proof Let G be the group and d the metric. Suppose G is not locally compact. Since
d is complete, no open set is totally bounded. Therefore for every ε > 0 exists δ > 0
such that the ball B(1, ε) contains an infinite set of points that are mutually at least
δ apart. Use repeatedly this fact to construct, for each n ∈ ω, εn > 0 and an infinite
set {xin : i ∈ ω} ⊆ B(1, εn) such that if i �= j then d(xin, x

j
n ) > 5εn+1. For s ∈ ωn

let ys = xs(0)0 · xs(1)1 · xs(n−2)
n−2 · · · · · xs(n−1)

n−1 . The construction ensures that for any
f ∈ ωω the sequence 〈y f �n : n ∈ ω〉 is Cauchy. Let z f be its limit. It is easy to check
that since d is left-invariant, the mapping f �→ z f is a uniform embedding of ωω into
G. ��
Corollary 5.5 Let G be a CLI Polish group.

(i) If G is locally compact, then non(Smz(G)) = eq,
(ii) if G is not locally compact, then non(Smz(G)) = cov(M).
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Proof (i) follows at once from Corollary 5.3(i), and (ii) from the above Lemma 5.4,
Lemma 2.1 and Theorem 2.2. ��

It is, of course, a natural question whether the result remains true also for groups
which are not CLI.

5.1 Consistency results and questions

Our next result says that one cannot drop the assumption of not being of universal
measure zero in Theorem 2.2(ii): non(N ) is not an upper bound for non(Smz(X))

for all (non-Smz) separable metric spaces X .

Theorem 5.6 It is consistent with ZFC that there is a non-sbp set X ⊆ ωω such that
d = non(Smz(X)) > non(N ) = cov(M).

Proof Start with a ground model V with V � b = d = cov(M) = ω2. By the
assumption b = d = ω2, we can fix an ω2-scale X ∈ V . Let B(κ) be the standard
measure algebra for adding κ random reals. LetG beB(κ)-generic over V for κ � ω1.
Then, in V [G], we have
• cov(M) = non(N ) = ω1, because B(κ) adds a Sierpiński set of size ω1,
• X is still an ω2-scale (in particular, b = d = ω2), because B(κ) is ccc and ωω-
bounding.

By Proposition 4.7(i), V [G] � X is not sbp and therefore also V [G] � X is notSmz.
It remains to prove that non(Smz(X)) = ω2 in V [G], i.e., that every Y ∈ [X ]�ω1 is
Smz. Since B(κ) is ccc, there is Y ∈ V such that |Y | = ω1 and Y ⊆ Y ⊆ X . Since
V � cov(M) > ω1, Theorem 2.2(i) yields V � Y is Smz. It is easy to show that
also V [G] � Y is Smz: Suppose 〈εn : n ∈ ω〉 is a sequence of positive reals in V [G].
Since B(κ) is ωω-bounding, there is a ground-model sequence 〈εn : n ∈ ω〉 ∈ V of
positive reals such that εn < εn for each n. As Y isSmz in V , there is a cover {Un}n∈ω

of Y in V such that diamUn < εn < εn for each n, which is enough. ��
Question 5.7 Is cof(N ) an upper bound for non(Smz(X)) for any non-Smz sepa-
rable space X?

Theorem 5.6 also says the following: consistently, there is a non-sbp space with
non(Smz(X)) > cov(M).

Question 5.8 Is non(Smz(X)) = cov(M) for all non-sbp analytic (Borel, ab-
solutely Gδ, . . .) spaces X?

Consistently, there is also a sbp X such that non(Smz(X)) < eq:

Theorem 5.9 It is consistent with ZFC that there is an sbp set X ⊆ ωω such that
non(Smz(X)) = ed < eq.

Proof Goldstern et al. [15] have a model of d = eq = c = ω2 + cov(M) =
ω1. Since min{ed, d} = cov(M) (see [17, Prop. 3.6]), we have ed = ω1. Since
non(Smz(ωω)) = cov(M) = ω1, there is a set X ∈ [ωω]ω1 that is not Smz. Thus
clearly non(Smz(X)) = ω1 = ed. On the other hand, since d > |X |, it has the small
ball property by Proposition 4.6(i). ��
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Question 5.10 Is non(Smz(X)) = eq for all sbp analytic (Borel, absolutelyGδ, . . .)
spaces X?

A related question was posed by Fremlin: Say that two spaces X and Y have the
sameSmz-type if there is a bijection ϕ : X → Y mappingSmz sets in X exactly onto
Smz sets in Y . Fremlin [12] asked how many Smz-types of Polish spaces without
isolated points are there.

