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Abstract. A metric space (X, d) is monotone if there is a linear order < on
X and a constant c > 0 such that d(x, y) 6 cd(x, z) for all x < y < z ∈
X. Properties of continuous functions with monotone graph (considered as

a planar set) are investigated. It is shown, e.g., that such a function can be
almost nowhere differentiable, but is differentiable at a dense set, and that

Hausdorff dimension of the graph of such a function is 1.

1. Introduction

A metric space (X, d) is called monotone if there is a linear order < on X and a
constant c > 0 such that d(x, y) 6 cd(x, z) for all x < y < z ∈ X.

Suppose f is a continuous real-valued function defined on an interval. The graph
f of f is a subset of the plane. The goal of this paper is to investigate differentiability
of f assuming that the graph f is a monotone space.

Monotone metric spaces. Monotone metric spaces were introduced in [13, 7, 6].
Some applications are given in [13, 12].

Definition 1.1. Let (X, d) be a metric space.
(X, d) is called monotone if there is a linear order < on X and a constant c > 0

such that for all x, y, z ∈ X

(1) d(x, y) 6 cd(x, z) whenever x < y < z.

The order < is called a witnessing order and c is called a witnessing constant.
(X, d) termed σ-monotone if it is a countable union of monotone subspaces.

It is easy to check that if (X, d), c and < satisfy (1), then d(y, z) 6 (c+ 1)d(x, z)
for all x < y < z. It follows that replacing condition (1) by

(2) max
(
d(x, y), d(y, z)

)
6 cd(x, z) whenever x < y < z
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gives an equivalent definition of a monotone space. Since we will be occasionally
interested in the value of c, we introduce the following notions.

Definition 1.2. Let c > 0. A metric space (X, d) is called

(i) c-monotone if there is a linear order < such that (1) holds,
(ii) symmetrically c-monotone if there is a linear order < such that (2) holds.

It is clear that (X, d) is monotone iff it is c-monotone for some c iff it is symmet-
rically c-monotone for some c. It is also clear that if a space is c-monotone, then it
is symmetrically (c + 1)-monotone and that a symmetrically c-monotone space is
c-monotone.

Topology of monotone spaces. Topological properties of monotone and σ-mono-
tone spaces are investigated in [7]. We recall the relevant facts proved therein. A
monotone metric space is suborderable. In more detail, let (X, d) be a monotone
metric space and < is a witnessing order. Denote (a, b) = {x ∈ X : a < x < b}
the open intervals and likewise [a, b], [a, b) and (a, b] the closed and semiopen in-
tervals. The metric topology has at every point x a neighborhood system of one
of the following four types: (a) {(a, b) : a < x < b}, (b) {(a, x] : a < x}, (c)
{[x, b) : x < b}, (d) {{x}}. In particular, every monotone space is Eilenberg or-
derable (or weakly orderable); in more detail, if < is a witnessing order, then every
open interval (a, b) is open in the metric topology, i.e. the metric topology is finer
than the order topology. Such an order will be from now on called compatible.

If a metric space contains a dense monotone subspace, then the space itself is
monotone. It follows that every σ-monotone subset of a metric space is contained
in a σ-monotone Fσ-subset. This fact will be utilized at several occasions.

Topological dimension of a monotone metric space is at most one.

Hausdorff dimension of monotone sets. Though the topological dimension of
a monotone metric space is at most one, in a general context of a separable metric
space there is nothing one can say about the Hausdorff dimension dimHX of X.
Indeed, there are 1-monotone compact spaces of arbitrary Hausdorff dimension,
including ∞.

However, when one considers only monotone subspaces of Euclidean spaces, there
is an upper estimate of Hausdorff dimension by means of the witnessing constant:
There is a universal constant q such that if E ⊆ Rn is c-monotone, then dimHE 6
n − q

c log(c+1) . This is proved in the oncoming paper [11]. But it is not known if

this estimate is optimal for large c and there is no better estimate known to date
for c close to 1.

On the other hand, by a result from [12], every Borel set in Rn contains a
σ-monotone subset of the same Hausdorff dimension. Thus a monotone set can have
Hausdorff dimension greater than 1. The same holds for curves: by an unpublished
result of Pieter Allart and Ondřej Zindulka, the von Koch curve is monotone.
However, as we shall see below, this cannot happen when a curve is a graph of a
continuous function.

The interplay between porosity and monotonicity (and also cardinal invariants
of σ-monotone sets) in the plane are investigated in [4, 11]. In particular, by [4,
Theorem 4.2], every monotone set in Rn is strongly porous1. This fact is utilized
in Section 6.

1See Section 6 for the definition.
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Monotone graphs. We will focus on properties of continuous functions that have
monotone graph. It turns out that such a graph has σ-finite 1-dimensional Hausdorff
measure and in particular, in contrast with the just mentioned von Koch curve
property, has Hausdorff dimension 1. Can one go further and prove for instance that
a continuous function with a monotone graph is differentiable at a large set? Or,
in the other direction, that a differentiable function has a monotone or σ-monotone
graph? The goal of this paper is to investigate if monotonicity of a graph is related
to the differentiability of the underlying function and in particular provide answers
to these questions.

We begin with a preliminary Section 2, where definitions, notation and some
elementary facts are established.

In Section 3 an example of a continuous function with a “pointwise” non-monotone
graph is provided. In particular, the graph is not σ-monotone and actually any
σ-monotone subset of the graph has to be meager. This function is nowhere differ-
entiable.

On the other hand, it is not difficult to construct an example of a continuous
function with a monotone graph that admits a point where both upper Dini deriva-
tives are ∞ and both lower Dini derivatives are −∞ and thus such a function need
not be differentiable at all points. But it turns out that at almost all points either
the derivative exists or else the upper Dini derivatives are ∞ and the lower ones
−∞. And though the derivative need not exist at all points, it exists at a dense
set. These facts are proved in Section 4.

The last theorem of Section 4 asserts that a continuous function with a 1-
monotone graph is differentiable almost everywhere. In Section 5 we construct
a continuous function that exhibits that surprisingly this theorem completely fails
for monotone graph: An almost nowhere differentiable function with a monotone
graph.

As proved at the beginning of Section 6, a graph of an absolutely continuous
function is σ-monotone except a set of linear measure zero. The following result
of Section 6 is thus perhaps surprising: There is an absolutely continuous function
whose graph is not σ-monotone. Moreover, such a function can be constructed so
that the graph is a porous set.

The concluding Section 7 lists some open problems.

2. Monotone graphs

For A ⊆ R2 denote dimHA the Hausdorff dimension of A. Lebesgue measure
on the line is denoted by L . Given A ⊆ R2, its linear measure, i.e. 1-dimensional
Hausdorff measure, is denoted H 1(A) and referred to as Hausdorff length.

Monotone curves. A curve (in more detail, a simple curve) C ⊆ Rn is an image
of a one-to-one continuous mapping (hence a homeomorphism) ψ : [0, 1]→ Rn. The
mapping ψ is a parametrization of C. A curve is obviously a linearly ordered space.
In particular, it is Eilenberg orderable. By [2, Theorem II], if a space is Eilenberg
orderable and connected, then the order is unique up to reversing. Therefore there
are only two compatible orders on a curve: the order given by ψ(t) < ψ(s) if t < s
and its reverse. These orders are the only orders that can witness monotonicity of
C. Since being symmetrically c-monotone is invariant with respect to reversing the
witnessing order, it does not matter which of the two orders we choose. Overall,
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given a curve C and (any) parametrization ψ of C, and the following conditions

for all x < y < z ∈ [0, 1] |ψ(x)− ψ(y)| 6 c|ψ(x)− ψ(z)|,(3)

for all x < y < z ∈ [0, 1] |ψ(z)− ψ(y)| 6 c|ψ(x)− ψ(z)|,(4)

we have

Lemma 2.1. (i) C is c-monotone if and only if at least one of (3), (4) holds,
(ii) C is symmetrically c-monotone if and only if both (3) and (4) hold.

