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Abstract. We study the Katětov order on Borel ideals. We prove
two structural theorems (dichotomies), one for Borel ideals, the
other for analytic P-ideals. We isolate nine important Borel ideals
and study the Katětov order among them. We also present a list
of fundamental open problems concerning the Katětov order on
Borel ideals.

Introduction

Given two ideals I and J on ω we shall say that I is Katětov below
J (I ≤K J ) if there is a function f : ω → ω such that f−1[I] ∈ J ,
for all I ∈ I. This order, called Katětov order was introduced by M.
Katětov [21] in 1968 to study convergence in topological spaces. This
study was continued by M. Daguenet in [8] but otherwise the Katětov
order has remained mostly unstudied for more than 30 years. It has
been used implicitly by J. Baumgartner in [3] to classify ultrafilters on
ω. According to Baumgartner, given an ideal I on ω, a free ultrafilter
U is an I-ultrafilter if for any f : ω → ω there is a U ∈ U such that
f [U ] ∈ I. This is, of course, equivalent to saying the the dual ideal U∗
is not above I in the Katětov order. Many, if not most, commonly used
properties of ultrafilters can be characterized in this way [12, 4, 10, 14].

The Katětov order was used by Solecki in [31] characterized ideals
satisfying Fatou’s lemma (equivalently, ideals satisfying the Fubini prop-
erty) as exactly those ideals no positive restriction of which is above a
certain critical ideal S in the Katětov order. This Fσ ideal figures also
in one of our dichotomies.

Our interest in the Katětov order stems from the study of destruc-
tibility of ideals by forcing [25, 11, 6, 16, 5, 15, 12, 17]. Downward
cones of definable ideals in the Katětov order are of interest here.
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These considerations showed that for many combinatorial and forcing
properties of filters and ideals on countable sets there are “critical”
ideals with respect to the property, which are definable, in most cases
even Borel of a low Borel complexity., i.e for a given property P there
is a (Borel) ideal IP such that an ideal J has P if and only if J 6≤K
IP , or such that an ideal J has P if and only if for any X ∈ J +

IP 6≤K J � X. As we saw, both of these patterns appear naturaly.
Therefore, understanding of the Katětov order on Borel ideals is crucial
for a possible classification of non-definable objects such as ultrafilters
[3, 12, 4, 10, 14] and maximal almost disjoint families [11, 6, 13, 12, 1],
as both upward and downward cones of these ideals in the Katětov
order naturally stratify and classify these non-definable objects. For
further information consult [12].

This paper is devoted to basic structural analysis of the Katětov
order on Borel ideals. We present two dichotomies for Borel ideals
and analytic P-ideals, respectively. We also isolate nine important
Borel ideals and study the Katětov order among them. We list several
fundamental open problems concerning the order.

1. Preliminaries

1.1. Filters and ideals. A family I ⊂ P(X) of subsets of a given set
X is an ideal on X if it is closed under taking subsets and finite unions
of its elements. We always assume that the ideal is proper, i.e., does
not contain X, and contains all finite subsets of X. Dual is the notion
of a filter on X, i.e. a family of subsets of X closed under taking finite
intersections and supersets. Given an ideal I on X we denote by I∗
the dual filter, consisting of complements of the sets in I. Similarly if
F is a filter on X, F∗ denotes the dual ideal. We say an ideal I on X
is tall if for each Y ∈ [X]ω there exists I ∈ I such that I∩Y is infinite.
Given an ideal I on a set X, we denote by I+ the family of I-positive
sets, i.e. subsets of X which are not in I. If I is an ideal on X and
Y ∈ I+, we denote by I � Y the ideal {I ∩ Y : I ∈ I} on Y .

We will consider mostly ideals and filters on countable sets. In that
case, we treat them as ideals or filters on ω. The set P(ω) is equipped
with the natural topology inherited form 2ω with the product topol-
ogy via characteristic functions. We say that an ideal or filter X is a
Borel (analytic) ideal (resp. filter) on ω if X is Borel (analytic) in this
topology. We let fin denote the ideal of finite subsets of ω.

1.2. Basics of the Katětov order. We will consider also the fol-
lowing variant of the Katětov order - the Katětov-Blass order : Given
ideals I and J on ω, we say that I ≤KB J if there is a finite-to-one
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function f : ω → ω such that f−1[I] ∈ J , for all I ∈ I. We will say I
and J are Katětov-equivalent (I 'K J ) if I ≤K J and J ≤K I, and
analogously for the Katětov-Blass order.

The basic properties of Katětov order are listed here. Let I and J
be ideals on ω.

(1) I 'K fin if and only if I is not tall.
(2) If I ⊆ J then I ≤K J .
(3) If X ∈ I+ then I ≤K I � X.
(4) I ⊕ J ≤K I,J .
(5) I,J ≤K I × J .

Here I ⊕ J denotes the disjoint sum of I and J , and

I × J = {A ⊆ ω × ω : {n : (A)n /∈ J } ∈ I}
denotes the Fubini product of the ideals. It is easy to see that both the
disjoint sum and the Fubini product of Borel ideals are Borel ideals.
Hence, the Katětov order on Borel ideals is both upward and down-
ward directed. However, it seems to be an open problem whether the
Katětov-Blass order on Borel ideals is upward directed.

