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ABSTRACT

Parametrized ♦-principles introduced in [9] associated to the cardinal in-

variants s and b are used to construct (1) a family of sequentially com-

pact spaces whose product is not countably compact - an example for the

Scarborough-Stone problem, (2) a Jakovlev space, and (3) a compact se-

quential space of sequential order ω1. All spaces constructed are scattered,

locally compact and of size ω1.
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1. Introduction

We consider three classical topological problems, and construct corresponding

examples, using the parametrized ♦-principles introduced in [9]. In particular,

we construct a family of sequentially compact spaces providing an example to

the Scarborough-Stone problem assuming ♦(s), a Jakovlev space and a compact

sequential space of sequential order ω1 assuming (a variant of) ♦(b). All of these

spaces are scattered, locally compact and of size ω1.

The main point being that the parametrized ♦-principles typically hold in

models where the corresponding cardinal invariant is ω1 [9, 18] and, in parti-

cular, help settle the aforementioned problems in models of set theory, where

the solution was up to now not known, e.g. the sequential order of compact

spaces in the Cohen and Miller models, and the Scarborough-Stone problem in

the Sacks model.

A secondary purpose of this note is to try to popularize the use of parametrized

♦-principles. These principles have been used recently to construct many in-

teresting examples (see e.g. [9, 19, 11, 5]) and nicely complement the use of

cardinal invariants of the continuum in analysis of combinatorial and topologi-

cal problems.

The Scarborough-Stone problem asks whether there is a family of sequentially

compact spaces whose product is not countably compact. Some consistent ex-

amples are known: van Douwen [22] constructed such a family assuming b∗ = c,

while Vaughan constructed, using ♦, an example consisting of T6 spaces. On

other hand, Weiss [25] using MA + ¬CH proved that every countably compact

T6 (i.e. perfectly normal) space is compact, so, in particular, every product

of countably compact T6 spaces is countably compact; hence the Scarborough-

Stone problem is independent of ZFC for the class of T6 spaces. Nyikos, Soukup

and Veličović, in [20], proved, assuming PFA, that in a countably compact T5
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(i.e. hereditarily normal) space, every countable set has compact clousure, thus

every product of countably compact T5 spaces is countably compact and so the

Scarborough-Stone problem is independent of ZFC even for T5 spaces. On the

other hand, Nyikos and Vaughan [21] constructed, in ZFC, an example in which

the spaces are Hausdorff but are not regular. In ZFC, it is still open for regular

spaces.

Jakovlev spaces emerged as natural tools to answer an old question of Arhan-

gelskii [2] whether the notions of weakly first countable and first countable

coincide in the class of compact spaces.

Recall that a space X is weakly first countable if there is a family {Cxn : x ∈
X,n ∈ ω} such that x ∈ Cxn+1 ⊆ Cxn for all x ∈ X and n ∈ ω, and such that

U ⊂ X is open if and only if for each x ∈ U there is a n ∈ ω such that Cxn ⊂ U .

A topological space X is Jakovlev if it is uncountable and can be partitioned

into ω levels Ln so that

(1) for every n ∈ ω and every point x ∈ Ln there is a countable compact

open neighbourhood U of x such that U \ {x} ⊆
⋃
m<n Lm, and

(2) every countable sequence contained in any level has an accumulation

point.

The one point compactification of a Jakovlev space answers the question of

Arhangelskii negatively [14]. It is unknown if Jakovlev spaces exist in ZFC. For

more on Jakovlev spaces see [1] and [15].

Recall that a subset A of a topological space X is sequentially closed if every

convergent sequence of points in A has its limit point in A. A space X is

sequential if every sequentially closed subset of X is closed. Given a subset A

of X the sequential clousure of A is defined as

seqcl(A) = {x ∈ X : (∃(an)n∈ω ⊂ A)(an → x)}.

Iterating the procedure one defines seqcl0(A) = A,

seqclα+1(A) = seqcl(seqclα(A))

for α < ω1, and seqclα(A) =
⋃
β<α seqcl

β(A) in case α ≤ ω1 is a limit ordinal.

The sequential order of a topological space X, denoted by so(X), is defined as

the minimal α ≤ ω1 such that for every A ⊂ X the set seqclα(A) is sequentially

closed.

In 1974, Bashkirov [3] proved that assuming CH there are compact sequential

spaces of any sequential order up to and including ω1. It is easy to see that
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the one point compactification of the Mrówka-Isbell space corresponding to a

MAD family over the set of natural numbers is a compact sequential space of

sequential order 2. Surprisingly, it is not known if there is a compact sequential

space of sequential order bigger than 2 in ZFC alone. In [6], Dow constructed a

compact space of sequential order 4 assuming b∗ = c, and pointed out that his

method cannot be generalized to get larger sequential order. Dow also proved

in [7] that, under PFA, the sequential order of any compact sequential scattered

space for which the sequential order and the Cantor-Bendixson rank coincide

cannot be greater than ω. The main question, however, remains open.

