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Abstract

We study preservation properties of Namba forcing on κ. It turns out
that Namba forcing is very sensitive to the properties of the ground model.
We prove that if I is an ideal with a Borel base on ωω and κ > ω1 is a
regular cardinal less than the uniformity number or bigger than the cov-
ering number of I, then the κ-Namba forcing preserves covering of I (i.e.⋃

(V ∩ I) = ωω). This result also holds for κ = ω1 in case Club Guess-
ing holds or if d = ω1. On the other hand, this fails in case add(I) =
cof (I) = κ. We answer a question of Hrušák, Simon and Zindulka re-
garding partition properties on trees.

1 Introduction

Namba forcing was introduced in [12] in order to show that one can change the
cofinality of ω2 to ω while preserving ω1, it also adds a new countable sequence
of ordinals, yet it may not add new reals. In this paper, we will prove that
Namba forcing may behave very differently in distinct models of set theory, for
example it is consistent that Namba forcing adds Cohen reals, while it is also
consistent that it has the Sacks property.

Let I ∈ V be an ideal in µω with a Borel base. The main results of the paper
are best described using the notion of a quasigeneric sequence: If W is a model
of ZFC extending V , we say r ∈ µω ∩W is an I-quasigeneric sequence (over V )
if r /∈ BW for every Borel set B ∈ I∩V. (By BW we denote the reinterpretation
of the Borel set B in W ). For example, if M denotes the ideal of meager sets
and N the ideal of null sets on ωω, then theM-quasigeneric reals are the Cohen
reals and the N -quasigeneric are the random reals. One of the main aims of
this paper is to study when does NB (κ) add quasigeneric sequence for certain
σ-ideals. We will prove (a more general version of ) the following result:

Theorem 1 Let κ > ω1 be a regular cardinal, µ < κ and I a σ-ideal in µω with
a Borel base.
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author was supported by CONACyT scholarship 420090. The second-listed author was sup-
ported by a PAPIIT grant IN 102311 and CONACyT grant 177758. The third author was
partially supported by NSF grant DMS 1161078.
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1. If κ < non(I) then NB (κ) does not add I-quasigeneric sequences.

2. If cov(I) < κ then NB (κ) does not add I-quasigeneric sequences.

3. If add(I) = cof(I) = κ then NB (κ) adds I-quasigeneric sequences.

This result is true for κ = ω1 in case there is a Club Guessing sequence
or if the dominating number is equal to the first uncountable cardinal. We
will discuss in more detail the case κ = ω1, we do not know if the proposition
is still true in its complete generality (still we will prove it is true for some
specific σ-ideals). In [7] Simon, Hrušák and Zindulka asked if b is the first
regular, uncountable cardinal κ such that NB (κ) adds an unbounded real1.
We will answer positively their question with the tools we developed. In [6]
the relationship between Namba forcing and weak partition properties will be
further studied.

Our notation is mostly standard. If X is a set, by ℘ (X) we denote the
power set of X. An ideal I ⊆ ℘ (X) on X is a collection of subsets of X closed
under taking subsets and unions, for convenience, all our ideals will be proper
(i.e. X /∈ I). A σ-ideal is an ideal closed under countable unions. If X is a
topological space, we say I has a Borel base if every element of I is contained
in a Borel set in I. In this paper, the expression “for almost all” means for all
except finitely many. The definition of the cardinal invariants used in this paper
may be consulted in [3]. For more on Namba forcing, the reader may consult
[5], [10] and [9].

2 Basic properties of Namba forcing and abso-
luteness results

Let κ be a cardinal, a tree T ⊆ κ<ω is called a κ-Namba tree (or just Namba
tree if the cardinal κ is clear by context) if there is s ∈ T (called the stem of T )
such that every t ∈ T is comparable with s; furthermore if t @ s then t has just
one immediate successor and if s v t then t has κ many immediate successors.
By NB (κ) we will denote the set of all κ-Namba trees ordered by inclusion; in
this way, NB (ω) is the Laver forcing. A generic filter for NB (κ) may be coded
as a sequence which we will denote by ngen : ω −→ κ. It is easy to see that
NB (κ) forces κ to have countable cofinality. Given S and T two κ-Namba trees,
S ≤0 T will mean that S ≤ T and both S and T have the same stem. By [T ]
we denote the set of branches of T and if s ∈ T then we define Ts as the set of
all t ∈ T such that either t v s or s v t and sucT (s) = {α ∈ κ | s_α ∈ T} . By
B (T ) we denote the set of nodes of T that extend the stem. By stem (T ) we

1In [7] there is no mention of Namba forcing, rather about a weak partition property of
trees, but it is easy to see that their question is equivalent to the one we stated.
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denote the stem of T and NB0 (κ) will denote the set of all κ-Namba trees with
empty stem.

The following ideals will be very useful to establish the preservation prop-
erties of Namba forcing on κ. For every function F : κ<ω −→ [κ]

<κ
we de-

fine C (F ) = {f ∈ κω | ∃∞n (f (n) ∈ F (f � n))} as well as the set C0 (F ) =
{f ∈ κω | ∃n (f (n) ∈ F (f � n))} . The κ-Namba ideal Lκ is the ideal in κω gen-
erated by

{
C (F ) | F : κ<ω −→ [κ]

<κ}
and let L0

κ be the ideal generated by{
C0 (F ) | F : κ<ω −→ κ

}
. Note that if κ is a regular cardinal, it is enough to

consider functions of the form F : κ −→ κ. In this way, Lω is the usual Laver
ideal in ωω. (see [13] page 44).

Given A ⊆ κω consider the following game R (A) :

I X0 X1 X2 X3 · · ·
II α0, i0 α1, i1 α2, i2 · · ·

Where the Xn ∈ [κ]
<κ

, αn ∈ κ and in ∈ 2 for all n ∈ ω. Then player II wins
if and only if the following conditions hold:

1. 〈αn〉n∈ω ∈ A.

2. There is n ∈ ω such that in = 1.

3. If in = 1 and m ≥ n then αm /∈ Xm.

Note that if in = 1 and m ≥ n then im is irrelevant, so we may ignore it.
We now have the following result, which is only a slight generalization of [13]
example 2.1.13:

Proposition 2 Let A ⊆ κω then the following holds:

1. Player I has a winning strategy in R (A) if and only if A ∈ Lκ.

2. Player II has a winning strategy in R (A) if and only if there is T ∈ NB (κ)
such that [T ] ⊆ A.

Proof. It is easy to see that if A ∈ Lκ then player I has a winning strategy.
Let σ be a winning strategy for player I. Note that for every t ∈ κ<ω there are
at most |t| possible ways in which player II reached t and player I was following
σ. Define F : κ<ω −→ [κ]

<κ
to be the union of all this possibilities. It is then

easy to see that A ⊆ C (F ) .

It is easy to see that if there is T ∈ NB (κ) such that [T ] ⊆ A then player II
has a winning strategy. Let σ be a winning strategy for player II. We can then
find n ∈ ω and t ∈ κn such that in is the first such that in = 1 and player II
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reached t during this partial play. It is now easy to see that there is T ∈ NB (κ)
with stem t such that [T ] ⊆ A.

By Borel determinacy we can then conclude the following result which will
be used several times.

Corollary 3 Let κ be a cardinal and B ⊆ κω a Borel set. Then exactly
one of the following possibilities holds:

1. There is T ∈ NB (κ) such that [T ] ⊆ B.

2. B ∈ Lκ.

In particular, NB (κ) is forcing equivalent to Borel (κω) /Lκ.