The following theorem of D. Meza [28] shows that there is enough
structure to be studied here.

Theorem 1.1 (D. Meza [28]). There is an order embedding of P(ω)/fin
into Borel ideals ordered by the Katětov order.

An easy but useful consequence of the Shoenfield’s absoluteness The-
orem is that the Katětov order among Borel ideals is absolute.

An ideal I is said to be K-uniform if I � X ≤K I (equivalently,
I � X 'K I) for every I-positive set X.

2. Some Borel ideals

In this section we present several Borel ideals, together with the prop-
erties they are critical for (see [12] for more information) and specify
the relations they have in the Katětov order.

• The nowhere dense ideal nwd is the ideal on the set of rational num-
bers Q consisting of nowhere dense subsets of Q. The ideal nwd is
an Fσδ ideal. An ideal I on ω is Cohen-indestructible1 if and only if
I 6≤K nwd.

• The eventually different ideal is defined by

ED = {A ⊂ ω × ω : (∃m,n ∈ ω)(∀k > n) (|{l : 〈k, l〉 ∈ A}| ≤ m)}.
1Given a forcing notion P, a tall ideal I is P-indestructible if it remains tall after

forcing with P.
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The ideal ED is critical for selectivity of ideals: Let I be an ideal on
ω. Then ED ≤K I if and only if there is a partition of ω into sets in I
such that every selector is in I.

• We also consider the ideal EDfin = ED � 4, where 4 = {〈m,n〉 :
n ≤ m}. It is critical among Q-ideals, in much the same way [18]:
Let I be an ideal on ω. Then EDfin ≤KB I if and only if there is a
partition of ω into finite sets such that every selector is in I. Moreover,
EDfin is the KB-least ω-hitting2 ideal among definable ideals.

• The ideal fin × fin is an Fσδσ ideal. It is critical with respect to the
following P-like property: Given an ideal I on ω, I ≥K fin× fin if and
only if there is a partition {Qn : n < ω} of ω into sets in I such that
every A ⊆ ω satisfying |A ∩Qn| < ℵ0 is in I. �

• An ideal closely related to fin × fin is the ideal conv, defined as the
ideal on Q ∩ [0, 1] generated by sequences in Q ∩ [0, 1] convergent in
[0, 1]. The ideal conv is an Fσδσ ideal. Every conv-positive set contains
a positive subset X such that conv � X is naturally isomorphic to the
ideal fin× fin.

For an ideal I on ω, I ≥K conv if and only if there is a countable
family X ⊆ [ω]ω such that for every Y ∈ I+ there is X ∈ X such that
|X ∩ Y | = |Y \X| = ℵ0.

Also, in [19], it is shown that, if I is an ideal on ω such that the
quotient P(ω)/I is a proper forcing adding a new real, then there is
an I-positive set X such that I � X ≥K conv.

• We denote by R the ideal on ω generated by the homogeneous sets
(cliques and free sets) in Rado’s random graph. The ideal R is a tall
Fσ ideal such that given an ideal I on ω,

ω // (I+)22 if and only if I �K R.3

• The Solecki ideal S [31] is the ideal on the countable set

Ω = {A ∈ Clop(2ω) : λ(A) =
1

2
},

generated by the sets of the form Ix = {A ∈ Ω : x ∈ A}, x ∈ 2ω. Here
λ denotes the standard Haar measure on 2ω.

2Recall that an ideal I on ω is ω-hitting if for any countable family of infinite
subsets of ω there is an element of I having infinite intersection with all of them.

3We write ω // (I+)22 to mean that for every ϕ : [ω]2 → 2 there is an I-

positive ϕ-homogeneous set. Similarly, I+ // (I+)22 denotes that for every I-

positive set X and every coloring ϕ : [X]2 → 2 there is an I-positive ϕ-homogeneous
subset Y of X.
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The ideal S is a tall Fσ ideal critical for the Fubini property4 [31]:
An ideal I fails to satisfy the Fubini property if and only if there is an
I-positive set X such that S ≤K I � X.

An ideal I on ω is a P-ideal if for any sequence {Xn : n ∈ ω} ⊆ I
there is an X ∈ I such that Xn ⊆∗ X for all n ∈ ω, i.e. X \Xn is finite
for all n ∈ ω. The most common examples of analytic P-ideals are the
summable ideal and the density zero ideal.
• The summable ideal is the ideal

I 1
n

=

{
A ⊆ ω :

∑
n∈A

1

n
<∞

}
.

It is a tall Fσ P-ideal.
• The ideal Z of subsets of ω of asymptotic density zero is the ideal

Z =
{
A ⊆ ω : lim

n→∞
|A∩n|
n

= 0
}
.

Equivalently, A ∈ Z if and only if

lim
n→∞

|A ∩ [2n, 2n+1)|
2n

= 0.

The ideal Z is a tall Fσδ P-ideal. We shall need the following fact

Proposition 2.1. The ideal Z is K-uniform.

Proof. Given X ∈ Z+ there is an N > 0 and a strictly increasing
h : ω → ω such that for every k ∈ ω

|X ∩ [2h(k), 2h(k)+1)| ≥ 2h(k)−N .

