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Abstract

Let I be an ideal on ω. By cov∗ (I) we denote the least size of a family
B ⊆ I such that for every infinite X ∈ I there is B ∈ B for which B ∩X
is infinite. We say that an AD family A ⊆ I is a MAD family restricted
to I if for every infinite X ∈ I there is A ∈ A such that |X ∩A| = ω.
Let a (I) be the least size of an infinite MAD family restricted to I. We
prove that If max{a,cov∗ (I)} = ω1 then a (I) = ω1. We conclude that if
I is tall and c ≤ ω2 then a (I) = max{a,cov∗ (I)}. We use these results to
prove that if c ≤ ω2 then o = 0 and that as = max{a,non(M)}.

1 Introduction and preliminaries

We say that A ⊆℘ (ω)1 is an almost disjoint family (AD) if the intersection of
any two of its elements is finite and A is MAD if it is maximal with respect to
this property. MAD families have played a very important role in set theory,
functional analysis and topology (see [12]). It follows by Zorn’s lemma that every
AD family can be extended to a MAD family; however, we may still wonder how
the extensions of an AD family might be. This has been previously studied
by Leathrum in [18] and was the object of study in [21]. Understanding how
AD families can be extended to MAD families is fundamental in order to study
certain combinatorial aspects of MAD families. This is relevant in the study of
forcing indestructibility of MAD families. Given a MAD family A and a forcing
P, we say that A is P-destructible if A is no longer maximal after forcing with
P. For example, it is known that if A is a MAD family on the rational numbers
such that every element of A is nowhere dense, then it will be destroyed by
Cohen forcing. The reader that wishes to learn more about destructibility of
MAD families may consult [13], [7], [15], [8], [11] or [17].

In order to state the main results of the paper, we need the following notions:

Definition 1 Let I be an ideal (in a countable set).
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1If X is a set, by ℘ (X) we denote its power set.
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1. We define cov∗ (I) as the least size of a family B ⊆ I such that for every
infinite X ∈ I there is B ∈ B for which B ∩X is infinite.

2. We say that an AD family A ⊆ I is a MAD family restricted to I if for
every infinite X ∈ I there is A ∈ A such that |X ∩A| = ω.

3. a (I) is the least size of an infinite MAD family restricted to I.

The outline of the paper is as follows:

In the first section, we will prove our main combinatorial lemma: If the
maximum of a and cov∗ (I) is ω1 then a (I) = ω1. This is a simple, yet very
useful result. In the rest of the paper, we will derive several applications of this
theorem.

The second section deals with the off-branch numbers of Leathrum (see [18]):

Definition 2 1. A set B ⊆ 2<ω is called off-branch if it has finite intersec-
tion with every branch of 2<ω (i.e. if r ∈ 2ω then B ∩ {r � n | n ∈ ω} is
finite).

2. o is the smallest size of a maximal family of almost disjoint off-branch
sets.

3. o is the smallest size of a maximal family of almost disjoint antichains of
2<ω.

It is easy to see that o ≤ o. It is an old open question of Leathrum if the
inequality o < o is consistent. We do not know the answer to this question, but
we will prove that o = ω1 implies that o = ω1. In particular, it is not possible
to get the inequality if the size of the continuum is at most ω2.

In the third section, we study the cardinal invariant as, which is defined as
the smallest size of a maximal family of eventually different partial functions.
In [6] Brendle showed that it is consistent that max{a,non(M)} < as (where a is
smallest size of a MAD family and non(M) is the smallest size of a non-meager
subset of the Baire space). In the model of Brendle, the continuum has size at
least ω3. This is no coincidence, we will prove that if the continuum has size at
most ω2, then as = max{a,non(M)}.

In the fourth section, we study the cardinal invariants a(nwd), a (tr (N )) and
a (NDN ) . We use our results to answer some open questions found in [21].

In the fifth section, we obtain a preservation theorem for tight MAD families.
We will use this result in the following section, but we expect it to have further
applications.
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In the sixth section, we look at the ideal K, which is the ideal generated
by the finitely branching subtrees of ω<ω. We compare a (K) with the cardinal
invariant aT , which is defined as the smallest size of a maximal AD family of
finitely branching subtrees of ω<ω. At first glance, a (K) and aT seem very
similar, however,we will prove that they are consistently different. In fact, we
will show that it is consistent that a (K) < aT . We will use a forcing of Miller
([19]) that destroys witnesses of aT without adding dominating reals. We will
use our preservation result from the previous section and our main combinatorial
lemma.

The last section is about the cardinal invariant a+ (ω1) , (introduced in [21])
which is defined as the least κ such that every AD family of size ω1 can be
extended to a MAD family of size at most κ. In [21] it was proved that it
is consistent that ω2 = a+ (ω1) < c (where c denotes the cardinality of the
continuum). Nevertheless, the following problem is still open:

Problem 3 ([21]) Is ω1 = a+ (ω1) < c consistent? In other words, is the
statement “Every AD family of size ω1 can be extended to a MAD family of size
ω1” consistent with the negation of the Continuum Hypothesis?

We do not know the answer to the problem, but we will derive some conse-
quences from the assumption that ω1 = a+ (ω1) < c and show that it fails in
most of the known models of set theory.

Our notation is mostly standard. If X is a set of subsets of ω, we denote by
X⊥ the set of all infinite A ⊆ ω that are almost disjoint from every element of
X . If I is an ideal in ω, we denote by I+ those subsets of ω that are not in I. If
X ∈ I+ then by I � X we denote the restriction of I to X. We say that I is tall
if for every infinite X ⊆ ω there is A ∈ I such that A ⊆ X. The relationship
between MAD families and definable ideals (typically Borel of low complexity)
has been an active area of research (see e.g. [12], [7]).

If J is a σ-ideal of a Polish space X, we denote by cov(J ) the smallest size
of a subfamily of J that covers X. By non(J ) we denote the smallest size of a
subset of X that it is not in J . By M we denote the σ-ideal of all meager sets
in 2ω, and by N we denote the σ-ideal of all Lebesgue null subsets of 2ω.