The notation we use is standard. For set-theoretic notation see [17], and for

topology background consult [10]. Following [9], a function F : 2<ω1 → X,

where X is a Polish space, is Borel if F � 2α is a Borel function for each α < ω1.

Recall that given A,B ⊂ ω we say that A splits B if both B ∩A and B \A are

infinite, and given f, g ∈ ωω we write that f ≤∗ g to denote that f(n) ≤ g(n)

for all but finitely many n ∈ ω.

The two principles used here are the following:

♦(s) := for every Borel F : 2<ω1 → [ω]ω there is a g : ω1 → [ω]ω such that

for each f ∈ 2ω1 , the set {α < ω1 : g(α) splits F (f � α)} is stationary.

♦(b) := for every Borel F : 2<ω1 → ωω there is {gα : α < ω1} ⊂ ωω such

that for every f ∈ 2ω1 , the set {β < ω1 : gβ �∗ F (f � β)} is stationary.

For technical reasons, we shall use a different (technically stronger) version of

♦(b). Let us denote by ω↑ω the family of all strictly increasing functions from

ω to ω.

♦(b∗) := For every Borel F : 2<ω1 → ω↑ω there is {gα : α < ω1} ⊆ ω↑ω such

that for every f ∈ 2ω1 , the set of all β < ω1 such that there are infinitely many

n ∈ ω for which there is m ∈ ω such that

(©)
[
gα(n), gα(n+ 1)

)
⊇
[
F (f � β)(m), F (f � β)(m+ 1)

)
,

is stationary.

In fact, we do not know (it is a recurrent open problem with the parametrized

♦ principles) if the principles ♦(b) and ♦(b∗) are consistently different. They

hold simultaneously in all models where we can determine their validity (Sacks

model, Miller model, Cohen model, . . . ), due to the folklore fact that the two
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corresponding cardinal invariants are equal, i.e.

b = min{|F| : F ⊆ ω↑ω & ∀g ∈ ω↑ω ∃f ∈ F ∃∞n ∈ ω ∃m ∈ ω

[gα(n), gα(n+ 1)) ⊆ [f(m), f(m+ 1))}.
This can be seen as a trivial consequence of [4, Theorem 2.10]. There it is shown

that b is equal to the minimal size of a family F ′ ⊆ ω↑ω such that

∀g ∈ ω↑ω ∃f ∈ F ′ ∃∞n ∈ ω ∃m ∈ ω [g(n), g(n+ 1)) 6⊇ [f(m), f(m+ 1))}.

To see the non-trivial inequality, given an f ∈ F let fi, i ∈ {0, 1}, be defined

by fi(n) = f(2n+ i). It can be easily checked that

F = {fi : f ∈ F ′ & i ∈ {0, 1}}

is the required family.

We usually do not apply the function F from the principles directly to el-

ements of 2<ω1 but rather to pairs of the form 〈Y,A〉 where Y is a subset of

ω (or another countable set) and A is a countable family of subsets of ω –

an approximation to the object we wish to construct. We do this by a simple

coding which we sketch here. Given a countable indecomposable ordinal α > ω

and a function σ ∈ 2α define Yσ = {n ∈ ω : σ(n) = 1}, and similarly for

β < α, let Aσβ = {n ∈ ω : σ(ω · (β + 1) + n) = 1}. In this way, σ codes a pair

〈Yσ,Aσ〉, Aσ = {Aσβ : β < α}. Of course, sometimes the guessed pair does not

satisfy some extra requirements we may impose (i.e. the set Y being infinite,

or the family A having special structure), however, in all of those cases these

requirements define a Borel subset of 2α and the values outside this Borel set

are irrelevant for our constructions, so we can define the value of F outside this

set arbitrarily.

Moreover, the same coding extends also to coding pairs 〈Y,A〉 where A is an

uncountable family by elements of P(ω), with the important property that on

a closed unbounded set the restrictions of the coded sequences are the coded

initial segments, hence, as the set where we guess correctly is stationary, we can

always assume that we are guessing at these ordinals.

2. Scarborough-Stone problem

If F is a filter over a Boolean algebra B, we denote by

F+ = {a ∈ B : (∀y ∈ F)(a ∩ y 6= ∅)}
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the set of positive sets with respect to F . For a Boolean algebra B we denote by

St(B) its Stone space, and for every b ∈ B we denote by b∗ = {x ∈ St(B) : b ∈ x}
the basic clopen set corresponding to b.