Fix, for every k ∈ ω, a set Fk ⊆ X∩[2h(k), 2h(k)+1) of size 2h(k)−N , and let
f : ω → ω be such that for all m, k ∈ ω such that h(k) ≤ m < h(k+ 1)
and every l ∈ Fk

f [[2m, 2m+1)] = Fk and |f−1(l) ∩ [2m, 2m+1)| = 2m−h(k)+N .

It is easy to see that if Z ⊆ [2h(k), 2h(k)+1) has size at most ε · 2h(k),
i.e.

|Z|
2h(k)

≤ ε

then |f−1[Z]| ≤ ε · 2m+N , that is

|f−1[Z]|
2m

≤ ε · 2N .

From this it immediately follows that f witnesses Z � X ≤K Z. �

4An ideal I satisfies the Fubini property if for any Borel subset A of ω× 2ω and
any ε > 0, {n < ω : λ∗(An) > ε} ∈ I+ implies λ∗({x ∈ 2ω : Ax ∈ I+}) ≥ ε, where
λ∗ denotes the outer Lebesgue (Haar) measure on 2ω.
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We will be discussing analytic P-ideals in general and the asymptotic
density zero ideal Z in particular in section 4.

The following diagram shows the complete picture (and one open
problem) of these nine ideals in the Katětov order (a similar diagram
was presented by Brendle and Flašková in [4]):

R

convS

nwd fin× fin

ED

EDfin

I1/n

Z

?

We will briefly sketch the reasons why the ideals are related.

• R ≤K ED, conv. For both conv and ED it is easy to define
colorings of pairs for which all homogeneous sets are in the
respective ideal. For conv enumerate Q ∩ [0, 1] as {qn : n ∈ ω}
and let ϕ({qm, qn}) = 0 if m < n ⇔ qm < qn. For ED let
ϕ((m,n), (k, l)) = 0 if and only if m = k.
• conv ≤K fin× fin and ED ≤K EDfin. Follows from the fact that

that the larger ideal is a restriction of the smaller to a positive
set.
• conv ≤K nwd, ED ≤K fin × fin and I 1

n
≤k Z. Trivially, as the

smaller ideal is contained in the larger one (i.e. the identity is
the witnessing function).
• EDfin ≤K I 1

n
. Define f : ω → 4 by f(2m + k) = (2m, k) for all

m, k ∈ ω such that k < 2m. It is easy to check that this works.
• conv ≤K Z. Given m, k ∈ ω let Xk

m = {l · 2m + k : l ∈ ω}. It is
easy to verify that for any Z-positive set Y there are m, k ∈ ω
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such that the sets Xk
m ∩ Y and Y \ Xk

m are both infinite. By
the characterization of conv ≤K I, the result follows.
• S ≤K nwd. Let T be the tree consisting of all finite decreasing

sequences of clopen subsets of 2ω of measure > 1/2. The ideal
nwd is isomorphic to the ideal

nwd′ = {A ⊆ T : ∀s ∈ T ∃t ∈ T s ⊆ t & A ∩ {r ∈ T : t ⊆ r} = ∅}.
Let f : T → Ω be such that f(s) ⊆

⋂
i<|s| s(i). It is easy

to verify that f−1[Ix] ∈ nwd′ for every x ∈ 2ω, and the result
follows.
• It is an open problem whether R ≤K S.

Let us trurn to the negative results now.

• None of S,R, ED, EDfin and I 1
n

is Katětov above conv (and

hence also not above nwd, fin×fin and Z). To see this, note that
by the characterization of conv ≤K I, no Fσ ideal is Katětov
above conv. As all of S,R, ED, EDfin and I 1

n
are Fσ, the result

follows.
• None of the ideals in the diagram is above fin×fin. This can be

easily proved directly, but it can also be proved combining the
results of Solecki [31], and Rec law-Laczkovich [24] to get that
no Fσδ ideal is Katětov above fin × fin. Recall that both nwd
and Z are Fσδ.
• ED 6≤K nwd. This follows directly form the observation that

if one partitions Q into nowhere dense sets, there is a dense
selector.
• Neither fin × fin nor Z are above S. This follows from results

of V. Kanovei and M. Reeken [20] that both fin × fin and Z
satisfy the Fubini property, and a result of Solecki [31] that any
filter Katětov above S fail to have the Fubini property5. In
particular, none of the ideals in the diagram is above nwd (this
follows from the statement for all the ideals other than S, which
has been taken care of above).
• EDfin 6≤K fin× fin. This can be proved directly form the defini-

tions, but we give a short proof involving forcing. Note that if
I ≤K J and a forcing P destroys J then it also destroys I. Also
note that any forcing adding a dominating real destroys fin×fin.
On the other hand, the ideal EDfin is ω-hitting, and there are
forcing notions (e.g. Laver, Hechler) which add dominating

5Recall that according to Kanovei and Reeken [20] a Borel ideal I satisfies the
Fubini property if for any Borel subset A of ω × 2ω and any ε > 0, {n < ω :
λ((A)n) > ε} ∈ I+ implies λ({x ∈ 2ω : (A)x ∈ I+}) ≥ ε).
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reals while preserving ω-hitting families. In particular, these
forcing notions do not destroy EDfin, hence EDfin 6≤K fin× fin.