The size of the continuum is denoted by c. Let f, g ∈ ωω, define f ≤ g if
f (n) ≤ g (n) for every n ∈ ω, and f ≤∗ g if f (n) ≤ g (n) for almost all n ∈ ω
except finitely many. We say a family B ⊆ ωω is unbounded if B is unbounded
with respect to≤∗ . The bounding number b is the size of the smallest unbounded
family. We say that S splits X if S∩X and X\S are both infinite. A family S ⊆
[ω]

ω
is a splitting family if for every X ∈ [ω]

ω
there is S ∈ S such that S splits

X. The splitting number s is the smallest size of a splitting family. The reader
may consult the survey [4] for the main properties of the cardinal invariants
used in this paper.
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1.1 Main combinatorial result

Let I be an ideal. It is easy to see that cov∗ (I) ≤ a (I) . Furthermore, if I is a
tall ideal, then every MAD family restricted to I is actually a MAD family in the
usual sense; hence a ≤ a (I) . Hence, if I is tall, then max{a,cov∗ (I)} ≤ a (I) .
We will show that there is a deeper connection between these cardinals.

The following lemma is well known. We prove it for the sake of completeness:

Lemma 4 Let C = {Cn | n ∈ ω} ⊆ [ω]
ω

be a partition of ω. There is an almost
disjoint family D such that:

1. D ⊆ C⊥,

2. |D| = a, and

3. for every X ∈ C⊥ there is D ∈ D such that |D ∩X| = ω.

Proof. Let A be a MAD family of size a. We may assume there is B =
{An | n ∈ ω} ⊆ A that is a partition of ω. Let f : ω −→ ω be a bijection
such that f [An] = Cn. It is easy to see that D = f [A \ B] has the desired
properties.

We can now prove the following:

Proposition 5 If max{a,cov∗ (I)} = ω1 then a (I) = ω1.

Proof. Let B = {Bα | α ∈ ω1} ⊆ I such that for every X ∈ I ∩ [ω]
ω
, there is

α ∈ ω1 for which X ∩ Bα is infinite. We may assume that {Bn | n ∈ ω} ⊆ B is
a partition of ω. We will recursively build a sequence of AD families 〈Aα〉α∈ω1

such that:

1. 〈Aα〉α∈ω1
is an increasing chain of almost disjoint families of size ω1,

2. Aα � Bα is a (possibly finite) MAD family in Bα for every α ∈ ω1, and

3. Aα = Aα \
⋃
ξ<α

Aξ ⊆ ℘ (Bα).

We start by choosing {An | n ∈ ω} such that An is MAD family of subsets
of Bn of size ω1 for every n ∈ ω. Assume α ≤ ω1 is an infinite ordinal, and we
have already build all the Aξ for ξ < α. We shall see how to find Aα. In case⋃
ξ<α

Aξ � Bα is already a MAD family in Bα, we define Aα =
⋃
ξ<α

Aξ. So we

assume that
⋃
ξ<α

Aξ � Bα is not maximal in Bα. Enumerate α = {αn | n ∈ ω}.

Note that Bα *∗ Bα0 ∪ ... ∪ Bαm for all m ∈ ω. If this was not the case,
every infinite subset of Bα would have infinite intersection with some Bαi and
therefore Aα0

∪ ... ∪ Aαm would be MAD in Bα.

Define Cn =

(
Bαn \

⋃
i<n

Bαi

)
∩Bα. By possibly taking a subsequence and

making finite changes, we may assume all the Cn are infinite and form a partition
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of Bα. Since a = ω1, we may find D an AD family in Bα of size ω1 such that
every Cn ∈ D⊥, and if X ⊆ Bα has finite intersection with every Cn, then there
is D ∈ D such that |X ∩D| = ω.

We define Aα =

( ⋃
ξ<α

Aξ

)
∪ D, and prove that Aα � Bα is a MAD family

in Bα. To see this let X ∈ [Bα]
ω

, and proceed by cases. In case that there is
n ∈ ω such that X ∩ Cn is infinite, the result follows since Aαn � Bαn is MAD.
In case that X ∩ Cn is finite for every n ∈ ω, the result follows by the way we
chose D.

Let A =
⋃

α<ω1

Aα. It is clear that it is an AD family contained in I, and

note that if X ∈ I ∩ [ω]
ω

then there is some Bα such that Bα ∩ X is infinite
and therefore (since A � Bα is MAD) then there is en element of A with infinite
intersection with X, so A is be MAD.

From the result, we get the following corollary:

Corollary 6 Assume c ≤ ω2 and let I be an ideal.

1. If a ≤ a (I), then a (I) = max{a,cov∗ (I)}.

2. If I is tall, then a (I) = max{a,cov∗ (I)}.

Proof. Assume c ≤ ω2 and that a ≤ a (I) . In case max{a,cov∗ (I)} = ω1 we get
a (I) = ω1 by the last result, if max{a,cov∗ (I)} = ω2 then a (I) = ω2 because
max{a,cov∗ (I)} ≤ a (I) (recall that a ≤ a (I)).

Finally, if I is tall, then a ≤ a (I) , so the second assertion follows from the
first.

1.2 The off-branch numbers

We will get some applications of the results proved in the last section. Given
r ∈ 2ω, denote r̂ = {r � n | n ∈ ω} . By BR we denote the ideal on 2<ω generated
by {r̂ | r ∈ 2ω} . In this way, X ⊆ 2<ω belongs to the ideal BR if and only if X
can be covered by finitely many branches. The elements of BR⊥ are often called
the off-branch sets. Note that every antichain is an off-branch set, but there are
off-branch sets that are not the union of finitely many antichains. The cardinal

invariant a
(
BR⊥

)
was introduced by Leathrum in [18] and it is denoted by o.

Witnesses of a
(
BR⊥

)
are usually called MOB families. Although BR⊥ is not

a tall ideal, the following result was proved by Leathrum:

Proposition 7 (Leathrum) a ≤ o.

In this way, we may conclude the following:

Corollary 8 If c ≤ ω2, then o = max{a,cov∗
(
BR⊥

)
}.
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Let AT be the ideal on 2<ω generated by antichains. The invariant a (AT )
was also studied by Leathrum and it is denoted as o. In this way, o is the
smallest size of a maximal almost disjoint family of antichains. SinceAT ⊆ BR⊥
and every infinite off-branch set contains an infinite antichain, it follows that

cov∗
(
BR⊥

)
≤ cov∗ (AT ) and o ≤ o. The following is the most interesting

problem regarding the off-branch numbers:

Problem 9 ([18]) Is o = o?