6 Transitive covering in Polish groups

Bartoszyński and Judah [2, 2.7] calculated what they called “transitive covering for
category”: the minimal cardinality of a set A ⊆ 2ω such that A + M = 2ω for some
meager set M . Miller and Steprāns [25] initiated the study of this cardinal invariant
within the framework of a general Polish group. For such a group G the invariant
(thereby denoted by cov∗

G
) is defined as the minimal cardinality of a set A ⊆ G such

that A + M = G for some meager set M ⊆ G. It is clear that cov∗
G
is nothing but the

uniformity number of Pr(G), i.e.,

cov∗
G

= non(Pr(G)).

Miller and Steprāns [25] conclude their paper with the following questions regarding
cov∗

G
. Since this section is devoted to their work and questions, we will adhere to their

notation cov∗
G
throughout.

(MS1) Is it consistent to have a compact Polish group G such that cov∗
G

> eq?
(MS2) Is it true that cov∗

G
� eq for any infinite compact Polish group G?

(MS3) Is it true that for every non-discrete Polish group G either cov∗
G

= eq or
cov∗

G
= cov(M)?

We have enough to answer the first question already:

Corollary 6.1 If G is a Polish group, then cov(M) � cov∗
G

� eq.

Proof If A /∈ Pr(G), then G is covered by |A|-many translates of a meager set. Thus
cov(M) � cov∗

G
. On the other hand, Theorem 3.1 yields cov∗

G
� non(Smz(G)).

The right hand inequality thus follows from Proposition 5.2. ��
We now treat the second question (MS2) by proving another extension of the

Galvin–Mycielski–Solovay Theorem. The following lemma is set up in a general-
ity that will prove useful later on.

Lemma 6.2 Let K be a compact metric space and X a separable locally compact
metric space. Let U ⊆ X be an open set with compact closure C = U and P ⊆ X be
compact nowhere dense. Let φ : K × X → X be a continuous mapping such that for
each y ∈ K the image φ({y} × P) is nowhere dense. Then

∀ε > 0 ∃δ > 0 ∀x ∈ C ∀y ∈ K ∃z ∈ C B(z, δ) ⊆ B(x, ε)\φ(B(y, δ) × P).
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Proof Fix ε > 0. Since φ({y} × P) is nowhere dense for each y, the function f :
C × K → R defined by

f (x, y) = sup{t : ∃z ∈ C B(z, t) ⊆ B◦(x, ε)\φ({y} × P)}

is positive on C × K . We claim that f actually attains its (positive) minimum. To see
that, consider, for each z ∈ C , the functions

gz(x) = d(z, X \B◦(x, ε)), x ∈ C

hz(y) = d(z, φ({y} × P)), y ∈ K

and note that

f (x, y) = sup
z∈C

min(gz(x), hz(y)). (7)

Using compactness it is easy to show that, for each z ∈ C , the function hz is
lower semicontinuous and that while gz does not have to, it has the following lower-
semicontinuity property: if xn → x and gz(xn) → 0, then gz(x) = 0.

Now suppose that there are (xn, yn) ∈ C × K such that f (xn, yn) → 0. Since
C, K are compact, passing to subsequences if needed we may assume (xn, yn) →
(x, y) ∈ C × K . Use (7) and the semicontinuity properties of gz and hz to conclude
that since f (xn, yn) → 0, for any z either gz(xn) → 0 and then gz(x) = 0, or else
hz(yn) → 0 and then hz(y) = 0. Use (7) again to conclude that f (x, y) = 0, the
desired contradiction proving that there is η > 0 such that f (x, y) > η for all x, y. It
follows that

∀x ∈ C ∀y ∈ K ∃z ∈ C B(z, η) ⊆ B(x, ε) ∧ B(z, η) ∩ φ({y} × P) = ∅.

The latter of course yields B(z, η
2 )∩ B(φ({y} × P),

η
2 ) = ∅. On the other hand, since

φ uniformly continuous on C × K , there is ξ > 0 such that

∀y ∈ K φ(B(y, ξ) × P) ⊆ B
(
φ({y} × P),

η
2

)
.

It follows that B(z, η
2 ) ∩ φ(B(y, ξ) × P) = ∅. Thus letting δ = min{ η

2 , ξ} yields the
lemma. ��
Theorem 6.3 Let Y be a σ -compact metric space and X a separable locally compact
metric space. Let φ : Y × X → X be a continuous mapping such that for each y ∈ Y
and every compact nowhere dense set P ⊆ X the image φ({y}× P) is nowhere dense.
If S ∈ Smz(Y ) and M ⊆ X is meager, then φ(S × M) �= X.