From this (and previous observations) it immediately follows
that none of the ideals is above Z and also that EDfin 6≤K ED.
• I 1

n
6≤K EDfin. To prove this let f : 4 → ω be given. We

can assume that f−1(n) ∈ EDfin, otherwise a singleton shows
that f is not a witness to I 1

n
≤K EDfin. Now, for each k ∈ ω

choose nk ∈ ω and Fk ⊆ {nk} × nk + 1 of size k such that
min f [Fk] ≥ k · 2k. To do this is easy. Then let X =

⋃
k∈ω Fk

and note that X ∈ ED+
fin, while f [X] ∈ I 1

n
. Hence f is not a

witness to I 1
n
≤K EDfin.

With a little bit of patience one can directly deduce from these re-
sults, that there are no arrows missing in the diagram (with the posible
exception of R ≤K S).

Let us also remark, that as far as the ideals involved are concerned,
there is no difference between Katětov order and the Katětov-Blass
order, in fact, all the witnessing functions can be chosen to be one-to-
one.

3. The Category dichotomy

In this section we will prove the following structural theorem for
Borel ideals announced in [12].

Theorem 3.1 (Category Dichotomy). Let I be a Borel ideal. Then
either I ≤K nwd or there is an I-positive set X such that I � X ≥K
ED.

Proof. The proof uses the following gameG(I) (introduced by Laflamme
in [26]) associated to an ideal I: At stage k of the game Player I chooses
an element Ik of I and Player II responds by choosing an nk ∈ ω \ Ik.

I I0 ∈ I I1 ∈ I . . .
II n0 6∈ I0 n1 6∈ I1 . . .

Player I wins if {nk : k < ω} ∈ I, otherwise Player II wins.

By Borel determinacy (see [22]), it is sufficient to prove:

(1) if for every I-positive set X Player II has a winning strategy in
the game G(I � X) then I ≤K nwd, and

(2) if there is an I-positive set Y such that Player I has a winning
strategy for G(I � Y ) then there is an I-positive set X ⊆ Y
such that I � X ≥K ED.

Let us deal with case (1) first.
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Claim 3.2. The following are equivalent:

(1) Player II has a winning strategy in the game G(I),
(2) there is an I+-branching tree S ⊆ ω<ω such that rng(x) ∈ I+

for every x ∈ [S], and
(3) there is a pairwise disjoint family {Xn : n < ω} ⊆ I+ such that

for every I ∈ I there is n < ω such that Xn ∩ I = ∅.

Proof of the claim. To see that (1) implies (2), let τ be a winning strat-
egy for Player II. Construct the tree S recursively, for each s ∈ S
simultaneously fixing a sequence 〈Ij : j < |s|〉 so that:

(1) the sequence 〈I0, s(0), I1, s(1), . . . , I|s|−1, s(|s| − 1)〉 is a partial
legal play of the game for every s ∈ S, in which the Player II
plays according to τ , i.e. s(j) = τ(〈I0, s(0), I1, s(1), . . . , Ij〉) for
all j < |s|, and

(2) saτ(〈I0, s(0), I1, s(1), . . . , I|s|−1, s(|s| − 1), I〉) ∈ S for every s ∈
S and I ∈ I.

The tree S is then I+-branching by (2) and rng(x) ∈ I+ for every
x ∈ [S], as x is a run of the game played according to τ , hence winning
for Player II.

Ad (2) implies (3): Having fixed a tree as in (2), enumerate S as
〈sn : n < ω〉 and let Yn = succS(sn). Let {Xn : n ∈ ω} be a disjoint
refinement of {Yn : n ∈ ω}, consisting of I+-positive sets (such a re-
finement exist as the ideal I is Borel, hence hereditarily meager, by the
Talagrand–Jalali-Naini theorem [2]). Then every set which intersects
all of the Xn’s is positive, as it contains the range of a branch of S.

For the same reason (3) provides a winning strategy for Player II in
the game G(I): She shall pick nk ∈ Xk \ Ik. �

Using the claim we can prove (1): Suppose that Player II has a
winning strategy in G(I � X) for every I-positive set X. We shall
show that I ≤K nwd.

Using the claim repeatedly one can construct sets {Xs : s ∈ ω<ω}
such that

(1) X∅ = ω,
(2) {Xŝn : n < ω} is a partition of Xs into I-positive sets,
(3) for any s ∈ ω<ω and I ∈ I there is n < ω such that I∩Xŝn = ∅,
(4) for every pair of integers n 6= m ∈ ω there is an s ∈ ω<ω such

that |Xs ∩ {m,n}| = 1.

Let τ be the topology on ω generated by {Xs : s ∈ ω<ω}. The
space 〈ω, τ〉 is then a countable Hausdorff second countable and zero-
dimensional topological space without isolated points, so by Sierpiński’s
theorem (see [22]), it is homeomorphic to Q. Every I ∈ I is nowhere
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dense in τ since for any basic open set Xs there is n < ω such that
I ∩Xŝn = ∅. Hence, any homeomorphism ϕ between 〈ω, τ〉 and Q is
the Katětov function requested.

Before we turn to case (2) we again first give a combinatorial refor-
mulation of the existence of a winning strategy for Player I.

Claim 3.3. Player I has a winning strategy in G(I) if and only if
there is an I∗-branching tree T ⊆ ω<ω such that rng(x) ∈ I for every
x ∈ [T ].