For A ⊆ κω we consider another game H (A) :

I X0 X1 X2 X3 · · ·
II α0 α1 α2 · · · 〈αn〉n∈ω ∈ A

Where Xn ∈ [κ]
<κ

and αn ∈ κ\ Xn for all n ∈ ω. Player II wins if the game
if 〈αn〉n∈ω ∈ A. The following lemma is easy and is left to the reader:

Lemma 4 Let A ⊆ κω then the following holds:

1. Player I has a winning strategy in H (A) if and only if A ∈ L0
κ.

2. Player II has a winning strategy in H (A) if and only if there is T ∈ NB0 (κ)
such that [T ] ⊆ A.

By applying Borel Determinacy (see [8]) we conclude the following:

Corollary 5 Let A ⊆ κω be a Borel set, then exactly one of the following
holds:

1. A ∈ L0
κ.

2. There is T ∈ NB0 (κ) such that [T ] ⊆ A.

We can also conclude the following lemma that will be used later:

Corollary 6 Let κ be a cardinal, µ < cof(κ) and let {Aα | α ∈ µ} be a family of
Borel sets of κω such that κω =

⋃
α<µ

Aα. Then there is T ∈ NB0 (κ) and α < µ

such that [T ] ⊆ Aα.
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Let T ∈ NB (κ) and D ⊆ NB (κ) be an open dense set below T. We define a
rank function rkD : B (T ) −→ OR ∪ {∞} as follows:

1. rkD (s) = 0 if there is S ≤0 T such that S ∈ D.

2. rkD (s) ≤ α if |{ξ ∈ sucT (s) | rkD (s_ξ) < α}| = κ.

3. rkD (s) = α if rkD (s) ≤ α and there is no β < α such that rkD (s) ≤ β.

4. In case there is no α such that rkD (s) ≤ α then rkD (s) =∞.

However, we will see that the last possibility can never happen. Note that
if there was an s ∈ B (T ) such that rk (s) = ∞ then the set of all ξ ∈ sucT (s)
such that rk (s_ξ) 6=∞ must have size less than κ.

Lemma 7 Let T ∈ NB (κ) and D ⊆ NB (κ) be an open dense set below T. Then
there is S ≤0 T such that the following holds:

1. rkD (s) 6=∞ for every s ∈ B (T ) .

2. If X is the set of all s ∈ B (S) such that s is minimal with rkD (s) = 0
then X is a front in S (i.e. X is an antichain and for every y ∈ [T ] there
is n ∈ ω such that y � n ∈ X).

3. If s ∈ X then Ss ∈ D.

Proof. In case there was an s ∈ T for which rkD (s) =∞, we could recursively
construct a κ-Namba tree S ≤ Ts such that rkD (t) =∞ for all t ∈ S. However,
we may then find S′ ≤ S such that S′ ∈ D. However, if t is the stem of S′ then
rkD (t) = 0, which is a contradiction.

We can then recursively build a tree S ≤0 T such that rkD is decreasing and
if s ∈ X (where X is the set of all s such that s is minimal with rkD (s) = 0)
then Ss ∈ D. Note that X must be a front in S since rkD is decreasing.

We can then conclude that Namba forcing has the continuous reading of
names:

Proposition 8 (Continous reading of names) Let κ, µ be two cardinals, T ∈
NB (κ) and ẏ such that T  “ẏ ∈ µω” then there is S ≤ T and a continuous
function F : [S] −→ µω such that S  “F (ngen) = ẏ”.

We will now prove a version of the pure decision property for κ-Namba
forcing:

Lemma 9 Let κ be a cardinal, T ∈ NB (κ) , µ < cof(κ) and ȧ such that T 
“ȧ ∈ µ”, then there is S ≤0 T such that S decides ȧ.
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Proof. Let D = {S ≤ T | ∃α (S  “ȧ = α”)} which clearly is an open dense set
below T. Let S ≤0 T and X as in the previous lemma. For every α < µ let
Aα =

⋃
{[St] | t ∈ X ∧ (St  “ȧ = α”)} . Clearly each Aα is a relative open set

in [S] and [S] =
⋃
α<µ

Aα since X is a front in S. Since µ < cof(κ) there is α and

S′ ≤0 S such that [S′] ⊆ Aα and then S′  “ȧ = α”.

We now fix some notation that will be used in the rest of the paper. Given
F : T −→ µ define the function F : [T ] −→ µω such that if x ∈ κω and n ∈ ω
then F (x) � n = F (x) . A function H : [T ] −→ µω is called Lipschitz if there
is a function F : T −→ µ such that H = F . Clearly every Lipschitz function is
continuous. If G : κω −→ µω is a continuous function, define G∗ : κ<ω −→ µ<ω

where G∗ (s) = (
⋃
{t | G [〈s〉] ⊆ 〈t〉}) � |s| .

Corollary 10 (Lipschitz reading of names) Let µ < cof(κ) , T ∈ NB (κ)
and ẏ a NB (κ)-name such that T  “ẏ ∈ µω”. Then there is S ≤0 T such that:

1. If s ∈ S then Ss decides ẏ � (|s|+ 1) .

2. There is F : S −→ µ such that S  “F (ngen) = ẏ”.

The following absoluteness result will be useful in later sections:

Proposition 11 Let κ be a cardinal, M ⊆ V be a model of (a large portion of)
ZFC such that κ ∈ M, κ ⊆ M and [κ]

ω ∩M is cofinal in [κ]
ω
. If B,C ∈ M

are Borel sets of κω and M |= C ⊆ B then V |= C ⊆ B. In particular, the
membership of Borel sets to Lκ is absolute between M and V.

Proof. Let f ∈ C and since [κ]
ω ∩M is cofinal in [κ]

ω
there is A ∈ [κ]

ω ∩M
such that f ∈ Aω. Let B1 = B ∩ Aω and C1 = C ∩ Aω, note that B1, C1 ∈ M
and they are both Borel sets of a Polish space. Since M |= C1 ⊆ B1 then by
Shoenfield’s absoluteness we conclude that C1 ⊆ B1, hence f ∈ B1 ⊆ B.

If B ∈M is a Borel set, then M |= B /∈ Lκ if and only if there is T ∈ NB (κ)
such that M |= [T ] ⊆ B and M |= B ∈ Lκ if and only if there is F ∈ M
such that M |= B ⊆ CF . Wit this remarks we conclude the absoluteness of the
membership of Borel sets to Lκ.

In particular, we can conclude the following result:

Corollary 12 Let M ⊆ V be a model of (a large portion of) ZFC such that
ω1 ∈M and ω1 ⊆M. If B ∈M is a Borel set of ωω1 then M |= B ∈ Lω1

if and
only if V |= B ∈ Lω1

.
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The cardinal invariant non(Lκ) will play a key role in the following sections.
We will prove that non(Lκ) = κ for every regular cardinal bigger than ω1. Given
an uncountable regular cardinal κ, by Eκω we denote the set of all ordinals smaller
than κ with cofinality ω. CGω (κ) is the statement that there is a sequence
C = 〈Cα | α ∈ Eκω〉 where Cα ⊆ α is a cofinal set of order type ω such that for
every club D ⊆ κ there is α for which Cα ⊆ D. We call such C a club guessing
sequence.

We will show that the existence of a Club Guessing sequence at κ implies
that the uniformity of Lκ is precisely κ.