We do not know the answer to the problem, but we will prove that this is the
case if size of the continuum is at most ω2. We will need the following notions
due to Kamburelis and Weglorz (see [16]):

Definition 10 1. A family of open sets U ⊆ ℘ (2ω) is called an open split-
ting family if for every infinite antichain {sn | n ∈ ω} ⊆ 2<ω there is
U ∈ U such that both sets {n | 〈sn〉 ⊆ U}2 and {n | 〈sn〉 ∩ U = ∅} are in-
finite.

2. s (B0) is the smallest size of an open splitting family.

3. Given x ∈ 2ω and n ∈ ω let r (x, n) be the sequence of length n + 1 that
agrees with x in the first n places but disagrees in the last one.

4. Let x ∈ 2ω, A ∈ [ω]
ω

and U ⊆ 2ω an open set. We say that U separates
(x,A) if x /∈ U and there are infinitely many n ∈ A such that 〈r (x, n)〉 ⊆
U.

5. sep is the smallest size of a family of open sets U such that for every (x,A)
there is U ∈ U that separates (x,A) .

Kamburelis and Weglorz proved that s (B0) = max {s, sep} . However, in [5]
Brendle proved that this two cardinal invariants are equal. In fact he proved
the following:

Proposition 11 ([5]) 1. non(M) ≤ sep.

2. sep = s (B0) .

Note that the second assertion follows from the first since s ≤ non(M) and

s (B0) = max {s, sep} . In [8] the authors proved that cov∗
(
BR⊥

)
= sep. The

same argument shows that in fact cov∗ (AT ) = sep. We will provide the whole
argument for completeness. First we will need a definition and a lemma:

Definition 12 Let U ⊆ 2ω be an open set. Define AU as the set of all minimal
s ∈ 2<ω for which 〈s〉 ⊆ U.

2If s ∈ 2<ω , define 〈s〉 = {f ∈ 2ω | s ⊆ f} .
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It is easy to see that AU ⊆ 2<ω is an antichain and if U is not clopen, then
AU is infinite. We now have the following:

Lemma 13 Let U be an open splitting family and C ⊆ 2<ω an infinite an-
tichain. There is U ∈ U such that there are infinitely many t ∈ AU for which
there is s ∈ C such that 〈s〉 ⊆ 〈t〉 .

Proof. By a compactness argument, we can find C1 = {sn | n ∈ ω} and r ∈ 2ω

with the following properties:

1. C1 ⊆ C,

2. r � n ⊆ sm for every n ∈ ω and for almost every m ∈ ω,

3. r /∈
⋃
n∈ω
〈sn〉 .

Since U is an open splitting family, we know there is U ∈ U such that both
sets {n | 〈sn〉 ⊆ U} and {n | 〈sn〉 ∩ U = ∅} are infinite. We claim that U has the
desired properties. First note that r /∈ U , this is because if r ∈ U then the set
{n | 〈sn〉 ∩ U = ∅} would be finite. Since every set 〈t〉 is clopen, then for every
t ∈ AU , 〈t〉 can only contained finitely many elements of C1.

We have the following strengthening of Proposition 4.11 of [8]:

Proposition 14 cov∗
(
BR⊥

)
= cov∗ (AT ) = sep.

Proof. We will first prove that sep ≤ cov∗
(
BR⊥

)
. Take B ⊆ BR⊥ a witness

for cov∗
(
BR⊥

)
, we may even assume that B is closed under finite changes. For

every element B ∈ B, define UB =
⋃
{ 〈s〉 | s ∈ B} . We will now prove that the

family {UB | B ∈ B} is a witness for sep. Let x ∈ 2ω, A ∈ [ω]
ω
. We first define

the set Y = {r (x, n) | n ∈ A} (note that Y is an off-branch family). we can
now find B ∈ B such that B ∩ Y is infinite. We may assume no restriction of x
is in B (this is because B is off-branch, so by substracting a finite subset of B
if needed, we can get that no restriction of x is in B). It then follows that UB
separates (x,A) .

We will now show that cov∗ (AT ) ≤ s (B0) . This completes the proof since

cov∗
(
BR⊥

)
≤ cov∗ (AT ) and sep = s (B0) . Let {Uβ | β < s (B0)} be an open

splitting family. By Bartoszyński’s characterization of non(M) (see [3] Lemma
2.4.8) there is a family F = {fα | α < non(M) } with the following properties:

1. fα : ω −→ 2<ω, and

2. for every g : W −→ 2<ω, where W ∈ [ω]
ω

, there is α < non(M) such that
there are infinitely many n ∈W such that fα (n) = g (n) .
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For every β < s (B0) we fix an enumeration AUβ = {sβn | n ∈ ω} ⊆ 2<ω

(recall that AUβ is the set of all minimal nodes of {s | 〈s〉 ⊆ Uβ}). For every

α < non(M) and β < s (B0) we define B (α, β) = {fα (n) | sβn ⊆ fα (n)} which
is an antichain since AUβ is an antichain. Let B be the set of all B (α, β) where
α < non(M) and β < s (B0) . We will prove that that for every infinite antichain
Y there is B (α, β) ∈ B such that B (α, β) ∩ Y is infinite.

Since U is an open splitting family, we know there is β < s (B0) such that
there are infinitely many sβn ∈ AUβ for which there is t ∈ Y such that sβn ⊆ t.

Let W = {n | ∃t ∈ Y (sβn ⊆ t)} which is an infinite set. Define g : W −→ 2<ω

such that for every n ∈W the following hold:

1. sβn ⊆ g (n), and

2. g (n) ∈ Y .

We can now find α < non(M) such that there are infinitely many n ∈W for
which fα (n) = g (n) . It is then clear that B (α, β) ∩ Y is infinite. Finally since
non(M) ≤ s (B0) by the theorem of Brendle, we conclude that |B| = s (B0) and
we get the desired result.

From this we can conclude that both o and o are equal to max{a, sep} in
case c ≤ ω2. We get the following:

Corollary 15 1. o = ω1 implies o = ω1.

2. If c ≤ ω2 then o = o = max{a, sep}.

As was mentioned before, it is still an open problem if o = o. Getting the
consistency of o < o will most likely be very hard. Our result shows that count-
able support iteration can not be used to solve this problem and long finite
support iterations will not work either since cov(M) ≤ o.