Proof of the claim. If σ is a winning strategy for Player I, let T be the
tree of all possible responses by Player II to Player I following σ. The
tree is obviously as required.

On the other hand, given an I∗-branching tree T ⊆ ω<ω such that
rng(x) ∈ I for every x ∈ [T ], we can define a strategy σ as fol-
lows: Let σ(∅) = ω \ {n < ω : 〈n〉 ∈ T}, and if k < ω and a se-
quence 〈I0, n0, . . . , nk−1, Ik〉 is played following σ then for all l /∈ Ik put
σ(〈I0, n0, . . . , Ik, l〉) = ω \ succT (〈n0, . . . , nk−1, l〉).

It is then clear that if 〈I0, n0, I1, n1, . . . 〉 follows σ then 〈nk : k < ω〉
follows a branch of T , so it is in I. �

To finish the proof we will show that if Y is an I-positive set such
that Player I has a winning strategy for G(I � Y ) then there is an
I-positive set X ⊆ Y such that I � X ≥K ED.

By the last claim, there is an (I � Y )∗-branching tree T with all
branches enumerating elements of I. Let 〈sn : n < ω〉 be an enumera-
tion of T and let Yn = succT (sn), for each n ∈ ω.

Case 1. The family {Yn : n ∈ ω} does not have an I-positive
pseudointersection. Let I0 = Y \Y0 and In+1 = (

⋂
k≤n Yk) \Yn+1 for all

n < ω, and let X = Y . Note that {In : n < ω} is a partition of X into
elements of I, and any I ⊆ X such that |I ∩ In| < ω for all n is in I
since it is a pseudointersection of the family 〈Yn : n < ω〉. So, in Case
1, we proved that I � X ≥K fin× fin ≥K ED.

Case 2. The family {Yn : n < ω} does have an I-positive pseudoin-
tersection. Let X be such a pseudointersection and define a strictly
increasing function g : ω → X such that for any t ∈ T , if rng(t) ⊆
X∩g(n) then X \g(n+1) ⊆ succT (t). To do this let g(0) = minX and
for every n < ω let Wn =

⋂
{succT (t) : rng(t) ⊆ X ∩ g(n)}. Clearly

Wn ∈ I∗ and X ⊆∗ Wn. g(n+ 1) = min{k > g(n) : X \ k ⊆ Wn}.
Let A =

⋃
n<ω[g(2n), g(2n+1)) and B =

⋃
n<ω[g(2n+1), g(2n+2)).

Note that if S is a selector of the partition{[g(n), g(n+ 1)) : n < ω} of
X, and we split S = (S ∩A)∪ (S ∩B), then S ∩A and S ∩B are in I
since the enumerating function of each of them forms a branch through
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T . Since I ≥K EDfin is equivalent to the existence of a partition
{In : n < ω} into finite sets such that every selector is in I, we have
proved the theorem. �

Note that the proof of the theorem actually produces a trichotomy:
For every Borel ideal I either I ≤K nwd or there is an I-positive set
X such that I � X ≥K fin × fin or there is an I-positive set X such
that I � X ≥KB EDfin.

Seemingly the proof also gives a stronger result in that the ideal nwd
can be replaced by the ideal of porous set defined as follows: Identify Q
a countable dense subset of ωω, say with the set of all functions which
are eventually 0, let 〈s〉 = {f ∈ ωω : s ⊆ f} be the cone determined by
s ∈ ω<ω, and define

por = {A ⊆ Q : ∀s ∈ ω<ω ∃n ∈ ω A ∩ 〈san〉 = ∅}.
However, as por 'K nwd the “stronger” result is equivalent to the
theorem stated.

Let us also point out the obvious, the theorem as stated does not
produce a real dichotomy in the sense that the two alternatives are not
mutually exclusive: for instance bothR and S satisfy both alternatives.
Should one be interested in a “true” dichotomy, it would be stated as
follows

Corollary 3.4. Let I be a Borel ideal. Then either I � X ≤K nwd
for every I-positive set X or there is an I-positive set X such that
I � X ≥K ED.

4. Measure dichotomy

In this section we present a dichotomy for analytic P-ideals similar in
form to the Category dichotomy. It is inspired by Christensen’s result
[7] linking the Fubini property to non-pathologicity for submeasures on
atomless Boolean algebras.

Theorem 4.1 (Measure Dichotomy). Let I be an analytic P-ideal.
Then, either I ≤K Z or there is X ∈ I+ such that S ≤K I � X.

Before we delve into the proof we recall the connection there is be-
tween analytic P-ideals, and lower semicontinuous submeasures (lscsm).6

To each lscsm ϕ on ω naturally correspond the following two ideals:

6Recall that a submeasure on ω is a function ϕ : P(ω) → [0,∞] such that (1)
ϕ(∅) = 0, (2) if A ⊆ B then ϕ(A) ≤ ϕ(B), and (3) ϕ(A ∪ B) ≤ ϕ(A) + ϕ(B). To
avoid trivialites, we also require that ϕ(F ) < ∞ for all finite subsets of ω. The
submeasure ϕ is lower semicontinuous if ϕ(A) = limn→∞ ϕ(A∩n) for every A ⊆ ω.
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• Fin(ϕ) = {A ⊆ ω : ϕ(A) <∞} and
• Exh(ϕ) = {A ⊆ ω : limn→∞ ϕ(A \ n) = 0}.