Proposition 13 Let κ > ω be a regular cardinal. Then the principle CGω (κ)
implies non(Lκ) = κ.

Proof. Let C = {Cα | α ∈ Eκω} be a club guessing sequence. Enumerate each
Cα = {αn | n ∈ ω} in an increasing way, we may further assume 0 /∈ Cα for
every α ∈ LIM (ω1) . We now define fα : ω −→ κ where fα (n) = αn, we will
show that X = {fα | α ∈ Eκω} /∈ Lκ.

Let F : κ<ω −→ κ, we must show that X is not contained in C (F ) . Let
D ⊆ κ be a club such that if α ∈ D and s ∈ α<ω then F (s) < α. Since C is a
club guessing sequence, then there is α ∈ D such that Cα ⊆ D. It is then easy
to see that fα /∈ C (F ) .

It is a remarkable result of Shelah that CGω (κ) holds for every regular car-
dinal bigger that ω1:

Theorem 14 (Shelah, see [1]) If κ is regular and ω1 < κ then CGω (κ) is
true.

It is well known that CGω (ω1) may consistently fail, for example, this is the
situation in the presence of the Proper Forcing Axiom. Moreover, we will later
prove that the inequality ω1 < non(Lω1

) is consistent.

We say T ⊆
⋃
n∈ω

(κn × κn) is a tree if whenever (s, t) ∈ T and n < |s|

then (s � n, t � n) ∈ T. The set of branches of T will be defined as [T ] =
{(x, y) | ∀n ((x � n, y � n) ∈ T )} and its projection p [T ] = {x | ∃y ((x, y) ∈ [T ])} .
A set A ⊆ κω is called κ-analytic if there is a tree T ⊆

⋃
n∈ω

(κn × κn) such that

A = p [T ] . The following is well known,

Lemma 15 Let κ be a cardinal, W a model of ZFC extending V and T, S ⊆⋃
n∈ω

κn × κn trees. Then p [T ] ∩ p [S] = ∅ if and only if W |= p [T ] ∩ p [S] = ∅.

Proof. Given trees T and S, define Z ⊆
⋃
n∈ω

(κn × κn × κn) as the set of all

(s, t, l) such that (s, t) ∈ T and (s, l) ∈ S. Clearly Z is a tree and note that
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p [T ] ∩ p [S] 6= ∅ if and only if Z is not well founded. Since being well founded
is absolute between ZFC models, we conclude that p [T ] ∩ p [S] = ∅ if and only
if W |= p [T ] ∩ p [S] = ∅.

We will need the following lemma, which is just the generalization of the
fact that every Borel set (in ωω) is also analytic.

Lemma 16 Every Borel set in κω is κ-analytic. Moreover, for every Borel set
B ⊆ κω there is a tree TB ⊆

⋃
n∈ω

(κn × κn) for which B = p [TB ] , p [TB ] ∩

p
[
Tκω\B

]
= ∅ and if W is model of ZFC extending V then W |= p [TB ] ∪

p
[
Tκω\B

]
= κω.

Proof. We prove it by induction on the complexity of B. If B is a closed set,
let S = {s ∈ κ<ω | 〈s〉 ∩B 6= ∅} , it is easy to see that S is a tree and B = [S].
Let TB = {(s, s) | s ∈ S} then clearly B = p [TB ] . Let W = {sα | α ∈ κ} ⊆ κ<ω
such that κω\B =

⋃
α∈κ
〈sα〉 . Define Tκω\B ⊆

⋃
n∈ω

(κn × κn) as the set of all (s, t)

such that s = t = ∅ or (s, t) satisfy the following properties:

1. There is α such that t is the constant α sequence of length |t|.

2. either s ⊆ sα or sα ⊆ s.

It is then easy to see that κω\B = p
[
Tκω\B

]
and W |= p [TB ]∪ p

[
Tκω\B

]
=

κω. Now, assume B =
⋃
n∈ω

Bn and each Bn satisfy the conclusion of the lemma.

Let TB ⊆
⋃
n∈ω

(κn × κn) consist of all (s, t) such that s = t = ∅ or there is n ∈ ω

and t′ such that t = nat′ and (s � (|s| − 1) , t′) ∈ TBn . It is easy to see that
B = p [TB ] .

Fix P = {Pn | n ∈ ω} a partition of ω into infinite sets. Given t = 〈α0, ...αm〉 ∈
κ<ω and n ∈ ω we define tn ∈ κ<ω as follows, if Pn ∩ dom (t) = {k0, ..., kr}
(and ki < kj whenever i < j) then tn = 〈αk0 , ..., αkr 〉 . Let A = κω\B and
An = κω\An for each n ∈ ω. We now define TA ⊆

⋃
n∈ω

(κn × κn) as the set of all

(s, t) such that (s � dom (tn) , tn) ∈ TAn for every n ∈ ω. It is easy to see that
A = p [TA] and W |= p [TB ] ∪ p [TA] = κω.

One could think that if T and S are two trees such that p [S] ⊆ p [T ] and
W is a model of ZFC extending V then W |= p [S] ⊆ p [T ] . However this is not
the case, we will provide an example of this fact. For every α < c let cα ∈ cω

denote the constant function α and let F : c −→ cω be a bijection. Define
T = {(F (α) � n, cα � n) | n ∈ ω, α < c} and S = c<ω, clearly p [S] = p [T ] .
However, if W is any model extending V then W |= p [T ] = cω ∩ V (this is
because T is a discrete set) while W |= p [S] = cω. In this way, if cω∩V 6= cω∩W
then W |= p [S] * p [T ] . Later we will show that this can not occur if W is a
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NB (κ)-forcing extension of V and T and S are trees on
⋃
n∈ω

µn × µn where µ <

cof(κ) .

It is also not true that if κω = p [T ] ∪ p [S] and V ⊆ W then W |= κω =
p [T ] ∪ p [S] (for instance, let T be the tree as in the previous example and S
an empty tree). We will say that a tree T ⊆

⋃
n∈ω

λn × λn is a huge tree in κ if

there is a tree S ⊆
⋃
n∈ω

λn×λn such that κω = p [T ]∪ p [S] , p [T ]∩ p [S] = ∅ and

this relations holds in any other model extending V . In this way, if B ⊆ κω is a
Borel set then TB is a huge tree in κ. The following is a simple consequence of
Shoenfield’s absoluteness:

Lemma 17 If T ⊆
⋃
n∈ω

ωn × ωn is a tree such that p [T ] is Borel then T is a

huge tree in ω.

The following result follows from the definitions and the previous results:

Lemma 18 Let κ, µ be two cardinals and W a model of ZFC extending V.

1. If T is a huge tree in κ and S ⊆
⋃
n∈ω

µn×µn is a tree such that p [S] ⊆ p [T ]

then W |= p [S] ⊆ p [T ] .

2. If T and S are huge trees in κ such that p [T ] = p [S] then W |= p [T ] =
p [S] .

3. If B ⊆ κω is a Borel set then there is a tree T such that B = p [T ] and if
S is another tree such that p [S] ⊆ B then W |= p [S] ⊆ p [T ] .

The following lemma will be used in the next chapter:

Lemma 19 Let F : κω −→ µω be a continuous function and T ⊆
⋃
n∈ω

µn × µn

be a tree such that p [T ] is Borel. Then the following holds:

1. There is a tree TF ⊆
⋃
n∈ω

λn × λn such that p [TF ] = F−1 (p [T ]) (where λ

is the maximum of κ and µ) and this holds in any model extending V.