The following simple lemma will be used several times.

Lemma 2.2. Let C be a curve and ψ : [0, 1] → C its parametrization. If C is
σ-monotone, then for any interval I ⊆ [0, 1] there is a subinterval I ′ ⊆ I such that
ψ[I ′] is monotone.

Proof. Suppose that I is closed. The subset ψ[I] ⊆ C is σ-monotone. Due to [7,
Corollary 2.6] it is a countable union of closed monotone sets. Using Baire category
theorem one of these sets has a nonempty interior. Thus there is a nonempty open
set U ⊆ ψ[I] that is monotone. Let I ′ ⊆ ψ−1(U) be any nonempty interval. �

Monotone graphs. We will be concerned with monotonicity of graphs of contin-
uous functions. Given a continuous function f : [0, 1]→ R, its graph is of course a
curve. We write ψf (x) = (x, f(x)) (or just ψ(x) if there is no danger of confusion)
to denote its natural parametrization.

Formally there is no difference between f and its graph, but confusion may arise
for instance from “f is monotone”. Therefore we use f when referring to the graph
of f as a pointset in the plane (and likewise g for the graph of g etc.). Given a set
E ⊆ [0, 1], denote f|E = ψ[E] the graph of f restricted to E.

As explained above, if f is c-monotone, there are only two candidates for the
witnessing order: the one that we shall refer to as the natural order and that is
given by ψ(x) < ψ(y) if x < y, and its reverse.

The following simple condition equivalent to monotonicity of f will turn useful.

Definition 2.3. Given c > 0, say that f satisfies condition Pc if

(Pc) max
x6t6y

|f(x)− f(t)| 6 c|x− y| whenever x < y and f(x) = f(y).

Lemma 2.4. Let f : [0, 1]→ R be a continuous function and c > 1.

(i) If f is c-monotone, then f satisfies Pc,
(ii) if f satisfies Pc−1, then f is symmetrically c-monotone.

Proof. (i) Let x < y satisfy f(x) = f(y). c-monotonicity of f yields for all t ∈ [x, y]

|f(x)− f(t)| 6 |ψ(x)− ψ(t)| 6 c|ψ(x)− ψ(y)| = c|x− y|.
(ii) We prove only condition (3); condition (4) is proved in the same manner.

Let x < y < z ∈ [0, 1]. Suppose f(x) 6 f(z). The case f(x) 6 f(y) 6 f(z) is
trivial. Suppose that f(x) 6 f(z) 6 f(y). Find w ∈ [x, y] such that f(w) = f(z).
Condition Pc−1 yields |f(z)− f(y)| 6 (c− 1)|z − w|. Therefore

|ψ(x)− ψ(y)| 6 |(x− z, f(x)− f(y))|
6 |ψ(x)− ψ(z)|+ |(z − z, f(z)− f(y))|
6 |ψ(x)− ψ(z)|+ (c− 1)|z − w| 6 c|ψ(x)− ψ(z)|.

The case f(y) 6 f(x) 6 f(z) is similar, and so is f(x) > f(z). �
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3. A continuous function whose graph is not monotone at all

Consider the following property that badly violates monotonicity.

Definition 3.1. Let (X, d) be a metric space. Say that a point x ∈ X is bad if for
every neighborhood U of x, every compatible order < on U and every c ∈ R there
are points y, z ∈ U such that x < y < z and d(x, y) > cd(x, z).

It is clear that a space with a bad point is not monotone and Baire category argu-
ment shows that a compact space with a dense set of bad points is not σ-monotone.

We begin with an example of a continuous function f such that all points of its
graph f are bad. The function is similar to the example of a nowhere differentiable
function constructed by Faber [3].

Theorem 3.2. There exists a continuous function f : [0, 1] → R such that each
point of its graph, except the endpoints, is bad.

Proof. The function f is built of triangle wave functions. Define T : R→ R by

T (x) = min{|x− n| : n is an even integer}.

Let an ↓ 0 be a sequence satisfying, for all n ∈ N,

(5)
∑
k>n

ak 6
an
n

(e.g. an = 1/n! will do). Construct inductively a sequence bn > 0 subject to b1 = a1
and

(6)
∑
k<n

ak
bk
6

an
nbn

.

Since a1 = b1, we have
∑n
k=1 ak/bk > 1. Thus (6) yields

(7) bn 6
an
n
.

The following formula defines by virtue of (5) a continuous function.

f(x) =

∞∑
n=1

anT
( x
bn

)
.

For simplicity stake write fn(x) = anT
(
x
bn

)
. Note that for all x 6= y

|fn(x)− fn(y)|
|x− y|

6
an
bn
,(8)

|fn(x)| 6 an.(9)

Claim. Let |x− y| 6 4bn.

(i) If |fn(x)− fn(y)| > an/2, then |f(x)− f(y)| > an/2− 6an/n.
(ii) If fn(x) = fn(y), then |f(x)− f(y)| 6 6an/n.
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Proof of the claim. (i)

|f(x)− f(y)| >|fn(x)− fn(y)| −
∑
k 6=n

|fk(x)− fk(y)|

>
an
2
− |x− y|

∑
k<n

|fk(x)− fk(y)|
|x− y|

−
∑
k>n

|fk(x)|+ |fk(y)|

(8,9)

>
an
2
− |x− y|

∑
k<n

ak
bk
− 2

∑
k>n

ak

(6,5)

>
an
2
− 4bn

an
nbn
− 2

an
n

=
an
2
− 4an

n
− 2an

n
=
an
2
− 6an

n
.

(ii) By assumption

|f(x)− f(y)| 6
∑
k 6=n

|fk(x)− fk(y)|

6 |x− y|
∑
k<n

|fk(x)− fk(y)|
|x− y|

+
∑
k>n

|fk(x)|+ |fk(y)|

(8,9)

6 |x− y|
∑
k<n

ak
bk

+ 2
∑
k>n

ak
(6,5)

6 4bn
an
nbn

+ 2
an
n

=
6an
n
. �

Proceed with the proof of the theorem. Fix x ∈ R. Since the only compatible
orders on f are induced by the natural order on [0, 1] and its reverse, in order to
show that ψ(x) is bad it is enough to prove: For any ε > 0 and c > 1 there are
points

(i) y, z ∈ (x, x+ ε) such that x < y < z and |ψ(y)− ψ(x)| > c|ψ(z)− ψ(x)|,
(ii) and y′, z′ ∈ (x−ε, x) such that z′ < y′ < x and |ψ(y′)−ψ(x)| > c|ψ(z′)−ψ(x)|.

Since the function f is even, we only have to find the points y, z of (i).
Choose n ∈ N large enough to satisfy 4bn < ε and c < n−12

20 . Choose m ∈ Z
such that x ∈ [2mbn, 2(m+ 1)bn). Distinguish two cases:
• If fn(x) 6 an/2, put y = (2m + 3)bn. Then fn(y) = an and thus |fn(y) −

fn(x)| > an/2. Continuity of fn yields z ∈ [(2m + 3)bn, (2m + 4)bn] such that
fn(x) = fn(z).
• If fn(x) > an/2, put y = (2m+2)bn. Then fn(y) = 0 and thus |fn(y)−fn(x)| >

an/2. Choose z ∈ [(2m+ 2)bn, (2m+ 3)bn] such that fn(x) = fn(z).
In any case, the numbers y, z satisfy (a) x < y < z, (b) z − x 6 4bn < ε, (c)

|fn(y)− fn(x)| > an/2, (d) fn(z) = fn(x). Apply the Claim to get

|ψ(y)− ψ(x)|
|ψ(z)− ψ(x)|

>
|f(y)− f(x)|

|z − x|+ |f(z)− f(x)|
(i,ii)

>
an/2− 6an/n

4bn + 6an/n

(7)

>
an/2− 6an/n

4an/n+ 6an/n
=
n− 12

20
> c,

as required. �

Corollary 3.3. (i) Each monotone subset of f is nowhere dense in f.
(ii) Hence each σ-monotone subset of f is meager in f.