1.3 Almost disjoint families of eventually different partial
functions

For every n ∈ ω we define Cn = {(n,m) | m ∈ ω}. Recall that ED is the ideal
on ω × ω generated by {Cn | n ∈ ω} and (the graphs of) functions from ω to
ω. It is easy to see that ED is a tall ideal. The invariant as is defined as the
smallest size of a maximal family of eventually different partial functions. In
other words, as is the smallest size of a family B with the following properties:

1. For every f ∈ B there is A ∈ [ω]
ω

such that f : A −→ ω,

2. for every f 6= g ∈ B {n ∈ dom (f) ∩ dom (g) | f (n) = g (n)} is finite, and

3. for every function h : A −→ ω with A ∈ [ω]
ω

there is f ∈ B such that
there are infinitely many n ∈ ω for which f (n) = h (n) .

We now have the following result:
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Lemma 16 as = a (ED) .

Proof. Let B be a maximal family of eventually different partial functions.
Define D = B ∪ {Cn | n ∈ ω} . Note that D ⊆ ED and it is easy to see that D is
a MAD family. In this way we conclude that a (ED) ≤ as.

For the other inequality, let A ⊆ ED be a MAD family contained in ED. Note
that for every A ∈ A, there is a pair (XA, FA) with the following properties:

1. There is m ∈ ω such that XA ⊆ C0 ∪ ... ∪ Cm,

2. FA is a finite set of disjoint partial functions, and

3. A = XA ∪ {(n, h (n)) | h ∈ FA ∧ n ∈ dom (h)}.

Let B =
⋃
A∈A

FA. It is easy to see that |B| = |A|, and that B is a maximal

family of eventually different partial functions. So as ≤ a (ED) .

In [14] it was proved that cov∗ (ED) = non(M) . We conclude the following:

Corollary 17 If c ≤ ω2, then as = max{a,non(M)}.

We should mention that the hypothesis c ≤ ω2 is needed. In [6] Brendle
used the technique of forcing along a template to prove the following:

Proposition 18 (Brendle) The following is relatively consistent with the ax-
ioms of ZFC: a = ω1, non(M) = ω2 and as = c = ω3.

Our result shows that the theorem of Brendle can not be improved to get
a = non(M) = ω1 and as = c = ω2.

Definition 19 If a ⊆ ω<ω we define π (a) = {f ∈ ωω | ∃∞n (f � n ∈ a)} . Let
I be a σ-ideal on ωω (or 2ω). We define tr (I) the trace ideal of I (which will
be an ideal on ω<ω or 2<ω) where a ∈ tr (I) if and only if π (a) ∈ I.

1.4 Trace ideals

Note that if a ⊆ ω<ω then π (a) is a Gδ set (furthermore, every Gδ set is of this
form). While both tr (M) and tr (N ) are Borel, in general, the trace ideals are
not Borel (see [15] for more information). By nwd we will denote the ideal of
the nowhere dense subsets of the rational numbers. It is well known that tr (M)
is equivalent to nwd. By NDN we will denote the ideal tr (M) ∩ tr (N ) . In
[21] the cardinal invariants a (tr (M)) , a (tr (N )) and a (NDN ) were studied.
In that paper, the following results were proven:

Proposition 20 ([21])
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1. cov(M) , a ≤ a(nwd),

2. cov(N ) , a ≤ a (tr (N )), and

3. a(nwd), a (tr (N )) ≤ a (NDN ) .

and the following question was asked:

Problem 21 ([21]) Are the inequalities between a(nwd), a (tr (N )) , a (NDN )
consistently strict and complete?

We can readily provide the following:

Corollary 22 Both a(nwd) < a (tr (N )) and a (tr (N )) < a(nwd) are consis-
tent.

Proof. It is easy to see that both nwd and tr (N ) are tall ideals. It is a theorem
of Keremedis that cov(M) = cov∗(nwd) (see e.g. [2] for a proof). In this way,
if c = ω2 and a = ω1 then a(nwd) = cov(M) and a (tr (N )) = cov∗ (tr (N )) .
Furthermore, in [9] it was proved that cov(N ) ≤ cov∗ (tr (N )) ≤ non(M) . From
these results it is clear that in the Cohen model (the model obtained after adding
ω2 Cohen reals to a model of CH) the inequality a (tr (N )) < a(nwd) holds and
in the random model (the model obtained after adding ω2 random reals to a
model of CH) the inequality a(nwd) < a (tr (N )) holds.

Problem 23 Is a (NDN ) the maximum of a(nwd) and a (tr (N ))?

Another problem from [21] is the following:

Problem 24 Are a(nwd), a (tr (N )) , a (NDN ) incomparable with o, o, as?

We will provide some partial answers to the question. We start with the
following:

Proposition 25 a(nwd) and as are incomparable.

Proof. We know that if c = ω2 and a = ω1 then a(nwd) = cov(M) and as =
non(M) . The result follows since cov(M) and non(M) are independent (with
c = ω2).

Regarding a (tr (N )) and as we have the following:

Proposition 26 It is consistent that a (tr (N )) < as.

Proof. By Proposition 4.1 of [15], we know that cov(N ) ≤ cov∗ (tr (N )) ≤
max{d,cov(N )}. In this way, in order to obtain a model of a (tr (N )) < as, it is
enough to find a model of c = non(M) = ω2, and a = d = cov(N ) = ω1. The
existence of such models is well known, for example, they can be obtained by
iterating the Mathias forcing associated to the ideal ED.

Finally, the next proposition follows from Corollary 6 and known inequalities
between cardinal invariants:
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Proposition 27 If c ≤ ω2 then the following hold:

1. as ≤ o,

2. a (tr (N )) ≤ as, and

3. a(nwd) ≤ o.

1.5 A preservation theorem for tight MAD families

In this section, we will prove a preservation theorem for tight MAD families
that will be needed in the following section. Recall that an AD family A is
tight if for every {Xn | n ∈ ω} ⊆ I (A)

+
there is B ∈ I (A) such that B ∩Xn is

infinite for every n ∈ ω. Note that tight AD families are MAD families. In [13]
it was proved that tight MAD families exists assuming b = c and that they are
Cohen-indestructible (recall that if A is a MAD family and P is a partial order,
then A is P-indestructible if A is still maximal after forcing with P).