2. If T is a huge tree for µ then TF is a huge tree for κ.

3. If T is a huge tree for µ then there is S ⊆
⋃
n∈ω

κn × κn a huge tree for κ

such that p [S] = F−1 (p [T ]) and this holds in any model extending V.
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Proof. Define TF as the set of all (s, t) ∈
⋃
n∈ω

λn × λn such that s ∈ κ<ω,

t ∈ µ<ω and (F ∗ (s) , t � |F ∗ (s)|) ∈ T. It is easy to see that TF has the desired
properties. Now assume that T is a huge tree for µ, it is easy to see that if Z
is a tree that witness the hugeness of T then ZF witness the hugeness of TF .
Finally, since F−1 (p [T ]) is a Borel set, there is S ⊆

⋃
n∈ω

κn × κn a huge tree for

κ such that p [S] = F−1 (p [T ]) . Since both S and TF are both huge trees, their
projections are the same in any model extending V.

If B ⊆ λω is a Borel set and W is a model of ZFC extending V, then the
reinterpretation of B in W is defined as BW = p [S] where S ∈ V is any huge
tree such that p [S] = B.

Proposition 20 Let κ, µ be cardinal such that µ < cof(κ) and A be any set. If
B ⊆ Aω×µω is a Borel set such that if x ∈ Aω then Bx = {y ∈ µω | (x, y) ∈ B} 6=
∅, then NB (κ)  “∀x ∈ Aω (Bx 6= ∅) ”.

Proof. Let ẋ be a NB (κ)-name for an element of Aω. We can then find T ∈
NB (κ) and a continous function F : [T ] −→ Aω such that T  “F (ṅgen) = ẋ”.
For simplicity, we will assume T has empty stem. Consider the following game:

I X0 X1 X2 X3 · · ·
II α0, β0 α1, β1 α2, β2 · · ·

Where Xn ∈ [κ]
<κ

, βn ∈ κ and αn ∈ µ. Player II wins the game if the
following holds:

1. βn /∈ Xn for every n ∈ ω.

2. b = 〈βn〉n∈ω ∈ [T ] .

3. (F (b) , a) ∈ B where a = 〈αn〉n∈ω ∈ µω.

We will show that Player I does not have a winning strategy. To prove this
claim, assume Player I does have a winning strategy. Then, she has a winning
strategy that ignores the αn since µ < cof(κ) . Let σ be a winning strategy
for Player I that ignores the αn and let b = 〈βn〉n∈ω ∈ [T ] such that each
βn /∈ Xn (where Xn was played according to σ). Since BF (b) 6= ∅ there is
a = 〈αn〉n∈ω such that (F (b) , a) ∈ B. But then Player II wins the game by
playing 〈αn, βn〉n∈ω which is a contradiction.

By Borel Determinacy, we conclude that Player II has a winning strategy.
In this way, we can build T ′ ≤0 T and H : T ′ −→ µ such that if b ∈ [T ′] then(
F (b) , H (b)

)
∈ B. If n ∈ [T ′] is a generic sequence then V [n] |= (ẋ[n], H (n)) =

(F (n) , H (n)) ∈ B.
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With the previous result we can conclude the following:

Corollary 21 Let κ and µ be cardinals such that µ < cof(κ) and S1, S2 ⊆ µ<ω
are two trees. If f1 : [S1] −→ µω and f2 : [S2] −→ µω are two continuous
functions such that im (f1) ⊆ im (f2) then NB (κ)  “im (f1) ⊆ im (f2) ”.

Proof. Define B = {(x, y) | x /∈ [S1] ∨ (f1 (x) = f2 (y))} then B ⊆ µω × µω is a
Borel set such that Bx 6= ∅ for every x ∈ µω. The result follows by the previous
proposition.

In the following section, we will need the following proposition, which gen-
eralizes lemma 3 of [14].

Proposition 22 Let µ < cof(κ) and I be a family of Borel subsets of µω such
that no countable subcollection of I covers µω. Then NB (κ) forces that no
countable subcollection of I covers µω.

Proof. Let T ∈ NB (κ) and for each n ∈ ω let Ṡn a NB (κ)-name for a Borel set
such that T forces that Ṡn ∈ I. We must find T ′ ≤ T such that T ′  “

⋃
Ṡn 6=

µω”. For every n ∈ ω let Żn be the name of a continous surjective function in V
such that T  “Żn : µω −→ µω�Ṡn”. We may assume that there is a sequence
〈Fn〉n∈ω with the following properties:

1. Each Fn is a front of T (i.e. Fn ⊆ T is an antichain and every branch of
T extends an element of Fn).

2. Every element of Fn+1 properly extends an element of Fn.

3. If t ∈ Fn then there is a continous function Zt such that Tt  “Żn = Zt”.

For simplicity we assume that T has empty stem. Consider the following
game:

I X0 X1 X2 X3 · · ·
II β0 β1 β2 · · ·

Where Xn ∈ [κ]
<κ

, βn ∈ κ and let b = 〈βn〉n∈ω. Furthermore, through the
game, Player II is required to build sequences (one element at a time) Ln =
{sni | i ∈ ω} ⊆ µ<ω (she is allowed to wait any number of finite steps before
playing an sni ). Player II wins the game if the following condition holds:

1. βn /∈ Xn for every n ∈ ω.

2. b ∈ [T ] .

3. |sni | = i for every n, i ∈ ω.

4. sni ⊆ sni+1 for every n, i ∈ ω.

11



5. If t1 = b � m1 ∈ Fn1 and t2 = b � m2 ∈ Fn2 then Zt1 (
⋃
sn1
i ) = Zt2 (

⋃
sn2
i ) .

We claim that Player I does not have a winning strategy. Assume Player I
has a winning strategy, since µ < cof(κ) it is easy to see that she has a winning
strategy σ that ignores the Ln. Let M be a countable elementary submodel (of a
big enough H (θ)) such that T, {(Ṡn, Żn) | n ∈ ω}, σ ∈M. Since M is countable
then, there is x /∈

⋃
I ∩M. Let b = 〈βn〉n∈ω ∈ [T ] be any sequence such that

b ∈ M and βn /∈ Xn for every n ∈ ω. For every n ∈ ω let tn ∈ Fn such that
tn ⊆ b. Since tn ∈M then Ztn ∈M so we conclude that x ∈

⋂
n∈ω

im (Ztn) . For

every n ∈ ω, let sn ∈ κω such that Ztn (sn) = x. Then if Player II plays b and
Ln = {sn � i | i ∈ ω} (which is possible since σ ignores the Ln) she will win the
game, which is a contradiction.

By Borel Determinacy, we conclude that Player II has a winning strategy.
We can then build a tree T ′ ≤ T such that for every b ∈ [T ] there are sequences
Ln = {sni | i ∈ ω} such that sni ⊆ s

n+1
i for every n, i ∈ ω and if t1 = b � m1 ∈ Fn1

and t2 = b � m2 ∈ Fn2
then Zt1 (

⋃
sn1
i ) = Zt2 (

⋃
sn2
i ) . We then can conclude

that T ′  “
⋃
p[Ṡn] 6= µω”.

3 NB (κ) for κ > ω1

Let I ∈ V be an ideal on µω with a Borel base. If W is a model of ZFC
extending V then r ∈ µω ∩W is called an I-quasigeneric sequence (over V ) if
W |= r /∈ p [T ] for every tree T ⊆

⋃
n∈ω

µn × µn such that T ∈ V and p [T ] is

a Borel set in I (note it is enough to consider only huge trees). We say that
a forcing notion P preserves covering of I if P does not add I-quasigeneric
sequences. In this paper, we are interested in determining when does NB (κ)
preserve the covering of certain ideals. We will need the following definition:

Definition 23 Let X,Y be two topological spaces, IX and ideal on X and IY
an ideal on Y.