It is immediate from the definition that Exh(ϕ) ⊆ Fin(ϕ), Fin(ϕ) is
an Fσ-ideal and Exh(ϕ) is an Fσδ P-ideal. A theorem of Mazur [27]
asserts that every Fσ-ideal is of the form Fin(ϕ). For analytic P-ideals
there is the following fundamental result:

Theorem 4.2 (Solecki [29, 30]). Let I be an ideal on ω. Then:

• I is an analytic P-ideal if and only if there is a lscsm ϕ such
that I = Exh(ϕ).
• I is an Fσ P-ideal if and only if there is a lscsm ϕ such that
I = Exh(ϕ) = Fin(ϕ).

A submeasure ϕ on a set X is non-pathological if for every A ⊆ X

ϕ(A) = ϕ̂(A) =def sup{µ(A) : µ is a measure on X dominated by ϕ}.

Following Farah [9] we say that an analytic P-ideal I on ω is non-
pathological if there is a lscsm ϕ such that I = Exh(ϕ) = Exh(ϕ̂).

We define the degree of pathology of a submeasure ϕ on X such that
ϕ(X) <∞ by

P (ϕ) =
ϕ(X)

sup{µ(X) : µ is a measure dominated by ϕ}
.

We shall be dealing with normalized submeasures. Recall, that a
(sub)measure ϕ on a set X is normalized if ϕ(X) = 1.

Given a family B ⊆ P(F ) of subsets of a set F , the Kelley’s covering
number [23] of B is defined as follows: For any finite sequence S =
〈S0, . . . Sn〉 of (not necessarily distinct) elements of B let

m(S) = min {|{i ≤ n : x ∈ Si}| : x ∈ F} .

The covering number C(B) is defined as

C(B) = sup

{
m(S)

|S|
: S ∈ B<ω

}
.

The theorem of Kelley which links the covering number with mea-
sures is the following.

Theorem 4.3 (Kelley [23]). Given a family B ⊆ P(F ) of subsets of
a set F , the covering number C(B) is the minimum of the numbers
sup{µ(A) : A ∈ B}, where the minimum is taken over all normalized
measures µ on P(F ). �
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Using Kelley’s theorem,we shall prove the following lemma, which
can be seen as a finitary quantitative version of a theorem of Chris-
tensen [7] showing that a submeasure ϕ on an atomless Boolean algebra
is pathological if and only if the Fubini theorem for ϕ fails.

Lemma 4.4. Let F be a finite set, ε > 0, ϕ a normalized submeasure
on P(F ) and Aε = {A ⊆ F : ϕ(A) < ε}. Then

C(Aε) ≥ 1− 1

εP (ϕ)
.

Proof. Fix F , ϕ, and ε. By Kelley’s theorem, it suffices to show that
for all normalized measures µ on F there is a set A ∈ Aε such that
µ(A) ≥ 1 − 1

εP (ϕ)
, i.e., given a normalized measure µ on F there is a

set A ∈ Aε such that µ(F \ A) ≤ 1
εP (ϕ)

.

Having fixed such µ, let ψ = ϕ − εµ and note that if A and B are
disjoint subsets of F then ψ(A ∪ B) ≤ ψ(A) + ψ(B). Let F be a
maximal disjoint family of subsets B of F such that ψ(B) < 0, and let
A =

⋃
F . Then

(1) εµ � P(F \ A) ≤ ϕ � P(F \ A), and
(2) ϕ(B) < εµ(B) for all B ∈ F .

Let ε̂µ(C) = εµ(C \A). ε̂µ is then a measure on F supported by F \A
such that ε̂µ ≤ sup{ν(F ) : ν is a measure dominated by ϕ}. By (1),
εµ(F \ A) ≤ 1

P (ϕ)
, while (2) implies that

ϕ(A) ≤
∑
B∈F

ϕ(B) <
∑
B∈F

εµ(B) = εµ(A) ≤ ε.

�

In this context, the Kelley’s covering number “measures” the failure
of the Fubini theorem: C(Aε) > δ if and only if there is an N < ω and
there is a set A ⊆ F × N such that all horizontal sections of A have
submeasure < ε while all vertical sections have normalized counting
measure > δ.

It can be easily seen, that the finite set N can be replaced by the
Cantor set and the counting measure by the Haar measure. Interpreted
in this way, the lemma says that “the more pathological is the submea-
sure, the worse the Fubini theorem for ϕ fails”. We are now ready to
prove the Measure Dichotomy.

Proof. Let I be an analytic ideal and let ϕ be a lower semicontinuous
submeasure such that I = Exh(ϕ). Without loss of generality we can
assume that |ϕ| = limn→∞ ϕ(ω\n) > 1. Partition ω into intervals 〈Fn :
n < ω〉 so that for any n < ω, min(Fn+1) = max(Fn) + 1, ϕ(Fn) ≥ 1,
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and ϕ(Fn \ {maxFn}) < 1. Let ϕn be the normalization of ϕ � Fn (by
multiplying ϕ � Fn by 1

ϕ(Fn)
) and let rn = P (ϕn) = P (ϕ � Fn) be the

degree of pathologicity of ϕn for n < ω.