(iii) In particular, f is not σ-monotone.
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Proof. We prove (i), as (ii) and (iii) are obvious consequences of (i). Aiming towards
contradiction assume that there is a monotone set E ⊆ f that is not nowhere dense.
Due to [7, Proposition 2.5] E may be assumed closed. Therefore there is a nonempty
open set U ⊆ E. Since any point x ∈ U is bad, the set U is not monotone: the
contradiction. �

The formula ρ(x, y) = d
(
ψf (x), ψf (y)

)
defines a metric on [0, 1] that induces

the Euclidean topology, so that
(
[0, 1], ρ

)
is a metric space isometric to f. Thus

Proposition 3.3 can be transferred to [0, 1]:

Corollary 3.4. There exists a compatible metric on [0, 1] such that each point of
(0, 1) is bad.

4. Differentiability of functions with a monotone graph

The function constructed in the previous section is nowhere differentiable. Per-
haps it is not incidental. In this section we investigate differentiability of functions
with monotone or σ-monotone graphs.

Recall first definitions of derivatives and related notation. The upper right Dini
derivative of a function f at point a is denoted and defined by

f+(a) = lim sup
x→a+

f(x)− f(a)

x− a
.

The other three Dini derivatives f+(a), f−(a) and f−(a) are defined likewise. If
the four Dini derivatives at a equal, the common value is of course the derivative
f ′(a). If the two right Dini derivatives at a are equal, the common value is called
the right derivative and denoted f+(a); and likewise for the left side.

The approximate upper right Dini derivative of a function f at point a is denoted
and defined by

f+app(a) = inf
{
t : lim

δ→0+

1

δ
L
({
x ∈ (a, a+ δ) : f(x)−f(a)x−a 6 t

})
= 1
}

The other three approximate Dini derivatives f+app(a), f−app(a) and f−app(a) are de-
fined likewise. If the four approximate Dini derivatives at a are equal, the common
value is called the approximate derivative and denoted f ′app(a). If the two right
approximate Dini derivatives at a equal, the common value is called the right ap-
proximate derivative and denoted f+app(a); and likewise for the left side.

In the subsequent theorems and later on we use the following notation for the sets
of differentiability/nondifferentiability: Given a continuous function f : [0, 1]→ R,
let

D(f) = {x ∈ [0, 1] : f ′(x) exists},
N(f) = {x ∈ [0, 1] : f ′(x) does not exist}.

The following proposition claims that if f is monotone, then the approximate deriva-
tives coincide with derivatives.

Proposition 4.1. Let f be a continuous function on [0, 1] with a monotone graph.
Then f+app(a) = f+(a) for all a ∈ [0, 1]. A similar statement holds for all Dini
derivatives.
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Proof. Assume for contrary that there is a such that f+app(a) < f+(a). Mutatis
mutandis we may suppose that a = f(a) = 0. Choosing suitable constants α, β the
function g(x) = αf(x) − βx satisfies g+app(0) < 0 and g+(0) > 1. Since the graph
of g is an affine transform of the graph of f and an affine transform is bi-Lipschitz,
the graph of g is by [7, Proposition 2.2] a monotone set. Therefore there is c > 1
such that g satisfies condition Pc.

Since g+app(0) < 0, there is a Borel set M ⊆ [0, 1] such that

(10) ∀ε > 0 ∃δ0 ∀δ ∈ (0, δ0) L
(
[0, δ] \M

)
< εδ ∧ ∀x ∈ [0, δ] ∩M g(x) < 0.

On the other hand, since g+(0) > 1,

(11) ∀δ > 0 ∃t ∈ (0, δ) g(t) > t.

Let ε = 1
2c and let δ0 satisfy (10). Use (11) to find t ∈ (0, δ02 ) such that g(t) > t.

Put δ = 2t. Since ε 6 1
2 and δ < δ0, it follows from (10) that M ∩ (0, t) 6= ∅ and

M ∩ (t, 2t) 6= ∅. Therefore the numbers

x = sup{z < t : g(z) < 0},
y = inf{z > t : g(z) < 0}

satisfy 0 < x < t < y < δ. Also g(x) = g(y) = 0 by the continuity of g. Obviously
[x, y] ∩M = ∅. Hence (10) yields L

(
[x, y]

)
< εδ. Therefore

c|y − x| = cL
(
[x, y]

)
< cεδ = t < g(t) = |g(t)− g(x)|

and thus condition Pc fails: the desired contradiction. �

As pointed out in the introduction, monotonicity of f does not imply differentia-
bility of f at every point. We now investigate the structure of Dini derivatives of
a function with a monotone graph in order to show that such a function, however,
has a derivative at a rather rich set.

We will need the following folklore covering lemma. Instead of reference we
provide a brief proof.

Lemma 4.2. Let X be a metric space and E ⊆ X. Let {rx : x ∈ E} be a
set of positive reals such that supx∈E rx < ∞. Then for each δ > 2 there is a
set D ⊆ E such that the family {B(x, rx) : x ∈ D} is disjoint and the family
{B(x, δrx) : x ∈ D} covers E.

Proof. We may assume that rx < 1 for all x ∈ E. Define recursively

An = {x ∈ E : (δ − 1)−n+1 > rx > (δ − 1)−n},

Bn = {x ∈ An : B(x, rx) ∩
⋃
i<n

⋃
Ai = ∅}

and let An ⊆ {B(x, rx) : x ∈ Bn} be a maximal disjoint family. It is easy to check
that D = {x ∈ E : B(x, rx) ∈

⋃∞
n=0An} is the required set. �

Lemma 4.3. Suppose that f and c satisfy condition (3). Let

E+ = {x ∈ [0, 1] : ∃xn ↓ x such that f(xn) = f(x)}.

If A ⊆ E+, then H 1(f|A) 6 4cL (A).
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Proof. Let A ⊆ E+. Fix ε > 0. Let {Ui : i ∈ N} be a cover of A by open intervals
of length < ε such that

∑
i diam(Ui) < L (A) + ε.

Now fix i ∈ N. For each x ∈ A∩Ui choose zx > x, zx ∈ Ui such that f(zx) = f(x).
If y ∈ [x, zx], then

|ψ(y)− ψ(x)| 6 c|ψ(zx)− ψ(x)| = c|zx − x|.

It follows that letting rx = c(zx − x) we have

f
∣∣[x, zx] ⊆ B(ψ(x), rx).

Consider the family B = {B(ψ(x), rx) : x ∈ A ∩ Ui} and apply Lemma 4.2: For
any δ > 2 there is a set A′ ⊆ A ∩ Ui such that the family {B(ψ(x), rx) : x ∈ A′} is
pairwise disjoint and f|(A∩Ui) ⊆

⋃
x∈A′ B(ψ(x), δrx). We claim that the family of

intervals {[x, zx] : x ∈ A′} is pairwise disjoint. Indeed, if x, x′ ∈ A′ were such that
[x, zx] ∩ [x′, zx′ ] 6= ∅, the set ψ([x, zx] ∪ [x′, zx′ ]) would be due to continuity of f a
connected set meeting both B(ψ(x), rx) and B(ψ(x′), rx′) and the two balls would
not be disjoint.

Therefore∑
x∈A′

diam(B(ψ(x), δrx)) 6 2δ
∑
x∈A′

rx 6 2δc
∑
x∈A′

|x− zx| 6 2δcdiam(Ui).

Moreover, the diameters of B(ψ(x), δrx) do not exceed 2δcε. Consequently

H 1
2δcε(f|(A ∩ Ui) 6 2δcdiam(Ui).