1. We say a continuous function F : X −→ Y is a continuous Katĕtov-
morphism from (X, IX) to (Y, IY ) if F−1 (A) ∈ IX for every A ∈ IY .

2. We say IY is continuously Katĕtov below IX (which we will denote by
IY ≤CK IX) if there is a continuous Katĕtov-morphism from (X, IX) to
(Y, IY ) .

The reason we are interested in the continuos Katĕtov order is the following
proposition:

12



Proposition 24 Let I be an ideal on κω and J an ideal on µω such that
J ≤CK I. If a forcing P adds an I-quasigeneric sequence, then P adds an
J -quasigeneric sequence.

Proof. Let F : κω −→ µω be a continuous Katĕtov-morphism from (κω, I) to
(µω,J ) . Let G ⊆ P be a generic filter and r ∈ κω an I-quasigeneric sequence.
We will prove that F (r) is an J -quasigeneric sequence. Let T ⊆

⋃
n∈ω

µn × µn a

huge tree on µ such that p [T ] ∈ J and T ∈ V. We then know that there is a
huge tree TF ⊆

⋃
n∈ω

κn×κn such that TF ∈ V and V [G] |= p [TF ] = F−1 (p [T ]) .

Since F is a Katĕtov-morphism then r /∈ p [TF ] so F (r) /∈ p [T ] .

The following result will be very useful:

Proposition 25 Let X,Y be two topological spaces, IX and ideal on X and IY
an ideal on Y. If IY ≤CK IX then cov(IX) ≤ cov(IY ) and non(IY ) ≤ non(IX) .

Proof. Let F : X −→ Y be a continuous Katĕtov-morphism from (X, IX) to
(Y, IY ) . We will first show that cov(IX) ≤ cov(IY ) . Let {Aα | α ∈ cov(IY )} ⊆
IY such that Y =

⋃
{Aα | α ∈ cov(IY )}. Then X =

⋃
{F (Aα)

−1 | α ∈ cov(IY )}
and F (Aα)

−1 ∈ IX for every α ∈ cov(IY ) (since F is a Katĕtov-morphism) so
cov(IX) ≤ cov(IY ) .

We will now prove that non(IY ) ≤ non(IX) . Let B ⊆ X such that B /∈ IX ,
it is easy to see that F [B] /∈ IY so non(IY ) ≤ non(IX) .

Regarding the ideals related to Namba forcing, we have the following:

Proposition 26 If κ is a cardinal then Lcof(κ) ≤CK Lκ.

Proof. Let {Pα | α ∈ cof(κ)} be a partition of κ such that each Pα has size
less than κ. Let h : κ −→ cof(κ) such that β ∈ Ph(β) for every β ∈ κ. We now
define F : κω −→ cof(κ)

ω
where if x ∈ κω and n ∈ ω then F (x) (n) = h (x (n)) .

Clearly F is a continuous function, we must only show that it is a Katĕtov-
morphism. Let G :cof(κ)

<ω −→ cof(κ) , we must prove that F−1 (CG) ∈ Lκ.
Assume this is false, since F−1 (CG) is a Borel set then there is T ∈ NB (κ)
such that [T ] ⊆ F−1 (CG) . In this way, F [T ] ⊆ CG but it is easy to see that
F [T ] ∈ NB(cof(κ)) but this is a contradiction since no cof(κ)-Namba tree can
be an element of Lcof(κ).

We can now characterize when NB (κ) adds a I-quasigeneric sequences.

Proposition 27 Let κ, µ be two cardinals and I an ideal on µω with a Borel
base. Then the following are equivalent:

1. NB (κ) adds an I-quasigeneric sequence.

2. I ≤CK Lκ.

13



Proof. Clearly NB (κ) adds an Lκ -quasigeneric sequence so if I ≤CK Lκ then
NB (κ) adds an I-quasigeneric sequence. Now assume that NB (κ) adds an ṙ
which is forced to be an I-quasigeneric sequence. We can then find T ∈ NB (κ)
and a continuous function F : [T ] −→ µω such that T  “F (ngen) = ṙ”. Let
G : κω −→ [T ] be an homeomorphism, it is easy to see that FG : κω −→ µω is
a continuous Katĕtov-morphism from (κω,Lκ) to (µω, I).

We can then conclude the following:

Corollary 28 Let κ, µ be two cardinals and I an ideal on µω with a Borel base.
If NB (κ) preserves covering of I then NB(cof(κ)) preserves covering of I.

However, NB(cof(κ)) may not embed in NB (κ) , we will provide (consis-
tently) an example of this fact at the end of this section. Note that cof(κ) ≤
add(Lκ) , κ ≤ non(Lκ) and if κ has uncountable cofinality then cov(Lκ) ≤ cof(κ).
Hence if κ has uncountable cofinality then cof(κ) = add(Lκ) = cov(Lκ). By
Proposition 22 and the previous equalities we may conclude the following:

Proposition 29 Let κ, µ be two cardinals and I an ideal on µω with a Borel
base. Then the following holds:

1. If non(Lκ) < non(I) then NB (κ) preserves covering of I.

2. If κ has uncountable cofinality and cov(I) < cof(κ) then NB (κ) preserves
covering of I.

As an application of the previous result, we can conclude the following:

Corollary 30 If µ < cof(κ) is a cardinal of uncountable cofinality, then NB (κ) 
“cof(µ) > ω”.

Proof. For every α ∈ µ let B (α) = {f ∈ µω | im (f) ⊆ α} define I as the
ideal generated by {B (α) | α < µ} . Note that I is a σ-ideal on µω since µ has
uncountable cofinality and cov(I) ≤ µ < cof (κ) . We can then conclude that
NB (κ) does not add I-quasigeneric sequences, in particular, it does not add a
countable cofinal set to µ.

We will now show that the dominating number is an upper bound for
non(Lω1) . Call Part the set of all interval partitions (partitions in finite sets) of
ω. We may define an order in Part as follows, given P,Q ∈ Part we say P ≤ Q
if for all Q ∈ Q there is P ∈ P such that P ⊆ Q. In [3] it is proved that the
smallest size of a dominating family of interval partitions is precisely d.

Proposition 31 non(Lω1
) ≤ d.
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Proof. Let P = {Pγ | γ ∈ d} be a dominating family of interval partitions where
Pγ = {[Pγ (n) , Pγ (n+ 1)) | n ∈ ω} . For every limit ordinal α < ω1, choose
Cα = 〈αn〉n∈ω an increasing sequence cofinal in α. For every α < ω1 and
γ < d we define gγα : ω −→ ω1 given by gγα (n) = αPγ(n+1). We claim that
X = {gγα | α ∈ LIM (ω1) ∧ γ ∈ d} is not an element of L.

Let F : ω<ω1 −→ ω1 and as before, let D ⊆ ω1 be a club such that if α ∈ D
and s ∈ α<ω then F (s) < α. Choose any α ∈ D which is also a limit point
of D. Now we define an interval partition Q = {[Q (n) , Q (n+ 1)) | n ∈ ω} such
that [αQ(n), αQ(n+1)) ∩D 6= ∅ for every n ∈ ω. Since P is a dominating family
of interval partitions, then there is γ < d such that Q ≤ Pγ . It is then easy to
see that gγα /∈ C (F ) .