Case 1. The sequence 〈rn : n < ω〉 is unbounded.

Let 〈rnk
: k < ω〉 be a subsequence of the sequence 〈rn : n < ω〉 such

that rnk
≥ 3 · 2k+1 for every k ∈ ω, and let X =

⋃
k<ω Fnk

. It is clear
that X ∈ I+. We will show that S ≤K I � X.

Let εk = 2−k−1, and Aεk = {A ⊆ Fnk
: ϕnk

(A) < εk}. By lemma 4.4,

C(Aεk) ≥ 2

3
,

for any k < ω. That is, for every k < ω, there is a sequence Ak =
〈Ak0, . . . , AkNk−1〉 ⊆ Aεk such that for all x ∈ Fnk

|{i < Nk : x ∈ Ai}| ≥
2

3
Nk.

Now, for every k pick a pairwise disjoint sequence 〈Uk
i : i < Nk〉 of

open subsets of 2ω such that λ(Uk
i ) = 1

Nk
. For any x ∈ Fnk

define

Wx =
⋃
{Uk

i : x ∈ Aki }. Note that µ(Wx) ≥ 2
3
. Every Wx contains

infinitely many elements of Ω, so for every x ∈ X one can choose an
element Ux of Ω contained in Wx, such that Ux 6= Uy for all y 6= x.
Putting f(x) = Ux defines then a one-to-one function from X to Ω
such that for all z ∈ 2ω and k < ω there is at most one i < Nk such
that z ∈ Uk

i . Hence, given z ∈ 2ω, we have that

ϕnk
({x ∈ Fnk

: z ∈ f(x)}) ≤ ϕnk
({x ∈ Fnk

: z ∈ Wx}) ≤

≤ ϕnk
(Aki ) <

εk
ϕ(Fnk

)
,

hence,

ϕ(f−1[Iz]) ≤
∑
k<ω

ϕ(f−1[Iz] ∩ Fnk
) =

=
∑
k<ω

[ϕ(Fnk
) · ϕnk

(f−1[Iz] ∩ Fnk
)] <

∑
k<ω

1

2k+1
<∞.

for every subbasic set Iz = {C ∈ Ω : z ∈ C}. Actually, the formula
shows that f−1[Iz] ∈ Exh(ϕ), therefore f witnesses S ≤KB I � X.

Case 2. The sequence 〈rn : n < ω〉 is bounded.

Assume that the sequence 〈rn : n < ω〉 is bounded by r < ∞. Then,
for every n < ω, there is a measure µn on Fn bounded by ϕ such that
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ϕ(Fn)
µn(Fn)

≤ r. Given A ⊆ ω, let:

ψ(A) = sup{µn(A ∩ Fn) : n < ω}.
ψ is then a lower semicontinuous submeasure on P(ω) bounded by ϕ,
hence, Exh(ϕ) ⊆ Exh(ψ). Moreover, ω /∈ Exh(ψ) since ψ(ω \ n) ≥ 1

r
for all n < ω.

We will show that there is Y ∈ Z+ such that Exh(ψ) ≤K Z � Y . Let
〈Mn : n < ω〉 be a sequence of natural numbers such that 2Mn−n−2 >
|Fn| and let {Ax : x ∈ Fn} be a family of pairwise disjoint subsets of
[2Mn , 2Mn+1) such that for any x ∈ Fn:

2Mn
µn({x})
µn(Fn)

− 2Mn−n−1

|Fn|
< |Ax| < 2Mn

µn({x})
µn(Fn)

+
2Mn−n−1

|Fn|
.

Finding such a family is easy as 2Mn−n−2 > |Fn|. Then, for any x ∈ Fn,∣∣∣∣ |Ax|2Mn
− µn({x})

µn(Fn)

∣∣∣∣ ≤ 2−n−1,

and so, the normalized counting-measure in [2Mn , 2Mn+1) is a 2−n−1-
approximation to µn in Fn, for all n < ω. Let Y =

⋃
n<ω

⋃
x∈Fn

Ax. Y is

a Z-positive set since Y \k is 2−m-approximated to
⋃
n≥m[2Mn , 2Mn+1),

where m = min{l : k < 2Ml}. Defining f : Y → ω by putting

f(y) = x iff y ∈ Ax.
The function f witnesses I ≤K Z � Y . To see this, take B ∈ Exh(ψ).
Then f−1[B] =

⋃
x∈B Ax intersects every interval [2Mn , 2Mn+1) in a set

whose cardinality is 2−n−1-approximated by ϕ(B ∩ Fn). Hence

lim
n→∞

|f−1[B] ∩ [2Mn , 2Mn+1)|
2Mn

= 0.

Since Z is a K-uniform ideal (proposition 2.1) we conclude that

I ≤K Z � Y ≤K Z.
�

A direct consequence of the proof is that Z is the largest non-pa-
thological analytic P-ideal in the Katětov order. Again, if one wants a
“true” dichotomy it would be phrased as

Proposition 4.5. Let I be an analytic P-ideal. Then either I � X ≤K
Z for every I-positive set X or there is an I-positive set X such that
I � X ≥K S.

with the following immediate consequence

Corollary 4.6. For an analytic P-ideal I the following are equivalent:
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(a) I � X ≤K Z for every I-positive set X,
(b) S 6≤K I � X, for every I-positive set X,
(c) I has the Fubini property and
(d) I is non-pathological.