Definition 28 Let A be a tight MAD family. We say that a proper forc-
ing P strongly preserves the tightness of A if for every p ∈ P, M a count-
able elementary submodel of H(κ) (where κ is a large enough regular cardi-
nal) such that P,A, p ∈ M and B ∈ I (A) for which |B ∩ Y | = ω for ev-
ery Y ∈ I (A)

+ ∩ M, there is q ≤ p an (M,P)-generic condition such that

q 
 “∀Ż ∈
(
I (A)

+ ∩M [Ġ]
)(∣∣∣Ż ∩B∣∣∣ = ω

)
” (where Ġ denotes the name of

the generic filter). We say that q is an (M,P,A, B)-generic condition.

It is easy to see that if P strongly preserves the tightness of A, then A is a
tight MAD family after forcing with P. We will need the following well known
fact:

Lemma 29 Let A be an AD family, P a partial order, Ḃ a P-name for a subset
of ω and p ∈ P such that p 
 “Ḃ ∈ I (A)

+
”. The set

C = {n | ∃q ≤ p (q 
 “n ∈ Ḃ”)} ∈ I (A)
+
.

Proof. Since Ḃ is forced to be a subset of C, the result follows.

We will prove that the countable support iteration of forcings that strongly
preserve A-tightness, also strongly preserve A-tightness. Our proof will be a
variation of the preservation of properness under countable support iteration by
Shelah ([22]). First we do the two step iteration:

Lemma 30 Let A be a tight MAD family. If P is a proper forcing that strongly
preserves the tightness of A and Q̇ is a P-name for a proper forcing such that
P 
“Q̇ strongly preserves the tightness of A”, then P ∗ Q̇ strongly preserves the
tightness of A. Furthermore, if B ∈ I (A) , M is a countable elementary sub-
model with A,P, Q̇ ∈M, p ∈ P, is an (M,P,A, B)-generic condition and q̇ is a

P-name for an element of Q̇ such that p 
 “q̇ is an (M
[
Ġ
]
, Q̇,A, B)-generic

condition”, then (p, q̇) is an (M,P ∗ Q̇,A, B)-generic condition.

11



Proof. Let G ⊆ P ∗ Q̇ be a generic filter with (p, q̇) ∈ G, denote GP the
projection of G to P. Since p is an (M,P,A, B)-generic condition, it follows
that B has infinite intersection with every element of M [GP ]∩I (A)

+
. Finally,

since q̇ is forced to be an (M
[
Ġ
]
, Q̇,A, B)-generic condition, then B will have

infinite intersection with every element of M [G] ∩ I (A)
+
. Finally, note that

(p, q̇) is an (M,P ∗ Q̇)-condition (see [1]).

We will now prove the “proper iteration lemma” ([1] Lemma 2.8) for (M,P,A)-
generic conditions. In the following, if P = 〈Pα, Q̇α | α ≤ γ〉 is a countable
support iteration of proper forcings and α ≤ γ, by 
α we will denote 
Pαand
by Ġα the canonical name for a Pα-generic filter.

Proposition 31 Let A be a tight MAD family. Let P = 〈Pα, Q̇α | α ≤ γ〉 be

a countable support iteration of proper forcings such that Pα 
α “Q̇α strongly
preserves the tightness of A”. Let B ∈ I (A) , M be a countable elementary
submodel of H(κ) (where κ is a large enough regular cardinal) with A,P, γ ∈M.
For every α ∈M∩γ and an (M,Pα,A, B)-generic condition p ∈ Pα the following
holds:

If q̇ is a Pα-name such that p 
α “q̇ ∈ Pγ ∩M” and p 
α “q̇ � α ∈ Ġα”,
then there is an (M,Pα,A, B)-generic condition p ∈ Pγ such that p � α = p and

p 
γ “q̇ ∈ Ġ”.

Proof. We will prove the proposition by induction on γ. The case where γ is a
successors follows easily by the last lemma, so we assume that γ is a limit ordinal
and the proposition holds for every ordinal smaller that γ. Let 〈αn〉n∈ω be an
increasing sequence of ordinals in M ∩ γ such that α0 = α and

⋃
αn =

⋃
M ∩ γ.

We fix an enumeration {Dn | n ∈ ω} of all open dense sets of Pγ that are in M

and fix
{
Żn | n ∈ ω

}
an enumeration of all Pγ-names for elements of I (A)

+
that

are inM such that every name appears infinitely many times in the enumeration.
We will recursively construct sequences 〈q̇n〉n∈ω , 〈pn〉n∈ω and 〈ṁn〉n∈ω with the
following properties:

1. p0 = p, q̇0 = q̇,

2. pn ∈ Pαn is an (M,Pαn ,A, B)-generic condition,

3. pn+1 � αn = pn,

4. q̇n is a Pαn -name such that pn 
αn “q̇n ∈ Pγ ∩M” and pn 
αn “q̇n � αn ∈
Ġαn”,

5. pn+1 
αn+1 “q̇n+1 ≤ q̇n” and pn+1 
αn+1 “q̇n+1 ∈ Dn”, and

6. ṁn is a Pγ-name for a natural number such that pn+1 
αn “q̇n 
γ “ṁn ∈(
Żn ∩B

)
\ n””.
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Assume we have constructed q̇n, pn and ṁn. We will see how to construct
q̇n+1, pn+1 and ṁn+1. Let Gαn ⊆ Pαn be a generic filter with pn ∈ Gαn . We
know that q̇n [Gαn ] ∈ Pγ ∩ M and q̇n [Gαn ] � αn ∈ Gαn . We now argue in
V [Gαn ] : Since pn is an (M,Pαn)-generic condition, there is r ∈ Dn ∩M such
that r ≤ q̇n [Gαn ] and r � αn ∈ Gαn . Let W be the set of all m ∈ ω such that
there is r ∈ Pγ such that the following holds:

1. r ≤ r,

2. r � αn ∈ Gαn , and

3. r 
γ “m ∈ Żn \ n”.

Clearly W ∈ M [Gαn ] ∩ I (A)
+
. Since pn is an (M,Pαn ,A, B)-generic con-

dition, there is mn ∈ B and qn+1 ∈ Pγ such that qn+1 ≤ r, qn+1 � αn ∈ Gαn
and qn+1 
γ “mn ∈ Żn \n”. Back in V, let q̇n+1 and ṁn be names for qn+1 and
mn that are forced by pn to have all the properties above. We now apply the
inductive hypothesis on γn+1 and find pn+1 with the desired properties.