We can then conclude the following:

Corollary 32 Let κ be a regular cardinal, µ a cardinal and I an ideal in µω

with a Borel base. Then the following holds:

1. If κ > ω1 and κ < non(I) then NB (κ) preserves covering of I.

2. If d = ω1 or CGω (ω1) holds and ω1 < non(I) then NB (ω1) preserves
covering of I.

The case NB (ω1) will be further studied in the next section. We will now
recall some σ-ideals for which we will apply this result.

1. Let ctble be the ideal of all countable subsets of 2ω. It is easy to see that
non(ctble)= ω1 and cov(ctble)= c. The ctble-quasigeneric reals are the new
reals.

2. For any f ∈ ωω let Kf = {g | g ≤∗ f} and define Kσ as the ideal in
ωω generated by {Kf | f ∈ ωω} . It is well known that Kσ is the σ-ideal
generated by all compact subsets of ωω, non(Kσ) = b and cov(Kσ) = d.
The Kσ-quasigeneric reals are the unbounded reals.

3. For any f ∈ ωω let Lf = {g | f �∗ g} and define Lσ the ideal generated
by {Lf | f ∈ ωω} . Note that non(Lσ) = d and cov(Lσ) = b. The Lσ-
quasigeneric reals are the dominating reals.

4. For every A ∈ [ω]
ω

define M (A) = {f ∈ 2ω |
(
A ∩ f−1 (1) =∗ ∅

)
∨ (A\

f−1 (1) =∗ ∅)}. Let IS be the ideal generated by {M (A) | A ∈ [ω]
ω} . In

this case, non(IS) = s and cov(IS) = r. The IS -quasigeneric reals are the
splitting reals.

5. For every f ∈ ωω define H (f) = {g ∈ ωω | |f ∩ g| = ω} and let E be the
ideal generated by {H (f) | f ∈ ωω} . In this case non(E) = cov(M) and
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cov(E) = non(M) . The E-quasigeneric reals are the eventually different
reals. We say a forcing notion P destroys category if there is p ∈ P such
that p  “ωω∩V ∈M”. It is a well known fact that a partial order P does
not destroy category if and only if P does not add an eventually different
real (under any condition).

6. We say S : ω −→ [ω]
<ω

is a slalom if |S (n)| ≤ 2n for every n ∈ ω and
by SL we will denote the set of all slaloms. If f ∈ ωω and S ∈ SL
define f v∗ S if f (n) ∈ S (n) holds for almost all n ∈ ω. Given S ∈ SL
let C (S) = {f ∈ ωω | f v∗ S} and define ISL as the ideal generated by
{C (S) | S ∈ SL} . Then non(ISL) = add(N ) and cov(ISL) = cof(N ) .
Note that a forcing P has the Sacks property if and only if P does not add
ISL-quasigeneric reals.

7. Let Jω1
be the ideal in ωω1 generated by {αω | α ∈ ω1} . Then cov(Jω1

) =
non(Jω1

) = ω1.and W has Jω1
-quasigeneric sets over V if and only if ωV1

is countable in W.

Applying the above result to the ideals we defined before, we conclude the
following:

Theorem 33 (see [12] for 1 and 2) Let κ be a regular cardinal such that ei-
ther κ > ω1 or κ = ω1 and d = ω1 or CGω (ω1) is true. Then the following
holds:

1. If κ > ω1 then NB (κ) does not collapse ω1;

2. If c < κ then NB (κ) does not add new reals;

3. If cov(M) < κ or κ < non(M) then NB (κ) does not add Cohen reals;

4. If cov(N ) < κ or κ < non(N ) then NB (κ) does not add random reals;

5. If d < κ or κ < b then NB (κ) does not add unbounded reals;

6. NB (κ) adds a dominating real if and only if b = d = κ;

7. If r < κ or κ < s then NB (κ) does not add splitting reals;

8. If non(M) < κ or κ < cov(M) then NB (κ) preserves category;

9. If add(N ) < κ or κ < cof(N ) then NB (κ) has the Sacks property.

With respect to adding new reals, we have the following result:

Proposition 34 If κ ≤ c then NB (κ) adds a new real. Hence, if κ is a regular
cardinal then NB (κ) adds a new real if and only if c < κ.
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Proof. We will prove that if κ ≤ c then ctble ≤CK Lκ. Recursively build a tree
R = {ps | s ∈ κ<ω} such that for every s, t ∈ κ<ω the following holds:

1. ps ⊆ 2<ω is a Sacks tree (i.e. [ps] is a perfect compact set).

2. If s ∈ κn then the stem of ps has size at least n.

3. If t ⊆ s then ps ⊆ pt.

4. If α, β ∈ κ and α 6= β then [ps_α] ∩ [ps_β ] = ∅.

This construction is easy to do since 2ω can be partition into c disjoint
compact sets (recall that 2ω×ω is homeomorphic to 2ω). We now define F :
κω −→ 2ω such that if x ∈ κω then

⋂
n∈ω

[px�n] = {F (x)} . It is easy to see that

F is a continuous Katĕtov-morphism from (κω,Lκ) to (2ω,ctble).

We will now give a condition under which NB (κ) does not preserve the
covering of an ideal:

Proposition 35 Let κ be a cardinal, µ < cof(κ) and I a σ-ideal generated by
Borel sets in µω. If add(I) = cof(I) = κ then NB (κ) does not preserve the
covering of I.

Proof. It is easy to see that if add(I) = cof(I) = κ then there is a cofinal set
S = {Bα | α ∈ κ} ⊆ I such that if α < β then Bα ⊆ Bβ . Let n : ω −→ κ be
a generic sequence and in V [n] define S′ =

{
Bn(n) | n ∈ ω

}
⊆ I, since I still

generates a σ-ideal then there is x /∈
⋃
S′. By genericity, S′ is a cofinal set, so

x is an I-quasigeneric sequence.

We will now provide an example where NB(cof(κ)) does not embed in NB (κ) .
Recall that a forcing notion P has minimal real degree of constructibility if for
every generic filter G ⊆ P if x ∈ V [G]∩ 2ω then either x ∈ V or G ∈ V [x] . The
following result was proved by Miller:

Proposition 36 ([11]) If κ has uncountable cofinality and cof
(
[κ]

<κ)
< p then

NB (κ) has minimal real degree of constructibility.

With the result of Miller we can build our example:

Proposition 37 The following statement is consistent with ZFC : There is a
cardinal κ of uncountable cofinality such that NB (κ) does not add generic se-
quences for NB(cof(κ)).

Proof. We start with a model of GCH and CG (ω1) . Let P be a ccc forcing notion

that forces ℵω1+1 < p. Note that since P is ccc, then cof([ℵω1
]
<ℵω1 ) = ℵω1+1 < p

holds in V [G] . In this way, both NB (ω1) and NB (ℵω1
) both have minimal real
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degree of constructibility and both add reals so if NB (ℵω1) would add a generic
sequences for NB (ω1) then we would have that NB (ℵω1) and NB (ω1) are in fact
equivalent as forcing notions. However, this is a contradiction since NB (ω1) can
not add an Lℵω1

-quasigeneric sequence.

4 Preservation results of NB (ω1)

The case κ = ω1 is particularly interesting. We do not know the answer of the
following question:

Problem 38 If I is an ideal generated by Borel sets in ωω and ω1 < non(I) ,
is it true that NB (ω1) preserves covering of I?