5. More on the Katětov order

The research on the structure of the Katětov order on Borel ideals is
still only beginning. We do not know the answers to many fundamental
questions. Perhaps the most important is the following:

Question 5.1. Is there a tall Borel ideal Katětov-minimal among tall
Borel ideals?

This is, of course, equivalent to asking whether the Katětov order
restricted to tall Borel ideals is c-downwards closed. We conjecture the
answer to be negative, while the following question seems more likely
to have a positive solution:

Question 5.2. Is there a Borel tall ideal J such that for every Borel
tall ideal I there is an I-positive set X such that J ≤K I � X?

We call such an ideal J locally K-minimal. There is a natural can-
didate, the ideal R. Recall that for an ideal I there is an I-positive
set X such that R ≤K I � X, if and only if I+ 6→ (I+)22, i.e., there is
a coloring of pairs of elements of an I-positive with all homogeneous
subsets in I.

A partial answer to the question is the following:

Theorem 5.3. [19] Let I be a tall Borel ideal on ω such that P(ω)/I
is proper. Then there is an I-positive set X such that I � X ≥K R.

In particular, R is locally K-minimal among tall Fσ ideals. On the
other hand, there are even Fσ ideals which are not Katětov above R,
so R is not K-minimal among Fσ ideals. In [19] a co-analytic ideal I
is described such that I+ → (I+)22, i.e., R is not locally K-minimal
among co-analytic ideals.

Question 5.4. Is there a tall Borel ideal I such that I+ // (I+)22 ?

For the record, we repeat the question mentioned in section 2.

Question 5.5. Is R ≤K S?

Another problem of Ramsey theoretic flavour asks whether Fσ ideals
are co-initial among tall Borel ideals:

Question 5.6. Does every tall Borel ideal contain a tall Fσ sub-ideal?
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A somewhat dual problem is to recognize those Borel ideals that can
be extended to Fσ ideals. This is in part answered by the following
result 7:

Theorem 5.7. [19] Let I be a Borel ideal on ω. Then the following
are equivalent:

1. there is an Fσ ideal J containing I, and
2. there is a P+-ideal K containing I.

Question 5.8. Is it true that, if I is a Borel ideal then either I ≥K
conv or there is an Fσ-ideal J containing I?

An approximation to this conjecture is the following result.

Theorem 5.9. [28] Let I be a Borel ideal such that the forcing P(ω)/I
is proper. Then, either there is an I-positive set X such that conv ≤K
I � X or there is an Fσ-ideal J containing I.

A similar problem is to characterize those Borel ideals that can be
extended to an Fσδ ideal:

Question 5.10. Is it true that, if I is a Borel ideal then either I ≥K
fin× fin or there is an Fσδ ideal J containing I?

It is somewhat surprising that we do not have many examples of
Borel ideals I such that the forcing P(ω)/I is not proper (see [16]),
while known proofs of properness of the quotients P(ω)/I are some-
what ad hoc arguments. It would be good to understand the situation
better.

Tall Fσ ideals tend to be rather non-homogeneous. In fact, so much
so that even the following is not known:

Question 5.11. Is EDfin the only tall Fσ ideal which is K-uniform?

The last several questions deal with J. Baumgartners notion of an
I-ultrafilter.

Question 5.12. Is there a Borel ideal I such that I-ultrafilters exist
in ZFC? Is there a Z-ultrafilter in ZFC?

It is easy to describe a co-analytic ideal such that I-ultrafilters exist
in ZFC. Should the answer to the question be negative, one has to
wonder whether even the following is possible

7Recall that an ideal I on ω is a P+-ideal if for any decreasing sequence {Xn :
n ∈ ω} ⊆ I+ there is an X ∈ I+ such that X ⊆∗ Xn for all n ∈ ω, i.e. Xn \X is
finite for all n ∈ ω.
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Question 5.13. Is it consistent with ZFC that I ≤K U∗ (I ≤KB U∗)
for every Borel ideal I and every ultrafilter U?

That is, is it consistent that the “stratification” of ultrafilters offered
by the Katětov order on Borel ideals is vacuous.
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[21] Miroslav Katětov. Products of filters. Comment. Math. Univ. Carolinae, 9:173–
189, 1968.

[22] Alexander S. Kechris. Classical descriptive set theory, volume 156 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1995.

[23] John L. Kelley. Measures on Boolean algebras. Pacific J. Math., 9:1165–1177,
1959.

[24] Miklós Laczkovich and Ireneusz Rec law. Ideal limits of sequences of continuous
functions. Fund. Math., 203(1):39–46, 2009.

[25] Claude Laflamme. Zapping small filters. Proc. Amer. Math. Soc., 114(2):535–
544, 1992.

[26] Claude Laflamme. Filter games and combinatorial properties of strategies. In
Set theory (Boise, ID, 1992–1994), volume 192 of Contemp. Math., pages 51–
67. Amer. Math. Soc., Providence, RI, 1996.

[27] Krzysztof Mazur. Fσ-ideals and ω1ω
∗
1-gaps in the boolean algebras P(ω)/I.

Fundamenta Mathematicae, 138(2):103–111, 1991.
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