Summing over i yields

H 1
2δcε(f|A) 6 2δc

∑
i∈N

diam(Ui) 6 2δc(L (A) + ε)

and H 1(f|A) 6 4cL (A) follows on letting ε→ 0 and δ → 2. �

Recall that a point x ∈ [0, 1] is called a knot point of f if f−(x) = f+(x) = ∞
and f−(x) = f+(x) = −∞. We now infer that if f is monotone, then almost every
point x is either a knot point or else the derivative at x exists.

Theorem 4.4. If f : [0, 1] → R is a continuous function with a monotone graph,
then almost all x ∈ N(f) are knot points.

Proof. We employ the approximate derivative version of the famous Denjoy–Young–
Saks Theorem due to Alberti, Csornyei, Laczkovich and Preiss [1] that strengthens
the Denjoy–Khintchine Theorem:

If f is measurable, then there is a set J ⊆ R such that H 1(f|J) = 0 and for
every point x /∈ J either f ′app(x) exists and is finite, or else all approximate Dini
derivatives are infinite.

Using Proposition 4.1, conclude that if x /∈ D(f) ∪ J , then all Dini derivatives
are infinite and, moreover, either f+(x) =∞ and f+(x) = −∞ or else f−(x) =∞
and f−(x) = −∞.

We thus only need to show that if x /∈ D(f)∪ J , then it cannot happen that one
of the one-sided derivatives exists (and is infinite), while on the other side the Dini
derivatives differ from each other (and are infinite). Since flipping the orientations
of x- and/or y-axes preserves monotonicity, it is enough to prove that if f+(x) =∞,
then f−(x) > −∞.
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Suppose the contrary. Since f is monotone, there is c such that f satisfies condi-
tion Pc. There is ε > 0 such that f(y)− f(x) > 2c(y − x) for all y ∈ (x, x+ ε] and
there is z ∈ [x− ε, x) such that f(z)− f(x) > 2c(x− z). Using Darboux property
of f find a point y ∈ (x, x+ ε] such that f(y) = f(z). We have

f(y)− f(x) =
1

2
(f(y)−f(x) + f(z)−f(x)) >

1

2
(2c(y−x) + 2c(x−z)) = c(y − z),

which contradicts condition Pc. �

Corollary 4.5. If f : [0, 1]→ R is a continuous function with a c-monotone graph,
then H 1(f|A) 6 4cL (A) for every A ⊆ N(f). In particular, H 1(f|N(f)) <∞.

Proof. Suppose without loss of generality that the witnessing order is the natural
one. We follow the notation of Lemma 4.3. By Theorem 4.4 and its proof there
is J ⊆ [0, 1] such that H 1(f|J) = 0 and N(f) \ J ⊆ E+. Lemma 2.4 yields
condition (3), whence by Lemma 4.3 if A ⊆ N(f) \ J , then H 1(f|A) 6 4cL (A).
Since H 1(f|J) = 0, we are done. �

Recall that a set A ⊆ R2 is rectifiable if there are Lipschitz maps φn : [0, 1]→ R2

such that H 1(A \
⋃
n∈N φn[0, 1]) = 0.

Corollary 4.6. If f : [0, 1] → R is a continuous function with monotone graph,
then

(i) there is a partition A ∪B = f such that A is rectifiable and H 1(B) <∞,
(ii) in particular, f is of σ-finite Hausdorff length,

(iii) in particular, the Hausdorff dimension dimH f = 1.

Proof. The set A = f|D(f) is rectifiable, see e.g. [5, Lemma 15.13], and therefore is
of σ-finite length. By Corollary 4.5, B = f|N(f) is of finite length. �

Next we prove that a set of differentiability is rather large.

Theorem 4.7. Let f : [0, 1] → R be a continuous function with a σ-monotone
graph. Then L (f [D(f)∩I]) > 0 for each interval I ⊆ [0, 1] where f is not constant.

Proof. Using Lemma 2.2 it is clearly enough to prove that if f is monotone and
f(0) 6= f(1), then L (f [D(f)]) > 0. Suppose the contrary: L (f [D(f)]) = 0. Let
0 6 x < y 6 1. Use the assumption and Corollary 4.5 to estimate |f(x)− f(y)|:

|f(x)− f(y)| = L ([f(x), f(y)]) 6 L (f [x, y])

6 L (f [[x, y] ∩ N(f)]) + L (f [[x, y] ∩ D(f)])

6 4cL ([x, y] ∩ N(f)) + L (f [D(f)]) 6 4cL ([x, y]) = 4c|x− y|.

It follows that f is a Lipschitz function. Therefore it is differentiable almost every-
where. Use Corollary 4.5 again to get L (f [N(f)]) 6H 1(f|N(f)) = 0. Thus

L (f [D(f)]) > L (f [0, 1])−L (f [N(f)]) = L (f [0, 1]) > |f(0)− f(1)| > 0,

which contradicts the assumption. �

Corollary 4.8. Let f : [0, 1] → R be a continuous function with a σ-monotone
graph. Then D(f) ∩ I contains a perfect set for each interval I.

In particular, f is differentiable at a dense set.
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Proof. If f is constant on I, there is nothing to prove. Otherwise Theorem 4.7
yields L (f [D(f) ∩ I]) > 0. Therefore D(f) ∩ I is an uncountable Borel set. Thus
it contains, by the Perfect Set Theorem, a perfect set. �

We conclude this section proving that monotonicity constant c = 1 yields differ-
entiability almost everywhere. As we shall see in the next section, it is not the case
for any other c.

Theorem 4.9. Let f : [0, 1] → R be a continuous function with a 1-monotone
graph. Then H 1(f|N(f)) = 0. In particular, f is a rectifiable curve and f is
differentiable almost everywhere.

Proof. By Theorem 4.4 there is a set J ⊆ N(f) such that L (J) = 0 and all points
of N(f)\J are knot points. We prove that N(f) ⊆ J . Suppose there is y ∈ N(f)\J .
Since f−(y) = −∞, there is a point x < y such that f(x)− f(y) 6 x− y. Since f is
1-monotone, the set ψ[x, y] is contained in the closed ball centered at ψ(x) whose
boundary circle passes through ψ(y). In particular, for all z ∈ [x, y], the angle
spanned by the segments [ψ(y), ψ(z)] and [ψ(y), ψ(x)] is at most π/2. In other
words, f(y) − f(z) 6 y − z. Therefore f−(y) 6 1, i.e. y is not a knot point. We
proved that N(f) ⊆ J , which in turn yields L (N(f)) = 0. Apply Corollary 4.5 to
conclude the proof. �

5. Non-differentiable functions with a monotone graph

In this section we provide an example of a continuous, non-differentiable function
with a monotone graph, sharply contrasting Theorem 4.9.

Theorem 5.1. For any c > 1 there is a continuous, almost nowhere differentiable
function f : [0, 1]→ R with a symmetrically c-monotone graph.

The function f we construct satisfies condition P1. That is enough, because
given any c > 1, the function x 7→ (c − 1)f(x) satisfies obviously condition Pc−1
and is thus by Lemma 2.4 c-monotone.

Construction of the function. The function f is defined as a limit of a sequence
of piecewise linear continuous functions fn : [0, 1]→ [0, 1] that we now define.

We recursively specify finite sets An = {akn : k = 0, . . . , rn} ⊆ [0, 1] such that

0 = a0n < a1n < · · · < arnn = 1

and values of fn at each point of An. The function fn is then defined as the unique
function that is linear between consecutive points of An.

For n = 0 put A0 = {0, 1} and f0(0) = f0(1) = 0.
The induction step: Suppose fn and An = {akn : k = 0, . . . , rn} are constructed.

Let k < rn be arbitrary. For l = 0, . . . , 5 set xl =
lak+1
n + (5− l)akn

5
.