Nevertheless, we were able to answer the question positively for some specific
ideals. Of course, the main issue is that while CGω (κ) is true for every regular
κ > ω1, CGω (ω1) may consistently fail. We will now prove that the inequality
non(Lω1

) > ω1 is consistent and we will use Baumgartner’s forcing for adding
a club with finite conditions. Let BA be set of all finite functions p ⊆ ω1 × ω1

with the property that there is a function enumerating a club g : ω1 −→ ω1

such that p ⊆ g and im (g) consists only of indecomposable ordinals. We order
BA by inclusion, it is well known that BA is a proper forcing and adds a club,
whose name we will denote by Ḋgen. Given a club D ⊆ ω1, define a function
FD : ω<ω1 −→ ω1 given by FD (s) = min {γ ∈ D | im (s) ⊆ γ} . Recall that if
F : ω<ω1 −→ ω1 we defined C (F ) = {f ∈ ωω1 | ∃∞n (f (n) ∈ F (f � n))} . Note
that if f ∈ ωω1 then the following holds:

1. If f [ω] has a maximum then f ∈ C (FD) .

2. If
⋃
f [ω] is not a limit point of D then f ∈ C (FD) .

Lemma 39 If f ∈ ωω1 then Ef = {p ∈ BA | p  “f ∈ C(FḊgen)”} is a dense
set.

Proof. Let p ∈ BA, we may assume f [ω] has no maximum and p forces that
γ =

⋃
f [ω] is a limit point of Ḋgen (in particular γ must be an indecomposable

ordinal) so there must be a limit ordinal β < ω1 such that p (β) = γ, Let
q ≤ p and n ∈ ω, we must prove that there is q1 ≤ q and m > n such that
q1  “f (m) < FḊgen (f � m) ”. Let g : ω1 −→ ω1 be a function enumerating a

club such that q ⊆ g and im (g) consists only of indecomposable ordinals. Let
β0 = max (β ∩ dom (q)) note we may assume that f (0) , ...f (n) < q (β0) (if this
is not the case we just extend q in order to obtain this condition). Let m be the
smallest natural number for which q (β0) < f (m) . Since q forces that γ is a limit
point of Ḋgen, there must be β0 < β1 < β such that f (m) , f (m+ 1) < g (β1) .
We then define q1 and g1 as follows:

1. q1 = q ∪ {(β0 + 1, g (β1))} .
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2. g � (β0 + 1) , g � [β, ω1) ⊆ g1.

3. g1 (β0 + 1) = g (β1) .

4. If ξ ∈ (β0 + 1, β) then g1 (ξ) = g (β1 + ξ) .

Note that q1 is a condition of BA (as witness by g1) extending q and q1 
“f (m+ 1) < FḊgen (f � m+ 1) ”.

Since BA is a proper forcing, we conclude the following:

Proposition 40 The Proper Forcing Axiom implies non(Lω1
) > ω1.

The following lemma is easy and it is left to the reader,

Lemma 41 If W is a ccc forcing extension of V and F : ω<ω1 −→ ω1 ∈ W
then (ωω1 ∩ V ) \C (F ) 6= ∅.

We can then prove the following:

Proposition 42 If ω1 < cov(M) then NB (ω1) does not destroy category.

Proof. We need to prove that for every continuous function H : ωω1 −→ ωω

there is h ∈ ωω such that the preimage of {f ∈ ωω | |f ∩ h| = ω} is not in Lω1
.

Let M be an elementary submodel (of some H (θ) for some big enough θ) such
that H ∈ M, ω1 ⊆ M and |M | = ω1. Since ω1 < cov(M) , there is c : ω −→ ω
which is Cohen over M. Let B = {f ∈ ωω | |f ∩ c| = ω} , clearly B is a Borel
set and B ∈M [c] . Let A = H−1 (B) we now claim M [c] |= A /∈ Lω1

. We argue
in M [c] , let F : ω<ω1 −→ ω1 ∈M [c] . Since M [c] is a ccc extension of M, then
there is g ∈ (ωω1 ∩M) \C (F ) . In this way, H (g) ∈M and since c is Cohen over
M, then H (g)∩ c 6= ∅ so g ∈ A \C (F ) . In this way, M [c] |= A /∈ Lω1

and then
A /∈ Lω1 .

By H we denote the Hechler forcing, an element of H is of the form (s, f)
where s ∈ ω<ω and f ∈ ωω. The order relation is given by (s, f) ≤ (z, g) if
z ⊆ s , g ≤ f and if i ∈ dom (s) \ dom (z) then s (i) ≥ g (i) . If F ⊆ ωω we
denote by H (F) as the suborder of H of all (s, f) ∈ H such that f ∈ F . By
f <n g we will mean that f (m) < g (m) for every m ≥ n.

Lemma 43 Assume M is an elementary submodel and f ∈ V is an increasing
dominating real for M. Then there is a partial order Q ∈ V that adds a g :
ω −→ ω such that g ≤ f and g is Hechler over M.
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Proof. Let Q be the suborder of H to be the set of all pairs (s, h) ∈ H∩M such
that s ≤ f and h ≤|s| f . Clearly Q adds a function g : ω −→ ω and g ≤ f. We
will show that g is Hechler over M (note that Q is not in M). It is enough to
show that if D ∈M and D ⊆ H is open dense then D ∩Q is dense for Q.

Pick any (s, h) ∈ Q with |s| = n0, for every i > n0 let si = s_h � [n0, i] .
Note that

(
si, h

)
∈ Q and it extends (s, h) . Inside M, we recursively construct

two sequences {(si, hi) | i ∈ ω} ⊆ H and {ni | i ∈ ω} ⊆ ω such that for every
i ∈ ω the following holds:

1. (s0, h0) = (s, h) ,

2. (si+1, hi+1) ∈ D,

3. |si| = ni,

4. (si+1, hi+1) ≤ (sni , h) .

5. hi ≤ni+1
hi+1.

We then define l = s_ (s1 + h1) � [n0, n1)_ (s2 + h1 + h2) � [n2, n3)_... and
note that l ∈ M, therefore, there is i ∈ ω such that l <ni f. This entails that
(si+1, hi) ∈ Q.

We are now ready to prove the following,

Proposition 44 If ω1 < b then NB (ω1) does not add unbounded reals.

Proof. We need to prove that LCK is not continuously Katĕtov below Kσ. Let
H : ωω1 −→ ωω be a continuous function and M an elementary submodel of size
ω1 such that ω1 ⊆M and H ∈M. Since ω1 < b there is an increasing function
f ∈ ωω that is a dominating real over M. Let g : ω −→ ω be given by the
previous lemma, soM [g] is a Hechler extension ofM. LetB = {h ∈ ωω | h ≤∗ g}
and A = H−1 (B) which is a Borel set in M [g] , we will prove that M [g] |= A /∈
Lω1

. Let F : ω<ω1 −→ ω1 ∈ M [g] and since M [g] is a ccc extension of M
then (ωω1 ∩M) \C (F ) 6= ∅. Let x ∈ (ωω1 ∩M) \C (F ) then H (x) ∈ M and
since g is Hechler over M we conclude that H (x) ≤∗ g so x ∈ A \C (F ) . Since
M [g] |= A /∈ Lω1 by absoluteness, we conclude that V [g] |= A /∈ Lω1 .

Let A0 = {x ∈ ωω1 | H (x) ≤∗ f} and since g ≤ f we know that V [g] |= A0 /∈
Lω1

and then by absoluteness, V |= A0 /∈ Lω1
.