Let p =
⋃
n∈ω

pn, it is easy to see that p is an (M,Pγ) -generic condition and

p 
 “q̇n ∈ Gγ” for every n ∈ ω (see the proof of Lemma 2.8 in [1] for more
details). It is clear that p is a (M,Pγ ,A, B)-generic condition.

We conclude the following:

Corollary 32 Let A be a tight MAD family. If P = 〈Pα, Q̇α | α ≤ γ〉 is

a countable support iteration of proper forcings such that Pα 
α “Q̇α strongly
preserves the tightness of A”, then Pω2


 “A is a tight MAD family”.

It is worth mentioning that this result can be used to prove that a = ω1 in
the Sacks and Miller models, since such forcings strongly preserve the tightness
of MAD families.

1.6 AD families of finitely branching trees

Next we consider the ideal K, i.e. the ideal generated by the finitely branching
subtrees of ω<ω Regarding the cardinal invariant a (K) , we have the following:

Proposition 33 a ≤ a (K) .

Proof. For every n ∈ ω, let zn : n −→ ω be the constant 0 function. Define
Xn = {zn_i | i ∈ ω} and X =

⋃
n∈ω

Xn. Let f : X −→ ω be a bijection and

define An = f [Xn] . We now find a family B = {Kα | ω ≤ α < a (K)} ⊆ K such
that for every infinite Y ∈ K there is α such that |Kα ∩ Y | = ω. For every
ω ≤ α < a (K) let Aα = f [X ∩Kα] and A = {Aα | α < a (K)} \ [ω]

<ω
. We

claim that A is a MAD family.
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Note that if Kα ∈ B and n ∈ ω, then Xn ∩Kα is finite, this implies that A
is an almost disjoint family. In order to prove that A is maximal, note that for
every Z ⊆ ω, if Z is almost disjoint with every An for n ∈ ω, then f−1 (Z) ∈ K
and hence there is Kα ∈ B such that f−1 (Z)∩Kα is infinite, which implies that
Z ∩Aα is infinite.

The ideal WF is defined as the ideal generated by well-founded subtrees of
ω<ω. It is easy to see that K⊥=WF . Recall that an ideal I on ω is called
Fréchet (or nowhere tall) if for every A ∈ I+ there is B ∈ [A]

ω
such that

B ∈ I⊥. It is not hard to see that BR, BR⊥,WF and K are Fréchet ideals.
It is easy to see that I ⊆ I⊥⊥ for any ideal I, while I is Fréchet if and only

if I = I⊥⊥. It follows that I⊥ is a Fréchet ideal for any ideal I.

Lemma 34 1. cov∗ (BR) = c.

2. cov∗ (K) = d.

3. cov∗ (WF) = b.

Proof. We will first prove that cov∗ (BR) = c. Let κ < c and X = {Bα | α < κ}
a subset of BR. For every α < κ there is a set Fα ∈ [2ω]

<ω
such that Bα ⊆

⋃
α<κ

r̂.

Since κ < c there is x /∈
⋃
α<κ

Fα. Clearly x̂ ∈ BR and it is almost disjoint with

Bα. It follows that cov∗ (BR) = c.
We will now prove that cov∗ (K) = d. It is easy to see that for every finitely

branching tree T ⊆ ω<ω there is f ∈ ωω such that [T ] ⊆ {h ∈ ωω | h ≤ f} . It
follows from this fact that cov∗ (K) ≤ d. We will now prove that d ≤ cov∗ (K) .
Let D ⊆ K such that for every infinite X ∈ K there is D ∈ D such that X ∩D
is infinite. We may assume that every element of D is a finitely branching tree.
Since ωω ⊆ K, it follows that ωω =

⋃
T∈D

[T ] , which implies that d ≤ cov∗ (K) .

Finally, we will show that cov∗ (WF) = b. We will first prove that cov∗ (WF)
is at most b. Let B ⊆ ωω be an unbounded family of increasing functions with
|B| = b. For every s ∈ ω<ω, let 〈s〉<ω = {t ∈ ω<ω | s ⊆ t} . Fix an enumeration
ω<ω = {tn | n ∈ ω} .

If f ∈ B, s ∈ ω<ω and n ∈ ω, define Xn (s, f) =
{
ti ∈ 〈s_n〉<ω | i ≤ f (n)

}
and letX (s, f) =

⋃
n∈ω

Xn (s, f) . It is easy to see that {X (s, f) | f ∈ B ∧ s ∈ ω<ω}

is a witness for cov∗ (WF) , so cov∗ (WF) ≤ b.
We will now prove that b ≤ cov∗ (WF) . Let D ⊆ WF such that for ev-

ery infinite A ∈ WF there is W ∈ D such that A ∩W is infinite and |D| =
cov∗ (WF) . For every n ∈ ω, let rn ∈ ωω such that rn (0) = n and rn (m) = 0
for every m > 0. Let W ∈ D, since W is contained in a well-founded tree, we
can find a function gW : ω −→ ω such that r̂n ∩W ⊆ ωgW (n) for every n ∈ ω.
It is easy to see that {gW |W ∈ D} is an unbounded family.

It follows that if c ≤ ω2 then a (K) = max {a, d} . The cardinal invariant
aT is defined as the smallest size of a maximal AD family of finitely branching
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subtrees of ω<ω (or 2<ω). This cardinal invariant has been studied by Miller
([19]) and Newelski ([20]). It is easy to see that aT is the smallest cardinality of
a partition of ωω into disjoint compact sets. It follows that d ≤ aT . Spinas ([24])
proved that the inequality d < aT is consistent, answering a question on [10].
The invariants aT and a (K) are very similar, it would be tempting to conjecture
that in fact a (K) = aT . We will now prove that this is not the case.

Recall that a tree p ⊆ 2<ω is a Sacks tree if for for every s ∈ p there is
t ∈ p such that s ⊆ t and t is a splitting node of p (i.e. t_0, t_1 ∈ p). Recall
that Sacks forcing is the set of Sacks trees ordered by inclusion. The following
forcing notion was introduced by Miller in [19]:

Definition 35 Let C = {Cα | α ∈ ω1} be a partition of 2ω into compact sets.
P (C) is the collection of all p such that the following hold:

1. p ⊆ 2<ω is a Sacks tree, and

2. if α < ω1, then Cα ∩ [p] is nowhere dense in [p] (i.e. for every s ∈ p, there
is t ∈ p such that s ⊆ t and 〈t〉 ∩ [p] ∩ Cα = ∅).