If fn(akn) = fn(ak+1
n ), set Akn = {xl : l = 1, . . . , 5} and

fn+1(x0) = fn+1(x1) = fn+1(x4) = fn+1(x5) = fn(akn),

fn+1(x2) = fn+1(x3) = fn(akn) +
|ak+1
n − akn|

6
.
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If fn(akn) 6= fn(ak+1
n ), set Akn = {x0, x1, x4, x5} and

fn+1(x0) = fn(akn),

fn+1(x5) = fn(ak+1
n ),

fn+1(x1) = fn+1(x4) =
fn(akn) + fn(ak+1

n )

2

and let An+1 =
⋃rn−1
k=0 Akn.

Lemma 5.2. Let n ∈ N and k < rn. Then the following holds:

(i) If k > 0 then |ak−1n − akn| 6 3|ak+1
n − akn| 6 9|ak−1n − akn|,

(ii) |ak+1
2n − ak2n| 6

(
3
25

)n
,

(iii) |ak+1
2n+1 − ak2n+1| 6 1

5

(
3
25

)n
,

(iv) |ak+1
n − akn| >

(
1
5

)n
,

(v) fi(a
k
n) = fn(akn) : i > n,

(vi) |fn(ak+1
n )− fn(akn)| 6 1

6

(
1
2

)n
,

(vii)
|fn(akn)−fn(a

k+1
n )|

|akn−a
k+1
n |

= 0 ∨ |fn(a
k
n)−fn(a

k+1
n )|

|akn−a
k+1
n |

> 5
6 ,

(viii) if i > 0 and x ∈ [akn, a
k+1
n ], then

min
(
fn(akn), fn(ak+1

n )
)
6 fn+i(x)

6 max
(
fn(akn), fn(ak+1

n )
)

+ |ak+1
n − akn|

i∑
j=1

6−j ,

(ix) if i > 0, x ∈ (akn, a
k+1
n ) and fn(akn) 6= fn(ak+1

n ), then

fn+i(x) < max
(
fn(akn), fn(ak+1

n )
)
,

(x) fn is continuous and fn(x) ∈ [0, 1] for all x ∈ [0, 1].

Proof. (i)–(v) follows right away from the construction of functions fn. (vi) can be
easily proved from the construction using (ii) and (iii).

(vii): Case n = 0 is trivial. Assume (vii) holds for some n > 0 and we prove it
for n + 1. Let i < rn+1 be arbitrary. There exists k < rn such that ain+1, a

i+1
n+1 ∈

[akn, a
k+1
n ].

• If
|fn(akn)− fn(ak+1

n )|
|akn − ak+1

n |
= 0, then

|fn+1(ain+1)− fn+1(ai+1
n+1)|

|ain+1 − a
i+1
n+1|

= 0 ∨
|fn+1(ain+1)− fn+1(ai+1

n+1)|
|ain+1 − a

i+1
n+1|

=
5

6
.

• If
|fn(akn)− fn(ak+1

n )|
|akn − ak+1

n |
6= 0, then

|fn+1(ain+1)− fn+1(ai+1
n+1)|

|ain+1 − a
i+1
n+1|

= 0

or
|fn+1(ain+1)− fn+1(ai+1

n+1)|
|ain+1 − a

i+1
n+1|

=
5

2

|fn(akn)− fn(ak+1
n )|

|akn − ak+1
n |

>
5

6
.

(viii): The first inequality is obvious. The second inequality is proved by induction
over i. Case i = 1 easily follows from the construction. Suppose that this statement
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is true for i = p. We show that it is also true for i = p + 1. Find l < rn+1 such
that x ∈ [aln+1, a

l+1
n+1] and use the induction hypothesis to compare fn(akn), fn(ak+1

n )

with fn+1(aln+1), fn+1(al+1
n+1) (which is the case i = 1) and fn+1(aln+1), fn+1(al+1

n+1)
with fn+p+1(x) (which is the case i = p).

(ix): This is similar to (viii). Case i = 1 easily follows from the construction.
Proceed by induction: Assume that the statement is true for i = p. We show that
it is also true for i = p+ 1. Find l < rn+1 such that x ∈ [aln+1, a

l+1
n+1].

If f(aln+1) 6= f(al+1
n+1) then use the statement to compare fn(akn), fn(ak+1

n ) with

fn+1(aln+1), fn+1(al+1
n+1) (which is the case i = 1) and fn+1(aln+1), fn+1(al+1

n+1) with
fn+p+1(x) (which is the case i = p).

If f(aln+1) = f(al+1
n+1) then by the construction and (vii) we have

25

36
|aln+1 − al+1

n+1| =
5

12
|ak+1
n − akn|

6
1

2
max

(
fn(akn), fn(ak+1

n )
)
−min

(
fn(akn), fn(ak+1

n )
)

= max
(
fn(akn), fn(ak+1

n )
)
− fn+1(aln+1).

By (viii) we have

fn+p+1(x)) 6 fn+1(aln+1) +
1

5
|aln+1 − al+1

n+1|.

Thus fn+p+1(x) < max
(
fn(akn), fn(ak+1

n

)
.

(x) can be easily proved from the construction using (viii). �

Lemma 5.3. The functions fi satisfy condition P1 for every i.

Proof. Let x < y ∈ [0, 1] and i be arbitrary such that fi(x) = fi(y). We show that

(12) max
x6t6y

|fi(x)− fi(t)| 6 |x− y|.

Since fi is piecewise linear, level sets are finite. We may thus assume that there is
no w ∈ (x, y) such that fi(w) = fi(x). Let z ∈ (x, y) be such that maxx6t6y|fi(x)−
fi(t)| = |fi(x)− fi(z)|. The case fi(x) = fi(z) is trivial. We may thus assume that
either fi(x) < fi(z) or fi(x) > fi(z).

Assume first fi(x) < fi(z). By the construction of fi we can find minimal
n 6 i and k < rn − 1 such that z ∈ (akn, a

k+1
n ) ⊂ (x, y) and fi(a

k
n) = fi(a

k+1
n ) ∈

(fi(x), fi(z)]. By Lemma 5.2(v) we have fn(akn) = fn(ak+1
n ) = fi(a

k
n). We show

that fn(ak−1n ) < fn(akn).
Suppose the contrary: fn(ak−1n ) > fn(akn). By Lemma 5.2(viii) we have fi(t) >

fn(akn) for all t ∈ (ak−1n , akn). So, x /∈ [ak−1n , akn]. Thus ak−1n ∈ (x, y). By Lemma
5.2(vii) and (i) we have

fn(ak−1n ) > fn(akn) +
5

6
|ak−1n − akn| > fn(akn) +

5

18
|akn − ak+1

n |.

By Lemma 5.2(viii) we have f(z) 6 fn(akn) + 1
5 |a

k
n − ak+1

n |. Thus fi(z) < fi(a
k−1
n ),

which contradicts that fi(t) 6 fi(z) for all t ∈ (x, y).
Similarly, we have fn(ak+1

n ) > fn(ak+2
n ).

By the construction we have that there exists l < rn−1 such that aln−1 = ak−2n ,

al+1
n−1 = ak+3

n ) and fn(aln−1) = fn(al+1
n−1). By the minimality of n we have (x, y) 6⊃
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(aln−1, a
l+1
n−1). Thus x ∈ [aln−1, a

l+1
n−1] or y ∈ [aln−1, a

l+1
n−1]. We can assume x ∈

[aln−1, a
l+1
n−1]. By Lemma 5.2(viii) and x, z ∈ [aln−1, a

l+1
n−1] we have

max
x6t6y

|fi(x)− fi(t)| = |fi(x)− fi(z)| 6
1

5
|aln−1 − al+1

n−1| = |akn − ak+1
n | 6 |x− y|.