We can then conclude the following result, which answers a question of [7]:

Corollary 45 b is the first uncountable regular cardinal κ such that NB (κ)
adds an unbounded real.
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We will now prove the following:

Lemma 46 Assume M is an elementary submodel and c ∈ V is an increasing
unbounded real for M. Then there is a partial order Q ∈ V that adds a function
d : ω −→ ω such that d ≤ c and d is Cohen over M.

Proof. Let Q be the suborder of ω<ω given by Q = {s ∈ ω<ω|s ≤ c}, clearly Q
adds a function d : ω −→ ω and d ≤ c. We will show that d is Cohen over M
and it is enough to show that if D ∈M and D ⊆ ω<ω is open dense then D∩Q
is dense for Q.

Let s ∈ Q with |s| = n0 and for every i > n0 define si = s_0 � [n0, i] where
0 is the constant 0 function. Note that si ∈ Q and it extends s. Inside M, we
recursively construct two sequences {si | i ∈ ω} ⊆ C and {ni | i ∈ ω} ⊆ ω such
that for every i ∈ ω the following holds:

1. s0 = s,

2. si+1 ∈ D,

3. |si| = ni,

4. ni < ni+1,

5. si+1 ≤ sni ,

We now define l : ω −→ ω where l (i) is the biggest value in the range of
si+1 and note that l ∈ M, therefore, there is i ∈ ω such that l (i) < c (i) and
since i ≤ ni then there is a condition si ∈ D extending s.

Using the same method as before, we can prove the following:

Proposition 47 If ω1 < d then NB (ω1) does not add dominating reals. In this
way, NB (ω1) adds a dominating real if and only if d = ω1.

Proof. We need to prove that for every continuous function H : ωω1 −→ ωω

there is f ∈ ωω such that the preimage of {h ∈ ωω | f �∗ h} is not in Lω1 . Let
M be an elementary submodel of size ω1 such that ω1 ⊆M and H ∈M. Since
ω1 < d there is a function f ∈ ωω that is unbounded over M. Let g : ω −→
ω be given by the previous lemma, so M [g] is a Cohen extension of M. Let
B = {h ∈ ωω | f �∗ h} and A = H−1 (B) which is a Borel set in M [g] , we will
prove that M [g] |= A /∈ L. Let F : ω<ω1 −→ ω1 ∈ M [g] and since M [g] is a
ccc extension of M then (ωω1 ∩M) \C (F ) 6= ∅. Let h ∈ (ωω1 ∩M) \C (F ) then
clearly H (h) ∈ M and since g is Cohen over M then g �∗ H (h) so h ∈ A
\C (F ) . The last part of the argument is similar to the previous one.
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Given n ∈ ω the n-Amoeba forcing An is define as the set of all open subsets
of 2ω with Lebesgue measure less than 1

n . If U1, U2 ∈ A then U1 ≤ U2 if U1 ⊆ U2.
It can be proved that An and Am are forcing equivalent for every n,m ∈ ω (see
[2] lemma 3.1.11). In this way, forcing with A2 adds a null set containing every
ground model null set. It is well known that A2 is ccc and Judah and Repický
proved that the Martin number of A2 is add(N ) (see [2] theorem 3.4.17).

Proposition 48 If ω1 < add(N ) then NB (ω1) has the Sacks property.

Proof. We need to prove that for every continuous function F : ωω1 −→ ωω

there is a slalom S such that the preimage of {f ∈ ωω | f v∗ S} is not in Lω1
.

Let M be an elementary submodel of size ω1 such that F ∈ M and ω1 ⊆ M.
Since ω1 < add(N ) then there is a filter G ⊆ A2 that is (M,A2)-generic. In
this way, in M [G] there is a null set containing every null set from M so then
there is S ∈ SL such that f v∗ S for every f ∈M. Let B = {f ∈ ωω | f v∗ S}
and A = F−1 (B) which is a Borel set. We claim that M [G] |= A /∈ Lω1

, let
H : ω1 −→ ω1 ∈ M and since M [G] is a ccc extension of M, then there is
x ∈ M ∩ (ωω1 \ CH). But then F (x) ∈ M so F (x) v∗ S hence x ∈ A which
implies that A is not contained in CH so M [G] |= A /∈ Lω1 and then A /∈ Lω1

by absoluteness.

We remark that neither NB(add(N )) nor does NB(add(N )) have the Sacks
property. This will be proved in [6]. We will consider briefly a forcing very
similar to NB (κ) (see [4]):

Definition 49 Let κ be a regular cardinal.

1. We say a tree T ⊆ κ<ω is a κ-Bukovský tree if the following conditions
hold:

(a) If s ∈ T then either |sucT (s)| = 1 or |sucT (s)| = κ.

(b) For every s ∈ T there is t ∈ T extending s such that |sucT (t)| = κ.

2. By M (κ) we denote the set of all κ-Bukovský tree ordered by inclusion.

In this way, M (ω) is the usual Miller forcing. For every F : κ<ω −→ κ
define DF = {x ∈ κω | ∀∞n ∈ ω (x (n) < F (x � n))} and let K (κ) be the ideal
generated by {DF | F : κ<ω −→ κ} . It is easy to see that if κ > ω is a regular
cardinal then K (κ) is a σ-ideal. For a set B ⊆ κω consider the following game
G (B) :

I s0 s1 s2 s3 · · ·
⋃
sn ∈ B

II α0 α1 α2 · · ·

Such that sn ∈ κ<ω, sn ⊆ sn+1, αn ∈ κ and αn < sn+1 (|sn|) for every
n ∈ ω. Player I wins the game if

⋃
sn ∈ B. The following proposition is easy

and left to the reader:
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Proposition 50 Let κ > ω be a regular cardinal and B ⊆ κω.

1. Player I has a winning strategy in G (B) if and only if there is T ∈ M (κ)
such that [T ] ⊆ B.

2. Player II has a winning strategy in G (B) if and only if B ∈ K (κ) .

3. Every Borel set of κω either contains the branches of a κ-Bukovský tree
or belongs to K (κ) .

4. M (κ) is forcing equivalent to Borel (κω)�K (κ) .

We have the following result:

Proposition 51 Let κ, µ cardinals such that κ > ω is a regular cardinal. Let
I ⊆ µω be an ideal with a Borel base. If NB (κ) preserves covering of I then
M (κ) preserves covering of I.

Proof. It is easy to see that M (κ) has continous reading of names. By a similar
argument to the one of NB (κ), it can be proved that M (κ) preserves covering
of I if and only if I �

CK
K (κ) . Since K (κ) ≤CK L (κ) the result follows.

5 Open questions

Here is a list of some questions that we were unable to answer.

Problem 52 If I is a σ-ideal with Borel base and ω1 < non(I) , then does
NB (ω1) preserve the covering of I? (probably the most interesting cases are for
the ideals of meager and null sets).

Let Col (ω, ω1) be the usual forcing for collapsing ω1 to ω with finite condi-
tions. It is clear that Col (ω, ω1) adds Cohen reals, so if ω1 < b then Col (ω, ω1)
does not embed in NB (ω1) . This motivates the following question,

Problem 53 When does Col (ω, ω1) regularly embed in NB (ω1)?

We studied when Namba forcing does not add I-quasigeneric sequences, one
could take this line of research a step further,

Problem 54 When does NB (κ) add Sacks, Laver, Mathias or Miller reals?
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