Proof Let Kn be an increasing sequence of compact sets with union Y and let Pn be
an increasing sequence of compact nowhere dense sets with union M .

Choose x0 ∈ X and ε0 > 0 such that B(x0, ε0) is compact. Let C = B(x0, ε0).
By the above lemma there is a sequence 〈εn : n ∈ ω〉 ∈ (0,∞)ω such that for every
n > 0
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∀x ∈ C ∀y ∈ Kn ∃z ∈ C B(z, εn) ⊆ B(x, εn−1)\φ((B(y, εn) ∩ Kn) × Pn). (8)

Wemay clearly suppose that εn → 0. Since S isSmz, there is a cover {En : n ∈ ω}
of S such that diam En < εn for all n. It is well-known that {En : n ∈ ω} can be chosen
to be actually a λ-cover. Note that the family {En ∩ Kn : n ∈ ω} is then a λ-cover as
well and therefore we may actually suppose that En ⊆ Kn for all n ∈ ω.

For each n there is y ∈ En such that En ⊆ B(y, εn). Therefore, using repeatedly
(8), there is a sequence 〈xn : n ∈ ω〉 in C (note that x0 is already chosen) such that for
all n ∈ ω

B(xn+1, εn+1) ⊆ B(xn, εn)\φ(En+1 × Pn+1).

Let x be the unique point in
⋂

n∈ω B(xn, εn) (there is one, since B(x0, ε0) is compact
and εn → 0). Then x clearly belongs to none of the sets φ(En × Pn) and consequently

x /∈
⋃

n∈ω

φ(En × Pn) = φ

(
⋃

n∈ω

En × Pn

)

.

Thus, to prove that x is not covered by φ(S × M) it remains to show that S × M ⊆⋃
n∈ω En × Pn . Let (s,m) ∈ S × M . There is k such that m ∈ Pk . Since there are

infinitely many n such that s ∈ En , there is n � k such that s ∈ En , and also m ∈ Pn ,
since Pn ⊇ Pk . The desired inclusion is proved. ��

Letting X = Y = G and φ(x, y) = xy immediately yields Theorem 3.5.
The answer to (MS2) now trivially follows from Corollary 5.3.

Corollary 6.4 If G is a non-discrete, σ -compact Polish group, then cov∗
G

= eq.

6.1 Polish groups that are not σ - compact

If G is a non-σ -compact Polish group, then, as shown by Proposition 3.9 and The-
orem 3.10, Pr(G) = Smz(G) may fail and Prikry’s theorem only yields Pr(G) ⊆
Smz(G). TogetherwithCorollary 6.1 this yields cov(M) � cov∗

G
� non(Smz(G)).

We proved earlier, in Lemma 5.4, that if G is a non-σ -compact CLI group, then it
contains a uniform copy of ωω. If we combine this fact with Lemma 2.1(ii) and The-
orem 2.2(iii), we get non(Smz(G)) � cov(M). Thus we have, for non-σ -compact
CLI groups, the following definite result that is also known to Dobrowolski and Mar-
ciszewski [9]:

Theorem 6.5 [9] Let G be a CLI Polish group. If G is not locally compact, then
cov∗

G
= cov(M).

Combine this theorem with Corollary 5.5 to get

Corollary 6.6 non(Smz(G)) = non(Pr(G)) for every CLI Polish group G.

It, however, remains a mystery if one can drop the CLI assumption.
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Question 6.7 Is there a non-σ -compact Polish group G such that cov∗
G

> cov(M)?

Question 6.8 Is there consistently a Polish group G such that non(Smz(G)) �=
non(Pr(G))?

6.2 Actions

Miller and Steprāns [25] extend their definitions to actions of Polish groups on Polish
spaces. Recall that an action of a Polish group G on a Polish space X is a continuous
map φ : G × X → X ,

φ : (g, x) �→ gx

such that 1x = x for every x ∈ X and g(hx) = (gh)x for all g, h ∈ G and x ∈ X .
(It is customary to write gx instead of φ(g, x). We, however, will resort to the latter
whenever there is a danger of confusion of an action with a group operation.) It is well-
known and easily seen that for each g ∈ G the map x �→ gx is a homeomorphism of
X whose inverse is the map x �→ g−1x .

Definition 6.9 [25] Let φ be an action of a Polish group G on a Polish metric space
X. Denote by M(X) the ideal of meager subsets of X. Let

Pr(φ) = {A ⊆ G : ∀M ∈ M(X) φ(A × M) �= X}.