Now assume fi(x) > fi(z). By the construction of fi and Lemma 5.2(viii) we
can find minimal n 6 i and k < rn − 1 such that akn, a

k+1
n ∈ (x, y) and fi(a

k
n) =

fi(a
k+1
n ) = fi(z). By Lemma 5.2(v) we have fn(akn) = fn(ak+1

n ) = fi(z). Since
fi(t) > fn(akn) for all t ∈ (x, y) and Lemma 5.2(ix) we have fn(ak−1n ), fn(ak+2

n ) >

fn(akn). By the construction there is no l < rn−1 such that (aln−1, a
l+1
n−1) ⊃

(ak−1n , ak+2
n ). Thus there are two possible cases:

(i) There exists l < rn−1 such that aln−1 = ak+1
n and f(al−1n−1) = f(aln−1).

(ii) There exists l < rn−1 such that aln−1 = akn and f(al+1
n−1) = f(aln−1).

We prove only (i), as the case (ii) is similar. By minimality of n we have x ∈
[al−1n−1, a

l
n−1]. Lemma 5.2(viii) yields

max
x6t6y

|fi(x)− fi(t)| = |fi(x)− fn(aln−1)|

6
1

5
|al−1n−1 − aln−1| = |akn − ak+1

n | < |x− y|. �

Lemma 5.4. The sequence {fn} is uniformly Cauchy.

Proof. Fix n ∈ N and let k < rn. If akn 6 x 6 a
k+1
n , then by construction of fn+1

|fn+1(x)− fn(x)| 6 1

6
|ak+1
n − akn|+

3

10
|fn(ak+1

n )− fn(akn)|.

Estimate |ak+1
n − akn| using Lemma 5.2(ii) and (iii) and |fn(ak+1

n ) − fn(akn)| using
Lemma 5.2(vi) and combine the estimates to get

1

6
|ak+1
n − akn|+

3

10
|fn(ak+1

n )− fn(akn)| 6 2−n.

Thus |fn+1(x)− fn(x)| 6 2−n, irrespective of the particular k. Since the intervals
[akn, a

k+1
n ], k < rn, cover [0, 1], we have |fn+1(x)− fn(x)| 6 2−n for all x, which is

clearly enough. �

This lemma lets us define f = limn→∞ fn. We claim that thus defined f is the
required function. It is of course continuous. By Lemma 5.3 the functions fn satisfy
condition P1. It is easy to check that since f is a limit of fn’s, it satisfies P1 as
well. We thus have

Proposition 5.5. f is a continuous function satisfying P1.

It remains to show that f fails to have a derivative at almost all points. For
n ∈ N define

An = {x ∈ [0, 1] : f ′n(x) = 0},

Bn = [0, 1] \An,

B =
⋃
i∈N

∞⋂
n=i

Bn,

D =
{
x ∈ [0, 1]; ∀n ∈ N : x · 5n (mod 1) /∈

(
1
5 ,

4
5

)}
.
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Lemma 5.6. L (B) = 0.

Proof. For every n set Mn =
{
i < rn : f ′n

(ain+ai+1
n

2

)
6= 0
}

. It is easy to see that

B =
⋃
n∈N

⋃
i∈Mn

{x · |ai+1
n − ain|+ ain : x ∈ D}

and since obviously L (D) = 0, we are done. �

Proposition 5.7. (i) If x /∈ B, then f+(x) and f−(x) do not exist.
(ii) If x ∈ B, then at least one of the Dini derivatives of f at x is infinite.

Proof. (i): Let x /∈ B. We show that f+(x) does not exists, the proof for f−(x) is
similar. Let δ > 0 be arbitrary. Since x /∈ B there exist n ∈ N and ki < rn+i such

that x ∈ (ak0n , a
k0+1
n ), fn(ak0n ) = fn(ak0+1

n ), |ak0+1
n − ak0n | < δ and akin+i = ak0n for

all i ∈ N. By the construction of functions fn we have fn+i(a
ki
n+i) = fn+i(a

ki+1
n+i ).

Since x 6= ak0n there exists i ∈ N such that x /∈ [akin+i, a
ki+1
n+i ]. We may assume that

x /∈ (ak1n+1, a
k1+1
n+1 ). By Lemma 5.2(v) and (viii) we have∣∣∣∣ f(ak2+3

n+2 )−f(x)
a
k2+3
n+2 −x

− f(a
k2+4
n+2 )−f(x)
a
k2+4
n+2 −x

∣∣∣∣ =

∣∣∣∣ fn+2(a
k2+3
n+2 )−f(x)

a
k2+3
n+2 −x

− fn+2(a
k2+4
n+2 )−f(x)

a
k2+3
n+2 −x

∣∣∣∣
>

∣∣∣∣ fn+2(a
k2+3
n+2 )−f(x)

a
k2+3
n+2 −x

− fn+2(a
k2+4
n+2 )−f(x)

a
k2+3
n+2 −x

∣∣∣∣
>

∣∣∣∣ fn+2(a
k2+3
n+2 )−fn+2(a

k2+4
n+2 )

|ak0+1
n −ak0

n |

∣∣∣∣ > 1

30
.

Thus, f+(x) does not exists.
(ii): Since x ∈ B there exist n ∈ N and ki < rn+i, i ∈ N, such that

• x ∈ [akin+i, a
ki+1
n+i ] for all i ∈ N,

• fn(ak0n ) = fn(ak0+1
n ),

• fn+i(akin+i) 6= fn+i(a
ki+1
n+i ) for all i > 0.

By the construction of functions fn we have, for all i > 0,∣∣∣∣∣fn+i(aki+1
n+i )− fn+i(akin+i)
aki+1
n+i − a

ki
n+i

∣∣∣∣∣ =
5

6

(
5

2

)i−1
.

By Lemma 5.2(v) we have, for all i > 0,∣∣∣∣∣f(aki+1
n+i )− f(x)

aki+1
n+i − x

∣∣∣∣∣ > 5

6

(
5

2

)i−1
or ∣∣∣∣∣f(x)− f(akin+i)

x− akin+i

∣∣∣∣∣ > 5

6

(
5

2

)i−1
,

which is clearly enough. �

Theorem 5.1 now follows from Proposition 5.5, Lemma 5.6 and Proposition 5.7.
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6. Absolutely continuous function with a non-σ-monotone graph

In this section we show that a graph of an absolutely continuous function is
σ-monotone except a negligible set, but it does not have to be σ-monotone.

The following is a partial converse to Theorem 4.9.

Theorem 6.1. If f : [0, 1] → R is continuous, then f|D(f) admits a countable
cover by symmetrically 1-monotone sets. In particular, f|D(f) is σ-monotone.

Proof. If f has a derivative, finite or infinite, at y, then there is obviously εy > 0
such that if y − εy 6 x < y < z 6 y + εy, then the angle spanned by the vectors
ψ(x)− ψ(y) and ψ(z)− ψ(y) is obtuse and consequently

|ψ(y)− ψ(x)| 6 |ψ(z)− ψ(x)|,
|ψ(z)− ψ(y)| 6 |ψ(z)− ψ(x)|.

(13)

For each n put

Dn = {y ∈ D(f) : εy > 2−n}
and cover each Dn with finitely many intervals Ink of length 2−n. If x < y < z
are in Dn ∩ Ink, then clearly y − εy 6 x < y < z 6 y + εy and thus (13) holds.
In summary, f|(Dn ∩ Ink) is symmetrically 1-monotone for each n and k and the
family {f|(Dn ∩ Ink)} covers f|D(f). �

Corollary 6.2. If f is everywhere differentiable, then f is a countable union of
symmetrically 1-monotone sets.

If f is absolutely continuous, then it is differentiable almost everywhere and,
moreover, the set f|N(f) is of length zero. Thus Theorem 6.1 yields the following
corollary.

Corollary 6.3. If f is an absolutely continuous function, then there is a countable
family {Mn} of symmetrically 1-monotone sets such that

H 1
(
f \
⋃

n∈N
Mn

)
= 0.

We now want to show that the above corollary cannot be sharpened by providing
an example of an absolutely continuous function which graph is not σ-monotone.