If p, q ∈ P (C) , then p ≤ q if p ⊆ q.

In [19] Miller proved that P (C) is proper, has the Laver property and forces
that C is no longer a partition of 2ω. In [24] Spinas showed that P (C) is ωω-
bounding. It follows by the results of Miller and Spinas that P (C) even has
the Sacks property. We will prove that P (C) does not increase a. We fix C =
{Cα | α ∈ ω1} a partition of 2ω into compact sets. We will need some basic
results about the forcing P (C) :

Definition 36 We say that X = {xs | s ∈ ω<ω} ⊆ 2ω is nice if the following
conditions hold:

1. For every s ∈ ω<ω, the sequence 〈xs_n〉n∈ω converges to xs; furthermore,
∆ (xs, xs_n) < ∆ (xs, xs_n+1)3,

2. for every s, t, z ∈ ω<ω, if s ⊆ t ⊆ z, then ∆ (xs, xz) < ∆ (xt, xz), and

3. for every s ∈ ω<ω, let αs < ω1 such that xs ∈ Cαs , and

4. If s ⊆ t then αs 6= αt.

The following was proved implicitly in [24]:

Lemma 37 Let p be a Sacks tree. If there is a nice X = {xs | s ∈ ω<ω} that is
dense in [p] , then p ∈ P (C) .

3If x, y ∈ 2ω and x 6= y, denote ∆ (x, y) = min {n | x (n) 6= y (n)} .
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Proof. We need to prove that every Cβ is nowhere dense in [p] . Let β < ω1

and t ∈ p. Since X is nice and dense in [p], we can find s ∈ ω<ω such that t ⊆ xs
and αs 6= β. Since xs /∈ Cβ and Cβ is closed, there is z ∈ p such that t ⊆ z ⊆ xs
and 〈z〉 ∩ p ∩ Cβ = ∅.

If p is a Sacks tree and s ∈ p, let ps = {t ∈ p | s ⊆ t ∨ t ⊆ s} .

Proposition 38 If A is a tight MAD family and C = {Cα | α ∈ ω1} is a parti-
tion of 2ω in compact sets, then P (C) strongly preserves the tightness of A.

Proof. Let p ∈ P (C) , M a countable elementary submodel of H(κ) (where κ is
a large enough regular cardinal) such that C,A, p ∈M and B ∈ I (A) for which
|B ∩ Y | = ω for every Y ∈ I (A)

+ ∩M. Let {Dn | n ∈ ω} be an enumeration of

all open dense subsets of P (C) that are in M and fix
{
Żn | n ∈ ω

}
an enumera-

tion of all Pγ-names for elements of I (A)
+

that are in M such that every name
appears infinitely many times in the enumeration. We will recursively construct
〈pn〉n∈ω and X = {xs | s ∈ ω<ω} such that the following conditions hold:

1. p0 = p,

2. 〈pn〉n∈ω is a decreasing sequence and pn ∈M for every n ∈ ω,

3. X is nice and X ⊆ 2ω ∩M ,

4. X ⊆ [pn] for every n ∈ ω, and

5. For every s ∈ ωn and i,m ∈ ω if m = ∆ (xs, xs_i) and t = (xs_i) � m

then (pn+1)t ∈ Dn and (pn+1)t 
 “
(
Żn ∩B

)
\ n 6= ∅”.

To start let p0 = p, and let x∅ be any element of [p0] ∩M. Assume we have
defined pn and

{
xs | s ∈ ω≤n

}
, we will define pn+1 and

{
xs | s ∈ ωn+1

}
.

Let s ∈ ωn and choose l ∈ ω such that l > ∆ (xs, xs′) for all s′ ( s. Define
Ys as the set of all m > l such that xs � m is a splitting node of pn. For
every m ∈ Ys, let tm = (xs � m)

_
(1− xs (m)) (which is a node pn) and let

psm = (pn)tm , clearly psm ∈ M. Let Cm = {j | ∃r ≤ psm(r 
 “j ∈ Żn”)}. Since

Cm ∈ I (A)
+
, there is j ∈ Cm ∩ B such that j > n. We choose rsm ≤ psm such

that rsm ∈ M and rsm 
 “j ∈ Żn”. We may further assume that rsm ∈ Dn and
[rsm] ∩ Cαz = ∅ for every z ⊆ s (recall that if z ∈ ω<ω, αz denoted the unique
ordinal such that xz ∈ Cαz ). Let Ys =

{
mi
s | i ∈ ω

}
. For every i ∈ ω, choose

xs_i be any branch in rsmis
and let pn+1 =

⋃
{rsmis | s ∈ ω

n ∧ i ∈ ω}.
We now let q =

⋂
n∈ω

pn. It is easy to see that X is a dense subset of [q] and

q is a Sacks tree, so q ∈ P (C) . Moreover, it is not hard to see that q is an
(M,P (C) ,A, B)-generic condition.

It follows that the forcings of the type P (C) preserve tight MAD families,
even in the iteration. We can now prove the consistency result:
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Proposition 39 It is consistent that a (K) < aT .

Proof. We start with a model of GCH and perform a countable support iteration
〈Pα, Q̇α | α < ω2〉 such that Pα forces that Q̇α is a forcing of the type P (C) .
Furthermore, with a suitable bookkeeping we make sure that aT = c = ω2

holds in the final extension. Since Pω2
strongly preserves the tightness of A, it

follows that there is a (tight) MAD family of size ω1. Moreover, d = ω1 holds
in the extension since each Pα is ωω-bounding. In this way, a = d = ω1 hence
a (K) = ω1.

We do not, however, know the answer to the following question:

Problem 40 Is a (K) ≤ aT ?

It seems difficult to produce a model of aT < a (K) . A model of aT < a (K)
and c = ω2 would be a model of d = ω1 and a = ω2, which would answer a
famous open problem of Roitman. In fact, in all known models of c = ω2 the
equality d = a (K) holds. It is possible to build models of d < a (K) by template
iterations (see [23] and [6]) but this approach does not seem to help in order to
build a model of aT < a (K) .