Note that when G acts on itself by left translation, Pr(φ) is nothing but Pr(G).

Miller and Steprāns [25] do not provide any results on Pr(φ) and its uniformity
number. Instead they ask one more question.

(MS4) Let φn be the natural action of the isometry group on R
n . Is it true that

non(Pr(φm)) = non(Pr(φn)) for all m and n?

We will answer this question shortly. Since every action satisfies the hypotheses of
Theorem 6.3, the following is straightforward.

Theorem 6.10 If φ is an action of a σ -compact Polish group G on a Polish space,
then Smz(G) = Pr(G) ⊆ Pr(φ). Consequently non(Pr(φ)) � eq.

In general there is no upper estimate—consider an action of G on G defined by
φ(x, y) = y. However, for some actions one can get more. Given a σ -compact Polish
group G we denote H(G) the homeomorphism group, i.e., the group of all homeo-
morphisms of G onto itself, equipped with the compact-open topology.

Corollary 6.11 LetG be a non-discreteσ -compact Polish group. SupposeH ⊆ H(G)

is a σ -compact Polish group that includes all left translates. Let φ(h, g) = h(g) be
the action of H on G. Then non(Pr(φ)) = eq.
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Proof Identify G with the subgroup of H consisting of left translates. It is clear that
if A ⊆ G and A /∈ Pr(G), then A /∈ Pr(φ). Therefore non(Pr(φ)) � non(Pr(G)).
Since non(Pr(G)) = eq by Corollary 6.4, we have non(Pr(φ)) � eq. The opposite
inequality comes from Theorem 6.10. ��

This obviously answers question (MS4).

6.3 Translatability

The last result of this section deals with a notion introduced by Carlson [8, Section 5]:
A collection U of subsets of G is κ-translatable if for any M ∈ U , there is M∗ ∈ U
such that

∀T ∈ [G]κ ∃g ∈ G M ·T ⊆ g·M∗. (9)

Carlson showed that the ideal of meager subsets of R is ω-translatable (see [8, Corol-
lary 5.14]). Balka (see [1, Theorem 2.4]) recently showed that the ideal of meager sets
is 2-translatable for all locally compact abelian Polish groups.

We present a generalization of his result which follows rather easily from Theo-
rem 6.3 and its proof.

Theorem 6.12 If G is a locally compact Polish group, then the ideal of meager sets
in G is ω-translatable.

Proof Let d be an invariant metric on G. In Theorem 6.3, let X = Y = G and
φ(x, y) = xy. Let M ⊆ G be meager. The proof of Theorem 6.3 yields a sequence
〈εn : n ∈ ω〉 such that for all 〈Un : n ∈ ω〉 with diamUn < εn there is g ∈ G such
that

⎛

⎝g ·
⋂

m∈ω

⋃

n�m

Un

⎞

⎠ ∩ M = ∅.

We have to find a meager set M∗ such that (9) holds for κ = ω. Fix 〈Ak : k ∈ ω〉, a
partition of ω into infinitely many infinite sets, and a sequence 〈zn : n ∈ ω〉 in G in
such a way that {zn : n ∈ Ak ∧ n � m} is dense in G for any k,m ∈ ω.

Let Un = B◦(zn, εn
2 ), and define

M∗ = G\
⋂

k∈ω

⋂

m∈ω

⋃

n∈Ak\m
Un;

note that M∗ is the complement of a countable intersection of open dense sets (by the
choice of the zn’s) and hence meager. We have to show (9) for κ = ω.

Fix T = {tk : k ∈ ω} ⊆ G. Since the underlying metric d is right-invariant,
diamUn < εn yields diam(Un · t) < εn for any t ∈ G. So we can pick g ∈ G such
that ⎛

⎝g ·
⋂

m∈ω

⋃

n�m

Unt
−1
k(n)

⎞

⎠ ∩ M = ∅, (10)
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where k(n) is the (unique) k such that n ∈ Ak . To show that MT ⊆ gM∗, assume
towards a contradiction that y ∈ MT , but y /∈ gM∗. Fix k ∈ ω with y ∈ Mtk ,
i.e., yt−1

k ∈ M . Since y /∈ gM∗, we have (in particular) y ∈ g·⋂m∈ω

⋃
n∈Ak\m Un .

Consequently, yt−1
k ∈ g·⋂m∈ω

⋃
n∈Ak\m Unt

−1
k(n), contradicting (10). ��

Question 6.13 Is there a Polish group that is not locally compact such that its ideal
of meager sets is ω-translatable (or at least 2-translatable)?
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