Recall the notion of strong porosity, as defined in [4]. A set X ⊆ R2 is termed
strongly porous if there is p > 0 such that for any x ∈ R2 and any r ∈ (0,diamX)
there is y ∈ R2 such that B(y, pr) ⊆ B(x, r) \ X. The constant p is termed a
porosity constant of X. As proved in [4, Theorem 4.2], every monotone set in R2 is
strongly porous. More information on porosity properties of monotone sets in Rn
can be found in [11].

M. Zelený [10] found an example of an absolutely continuous function whose
graph is not σ-porous2, and since a countable union of strongly porous sets is
σ-porous, we have, in view of [4, Theorem 4.2] mentioned above, the following
theorem.

Theorem 6.4. There is an absolutely continuous function whose graph is not
σ-monotone.

2See [10] or [8, 9] for the definition of σ-porous.
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Zelený’s example in rather involved. We provide another example that is much
simpler and moreover it exhibits that the implication monotone ⇒ strongly porous
cannot be reversed even for graphs.

Theorem 6.5. There is an absolutely continuous function whose graph is strongly
porous but not σ-monotone.

The function is built of single peak functions. Let

T (x) = dist(x,R \ [−1, 1]).

Fix two sequences of positive reals 〈an〉 and 〈bn〉. Suppose that
∑
n an < ∞ and

let the sequence 〈qn〉 enumerate all rationals within [0, 1]. The following formula
defines a real-valued function f : [0, 1]→ R.

f(x) =
∑
n∈N

anT
(x− qn

bn

)
We will show that with a proper choice of the two sequences the function f possesses
the required properties.

For simplicity stake write fn(x) = anT
(
x−qn
bn

)
and sn = an

bn
.

Lemma 6.6. If
∑
n an <∞, then f is absolutely continuous.

Proof. Fix ε > 0. Choose m ∈ N such that

(14)
∑
n>m

an 6 ε

and let

(15) δ =
ε∑

n6m
sn
.

Suppose x0 < y0 < x1 < y1 < · · · < xk < yk satisfy
k∑
i=0

yi − xi < δ.

Since |fn(xi)− fn(yi)| 6 sn(yi − xi) for all i and n, we have, for all n,

k∑
i=0

|fn(xi)− fn(yi)| 6
k∑
i=0

sn(yi − xi) < δsn(16)

and since the function fn is unimodal and ranges between 0 and an, also

k∑
i=0

|fn(xi)− fn(yi)| 6 2an.(17)

Use (16) for n 6 m and (17) for n > m to get

k∑
i=0

|f(xi)− f(yi)| 6
∑
n6m

k∑
i=0

|fn(xi)− fn(yi)|+
∑
n>m

k∑
i=0

|fn(xi)− fn(yi)|

(16,17)
<

∑
n6m

δsn +
∑
n>m

2an
(15,14)

6 ε+ 2ε = 3ε. �

Lemma 6.7. If lim
m→∞

∑
n>m an
am

= 0 and lim
m→∞

∑
n<m sn
sm

= 0, then f is not σ-mo-

notone.
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Proof. It is clear that if sm > 2c, then the points qm − bm < qm < qm + bm
witness that the graph fm is not c-monotone. We want to show that the same
argument works for the entire sum f =

∑
n fn. The former condition ensures that

the terms fn, n > m, contribute to the sum negligible quantities because of their
small magnitudes. The latter condition ensures that also the terms fn, n < m, are
negligible because of their small slopes.

Write

εm =

∑
n>m an

am
+

∑
n<m sn

sm
=

∑∞
n>m an + bm

∑
n<m sn

am
.

The hypotheses ensure that εm → 0 and that sm →∞. Therefore

1− εm
2( 1
sm

+ εm)
→∞.

According to Lemma 2.2 it is enough to show that f|I is monotone for no interval
I.

Fix c > 0 and an interval I and choose m such that [qm−bm, qm+bm] ⊆ I and

(18)
1− εm

2( 1
sm

+ εm)
> c.

If we succeed to prove that

(19) |ψ(qm+bm)− ψ(qm)| > c|ψ(qm+bm)− ψ(qm−bm)|,

we will be done, because the points qm − bm < qm < qm + bm will witness that f|I
is not c-monotone. Estimate the term on the left

|ψ(qm+bm)− ψ(qm)| > |f(qm+bm)− f(qm)|

> |fm(qm+bm)− fm(qm)| −
∑
n 6=m

|fn(qm+bm)− fn(qm)|

> am −
(∑
n<m

|fn(qm+bm)−fn(qm)|+
∑
n>m

|fn(qm+bm)−fn(qm)|
)

> am −
(∑
n<m

snbm +
∑
n>m

an

)
= am − εmam = am(1− εm),

and the term on the right

|ψ(qm+bm)− ψ(qm−bm)| 6 2bm + |f(qm+bm)− f(qm−bm)|

6 2bm +
∑
n<m

|fn(qm+bm)−fn(qm−bm)|+
∑
n>m

|fn(qm+bm)−fn(qm−bm)|

6 2bm + 2bm
∑
n<m

sn +
∑
n>m

an 6 2bm + 2
(
bm
∑
n<m

sn +
∑
n>m

an

)
6 2(bm + εmam) = 2am

( 1

sm
+ εm

)
.

Thus (18) yields

|ψ(qm+bm)− ψ(qm)|
|ψ(qm+bm)− ψ(qm−bm)|

>
am(1− εm)

2am
(

1
sm

+ εm
) =

1− εm
1
sm

+ εm
> c

and (19) follows. �
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The next goal is to show that with a proper choice of 〈an〉 and 〈bn〉 the graph
of f is porous. To that end we introduce the following system of rectangles. Let R
denote the family of all planar rectangles I × J , where I, J are compact intervals,

with aspect ratio 5 : 3, i.e. L (I)
L (J) = 5

3 . Each R ∈ R is covered in a natural way by

15 non-overlapping closed squares with side one fifth of the length of the base of
R. The family of these squares will be denoted S(R). These squares determine in
a natural way five closed columns and three closed rows.

Given R ∈ R, the length of the base of R is denoted `(R). A topological interior
of a set A is denoted A◦.

Lemma 6.8. There are sequences 〈an〉 and 〈bn〉 satisfying hypotheses of Lemma 6.7
such that for each R ∈ R there is a square S ∈ S(R) such that S◦ ∩ f = ∅.

Proof. We build the sequences recursively. Let gn =
∑
i6n fi, n ∈ N, be the partial

sums of f ; graphs of gn are denoted gn. Our goal is to find an’s and bn’s so that
for each n the following holds:

(Cn) For each R ∈ R there is a square S ∈ S(R) disjoint with gn.

Choose a0 and b0 so that s0 > 3. The graph of f0 is obviously covered by three
lines: two skewed and one horizontal. Let R ∈ R. Each of the two skewed lines,
because of their big slopes, can meet at most two out of the five columns. Therefore
one column remains left. The horizontal line meets at worst two of the three squares
forming this column. Thus one square remains disjoint with each of the three lines
and thus with the graph g0 of g0 = f0. Thus condition C0 is met.

Now suppose that ai and bi are set up for all i < n so that condition Cn−1 is
met. Let

εn = min{|qi − qj | : 0 6 i < j 6 n}.

Claim. There is δn > 0 such that if `(R) > εn, then there is S ∈ S(R) that is at
least δn far apart from gn−1.

Proof. Suppose the contrary: For each m there is Rm ∈ R such that `(Rm) > εn
and the distance of S from gn−1 is less than 1

m for each square S ∈ S(Rm). In
particular, `(Rm) 6 5 for all m > 1 and there is a bounded set that contains
all rectangles Rm. Thus passing to a subsequence we may suppose that 〈Rm〉
is convergent in the Hausdorff metric. The limit R of this sequence is clearly a
rectangle with aspect ratio 5 : 3 or a point. But the latter cannot happen, because
`(Rm) > εn for each m. Thus R ∈ R. The distance of gn−1 from each of the
squares S ∈ S(R) is obviously zero. Since the squares are compact, gn−1 meets all
of them: the desired contradiction. �

Choose an < δn and bn subject to

an 6
2−n

n
,(20)

sn > 2n
∑
i<n

si.(21)

We need to show that thus chosen values ensure condition Cn.
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Suppose first that `(R) > εn. There is S ∈ S(R) such that dist(S, gn−1) > δn.
Consequently

dist(S, gn) > dist(S, gn−1)− dist(gn−1, gn)

> δn −max|gn−1 − gn| = δn −max|fn| = δn − an > 0.