1.7 Remarks on ω1 = a+ (ω1) < c

Recall that a+ (ω1) is defined as the least κ such that every AD family of size ω1

can be extended to a MAD family of size at most κ. In this way, ω1 = a+ (ω1) is
equivalent to the assertion that every AD of size ω1 can be extended to a MAD
family of size ω1. This is obviously true under CH, but it is unknown if it is
consistent with the failure of the Continuum Hypothesis:

Problem 41 ([21]) Is it consistent that ω1 = a+ (ω1) < c?

In [21] it was proved that it is consistent that ω2 = a+ (ω1) < ω3 = c, so at
least a+ (ω1) is consistently less than c. One “rule of thumb” which one learns
when working on cardinal invariants, is that if an invariant is consistently less
than c, then this will already happen in the Sacks model. This intuition is
formalized by the following interesting theorem of Zapletal: (see [25] chapter 6).

Proposition 42 (LC) If j is a tame invariant4 such that j < c is consistent,
then “j = ω1” holds in the Sacks model.

Unfortunately, the theorem of Zapletal can not be applied to a+ (ω1). Fur-
thermore, it follows by the results on [21] that a+ (ω1) = c holds in the Sacks
model. In this section, we will derive some consequences of ω1 = a+ (ω1) < c.
Our main tool is the following result:

Proposition 43 The following are equivalent:

4The reader may consult [25] for the definition of tame invariant.
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1. a+ (ω1) = ω1.

2. a = ω1 and for every ideal I on ω, if cov∗ (I) ≤ ω1, then cov∗
(
I⊥
)
≤ ω1.

Proof. We first assume that a+ (ω1) = ω1. Let I be an ideal on ω such that
cov∗ (I) ≤ ω1. Clearly a+ (ω1) = ω1 implies a = ω1, so max{a,cov∗ (I)} = ω1

which we already know implies that a (I) = ω1. In this way, there is A ⊆ I a
MAD family restricted to I such that |A| = ω1. Since a+ (ω1) = ω1, we can find
an AD family B ⊆ A⊥ such that A ∪ B is a MAD family and |B| ≤ ω1. By the
maximality of A, it follows that B ⊆ I⊥. Since A ∪ B is a MAD family, we have
that B is a MAD family restricted to I⊥, so cov∗

(
I⊥
)
≤ |B| ≤ ω1.

We now assume that a = ω1 and if I is a ideal on ω such that cov∗ (I) ≤ ω1,
then cov∗

(
I⊥
)
≤ ω1. We will prove that a+ (ω1) = ω1. Let A be an AD family of

size ω1, we must prove that A can be extended to a MAD family of the same size.

It suffices to show that a
(
I (A)

⊥
)
≤ ω1. If a

(
I (A)

⊥
)

= ω there is nothing to

prove, so we assume that ω1 ≤ a
(
I (A)

⊥
)
, which implies that a ≤ a

(
I (A)

⊥
)
.

It is easy to see that cov∗ (I (A)) = ω1, hence cov∗
(
I (A)

⊥
)
≤ ω1.

We can now prove the following:

Proposition 44 If a+ (ω1) = ω1 < c then

1. ω1 < sep, and

2. d = ω1.

Proof. First assume that sep = ω1. Since sep = cov∗
(
BR⊥

)
= ω1 and we

are assuming that a+ (ω1) = ω1 holds, we conclude that c = cov∗
(
BR⊥

)
=

cov∗
(
BR⊥⊥

)
= ω1 which is in contradiction with our hypothesis.

Since a+ (ω1) = ω1 implies a = ω1, we conclude that cov∗ (WF) = b = ω1,

which implies that ω1 = cov∗
(
WF⊥

)
= cov∗ (K) = d.

It follows from the result that a+ (ω1) = ω1 fails in the Sacks, Cohen, Hechler,
Laver, Mathias and Miller models. We will now prove that it also fails in the
random model. By µ we will denote the standard measure on 2ω and µ∗ denotes
the exterior measure.

Lemma 45 There is a set A ⊆ 2ω such that µ∗ (A) = 1 and |A| = non(N ) .

Proof. Let S ⊆ [0, 1] be the set of all x ∈ [0, 1] such that there is B ⊆ 2ω

with |B| = non(N ) for which x ≤ µ∗ (B) . Let z be the supremum of S (note
that S 6= ∅). We claim that z ∈ S. Since z is the supremum of S, there is
an increasing sequence 〈zn〉n∈ω of elements of S that converges to z. For every
n ∈ ω, we choose Bn ⊆ 2ω such that zn ≤ µ∗ (Bn) and |Bn| = non(N ) . Clearly
B =

⋃
n∈ω

Bn has size non(N ) and z = µ∗ (B). We now claim that z = 1. We
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argue by contradiction. Assume that z < 1. Let B ⊆ 2ω such that |B| = non(N )
and µ∗ (B) = z. Since µ∗ (B) < 1, there is a non-null compact set C ⊆ 2ω such
that B∩C = ∅. Let A ⊆ C such that A /∈ N and |A| = non(N ) . Let D = A∪B,
clearly D has size non(N ) and z < µ∗ (D) , which is a contradiction.

We can now prove the following:

Proposition 46 (a+ (ω1) = ω1) If non(N ) = ω1, then cov∗ (tr (N )) = ω1.

Proof. Assume that non(N ) = ω1. Let X ⊆ 2ω such that µ∗ (X) = 1 and
|X| = non(N ) = ω1. Define A = {r̂ | r ∈ X} , clearly A is an AD family of size
ω1 and A ⊆ tr (N ) . We claim that A⊥ ⊆ tr (N ) . Let B ∈ tr (N )

+
, thus, π (B)

is a non-null Gδ set. Since µ∗ (X) = 1, there is an r ∈ X ∩π (B) , which implies
that r̂ ∩B is infinite, so B /∈ A⊥.

Since a+ (ω1) = ω1, there is a MAD family B such that A ⊆ B and |B| = ω1.
By the comment above, we know that B ⊆ tr (N ), Since B is a MAD family, it
follows that cov∗ (tr (N )) ≤ |B| = ω1.

Since cov(N ) ≤ cov∗ (tr (N )) and non(N ) = ω1 holds in the random model,
we can conclude the following:

Corollary 47 a+ (ω1) = ω1 fails in the random model.
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