Thus S is disjoint with gn.
To treat the case `(R) < εn we first prove

Claim. If gn(x) > 0 and a local maximum of gn occurs at x, then x = qj for some
j 6 n.

Proof. Suppose gn(x) > 0 and there is a local maximum of gn at x. We examine
the left-sided derivative g−n (x). Clearly g−n (x) =

∑
i6n f

−
i (x) and each f−i (x) is

either 0, or si, or −si. If all of them were 0, the value gn(x) would be 0, so there is
i 6 n such that f−i (x) 6= 0. Let j = max{i 6 n : f−i (x) 6= 0}. Condition (20) yields
|
∑
i<j f

−
i (x)| < sj . Since g−n (x) > 0, it follows that f−j (x) = sj .

By the same analysis of the right-sided derivative, letting k = max{i 6 n :
f+i (x) 6= 0} we have f+k (x) = −sk.

Suppose that j < k. Then, by the definition of j, f−k (x) = 0 and f+k (x) = −sk.
But there is no such point. Thus j < k fails. The same argument proves that j > k
fails as well. Therefore j = k. Overall, f−j (x) = sj and f+j (x) = −sj . The only
point with this property is qj . �

Now suppose R = I × J ∈ R and that `(R) < εn. It is clear that if the graph
gn passes through all squares S ∈ S(R), then gn has at least two positive local
maxima in I. Therefore, by the above Claim, there are i < j 6 n such that both qi
and qj belong to I. Consequently |qi − qj | 6 L (I) = `(R) < εn, which contradicts
the definition of εn. Thus gn misses at least one of the squares S ∈ S(R). The
proof of condition Cn is finished.

It remains to draw the statement of the lemma from conditions Cn. Fix R ∈ R.
Since there are only finitely many squares in S(R), there is S ∈ S(R) such that the

set F = {n : gn ∩ S = ∅} is infinite. Since f = limn∈F gn, we have f ⊆
⋃
n∈F gn.

Therefore f does not meet S◦.
Conditions (20) and (21) ensure that f satisfies hypotheses of Lemma 6.7. �

Proof of Theorem 6.5. The required function f is of course the one constructed
in the above lemma. Let B(x, r) be any closed ball in R2. Inscribe in B(x, r) a
rectangle R ∈ R, as big as possible. By the above lemma there is a square S ∈ S(r)
such that S◦ misses f. Inscribe into S an open ball B. This ball is disjoint with f.
The radius of this ball is by trivial calculation r/

√
34. The closed ball concentric

with B and of radius r
6 is thus disjoint with f. We proved that f is strongly porous.

The function f is absolutely continuous by Lemma 6.6 and f is not σ-monotone
by Lemma 6.7. �

Since any monotone function has trivially a 1-monotone graph, and since every
absolutely continuous function is a difference of two increasing functions, we have

Corollary 6.9. A sum of two functions with 1-monotone graphs need not have a
σ-monotone graph.
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7. Remarks and questions

We conclude with several questions that we consider interesting.

Hausdorff dimension. Suppose f : [0, 1]→ R is a continuous function.
By Corollary 4.6, if f is monotone, then dimH f = 1. The analogy for monotone

subsets of f fails: By [12], for every f there is a σ-monotone set M ⊆ f such that
dimHM = dimH f. Thus if dimH f > 1, then there is a monotone set M ⊆ f such
that dimHM > 1. The following, however, remains an open problem.

Question 7.1. Is there f such that f is σ-monotone, but dimH f > 1?

The difficulty stems from the fact that some of the monotone sets covering f may
be totally disconnected and thus the witnessing orders need not be inherited from
f.

A different question with the same difficulty arises from Corollary 3.3. The easy
Baire argument of Lemma 2.2 lets us prove that a non-meager subset of the graph
is not σ-monotone. It is because of the fact that at a connected subset of a graph
there are only two compatible orders and thus only two candidates for a witnessing
order. Such an argument, however, cannot be adapted to subsets of a graph that
are of positive measure as such sets may be totally disconnected and thus have way
too many compatible orders to check. In particular, we do not know if the measure
analogy of Corollary 3.3 holds.

Question 7.2. Let f be the function of Theorem 3.2. Is there a set A ⊆ [0, 1] of
positive measure such that f|A is monotone?

Bounded variation. Denote for the moment by BV the linear space of continuous
functions of bounded variation and by M1 the linear space of functions generated
by continuous functions with 1-monotone graph. It is clear that an increasing
continuous function has a 1-monotone graph. Therefore any continuous function
of bounded variation is a difference of two functions with 1-monotone graphs. It
follows that BV ⊆M1. Is this inclusion proper?

Question 7.3. Is there a continuous function on [0, 1] with a 1-monotone graph
that is not of bounded variation?

Note that both answers would be interesting. If the answer were affirmative, then
we would have by Theorem 4.9 a simple class of almost everywhere differentiable
functions that is broader than BV. If the answer were negative, then we would
have another characterization of bounded variation.

It follows from Proposition 4.1 that a continuous function with a monotone,
rectifiable graph is differentiable almost everywhere. Thus the following variation
of the above question is also of interest:

Question 7.4. Is there a continuous function on [0, 1] with a monotone, rectifiable
graph that is not of bounded variation?

Luzin property. Recall that f satisfies Luzin condition if L (f(A)) = 0 whenever
L (A) = 0. Note that if f has a monotone graph, then it satisfies Luzin condition
“almost everywhere”: Letting D∞ = {x ∈ D(f) : |f ′(x)| =∞}, we have L (D∞) =
0 and if A∩D∞ = ∅, then L (A) = 0 implies L (f(A)) = 0. Hence f satisfies Luzin
condition if and only if L (f(D∞)) = 0.

The following easily follows from Theorem 4.7.
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Proposition 7.5. A continuous function satisfying Luzin condition with a σ-mono-
tone graph is differentiable at a set that has positive measure within each interval.

Question 7.6. Is a continuous function satisfying Luzin condition with a monotone
graph differentiable almost everywhere?

Porosity constant. We know from [4, Theorem 4.2] that any monotone set in R2

is strongly porous, and from Theorem 6.5 that the converse fails. In our proof we
showed that the porosity constant of f can be pushed to 1/

√
34. Perhaps a set must

be σ-monotone if it is strongly porous and its porosity constant is large enough?

Question 7.7. Is there p such that every strongly porous set in R2 with porosity
constant p is σ-monotone?

Question 7.8. Is there p such that every strongly porous curve in R2 with porosity
constant p is monotone or σ-monotone? What about graphs of continuous func-
tions?

Monotone graph vs. continuity. It is easy to check that the characteristic
function of rationals has a monotone graph. Hence monotonicity of graph does not
imply continuity. But perhaps a function f : [0, 1] → R with a monotone graph is
σ-continuous in that there is a partition {Dn : n ∈ N} of [0, 1] such that f�Dn is
continuous for each n.

Question 7.9. Is a function with a monotone (σ-monotone) graph σ-continuous?
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Ondřej Zindulka, Department of Mathematics, Faculty of Civil Engineering, Czech

Technical University, Thákurova 7, 16000 Prague 6, Czech Republic

E-mail address: zindulka@mat.fsv.cvut.cz

URL: http://mat.fsv.cvut.cz/zindulka
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E-mail address: vlasakmm@volny.cz