We shall use a special kind of Boolean algebras, the minimally generated

Boolean algebras (see [16]). Here we only deal with Boolean algebras contained

in P(ω), in fact, every Boolean algebra considered here is a subalgebra of P(ω)

containing all finite sets. Given two Boolean algebras A and B we say that B
is a minimal extension of A, we write A <m B, if the algebra generated by

A ∪ {b} is equal to B for every b ∈ B \ A. Equivalently, A <m B if and only

if there is a unique ultrafilter U on A that does not generate an ultrafilter on

B and there are exactly two ultrafilters on B which extend U . We say that a

Boolean algebra B is minimally generated if there is a sequence {aβ : β < α} of

generators of B and B =
⋃
β<α Bβ where for every β we have that Bβ <m Bβ+1,

B0 = {∅, ω} and Bβ is the Boolean algebra generated by the set {aγ : γ < β}.
Following Dow and Shelah ([8]), we call a minimally generated Boolean algebra

coherently minimally generated and its definition if, moreover, denoting by Uα
the ultrafilter on Bα witnessing that Bα <m Bα+1, for every γ < γ′ < β we

have that Uγ′ ∩ Bγ = Uγ .

If {Aβ : β < α} ⊂ U is a sequence of generators of a coherently minimally

generated Boolean algebra and Bβ is the Boolean algebra generated by the set

{Aγ : γ < β} denote by Xβ = St(Bβ) \ {U ∩ Bβ}. Note that Xβ is an open

subspace of Xβ′ for every β < β′ < α, and for every β < α the set Xβ+1 \Xβ

has exactly one element xβ (the “other” ultrafilter extending Uβ), and in this

way we can identify every point in this space with an ordinal (just as in [8]).

Then for every β < α the filter Uβ is generated by {Aγ : γ < β}, and the point

xβ corresponds to the ultrafilter generated by Uβ ∪ {ω \Aβ}. We shall identify

the point with the corresponding ultrafilter. That is

St(B) = {U ∩ B} ∪ {xβ : β < α}.

We shall show that under ♦(s) there is a family of sequentially compact

spaces whose product is not countably compact, providing an example for the

Scarborough-Stone problem. It is well known that this is equivalent to con-

structing for each U ∈ ω∗ a sequentially compact space, XU containing ω so
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that ω has no U-limit.1 For more information concerning the Scarborough-Stone

problem see [24].

The following is the combinatorial core of the construction inspired by the

construction in [8].

Proposition 1: Assume ♦(s), and let U be an ultrafilter on ω. Then there is

{Aα : α < ω1} ⊂ U such that:

(1) {Aα : α < ω1} is a sequence of generators of a coherently minimally

generated Boolean algebra, and

(2) for every infinite sequence {αn : n ∈ ω} ⊂ ω1 there are an infinite

M ∈ [ω]ω, an α < ω1 and a sequence of finite sets {Fn : n ∈ ω} such

that Fn ∈ [αn]<ω with the property that for every n ∈ M the set

(
⋂
β∈Fn Aβ) ∩ (ω \Aαn) ∩Aα = ∅.

Proof. Fix a family of bijections {eα : α < ω1} such that eα : ω → α for

each ω ≤ α < ω1. By a suitable coding2 we may assume that the domain of

F consists of pairs 〈Y, {Aβ : β < α}〉, where α is an infinite countable ordinal,

Y ∈ [α]ω and {Aβ : β < α} is a sequence of generators of a coherently minimally

generated Boolean algebra.

Given 〈Y, {Aβ : β < α}〉 as above, recursively define

Uα0 = ω \Aeα(0) and Uαn = (ω \Aeα(n)) \
⋃
i<n

Uαi .

Finally, put

F (〈Y, {Aβ : β < α}〉) = {m ∈ ω : (∃β ∈ Y )(Um ∈ x+β )}

in case that set is infinite and put F (〈Y, {Aβ : β < α}〉) = ω otherwise. It is

easy to see that F is a Borel function.

We shall define the algebra recursively: Let g : ω1 → [ω]ω be the ♦(s)-

sequence for F . For n ∈ ω, let An = ω \ n, and for α ≥ ω consider the

family {Uαn : n ∈ ω} defined above. As U is ultrafilter, either
⋃
n∈g(α) U

α
n or its

complement is an element of U , let Aα be that element of U .

1 Recall that a point x in a topological space X is the U-limit of a sequence {xn : n ∈
ω} ⊆ X if for every open neighbourhood V of x the set {n : xn ∈ V } is an element of U .

2 Here the coding differs slightly from the one outlined in the introduction: Given a count-

able indecomposable ordinal α > ω and a function σ ∈ 2α define Yσ = {β ∈ α : σ(ω ·β) =

1}, and for β < α, let Aσβ = {n ∈ ω : σ(ω · β + n + 1) = 1}. In this way, σ codes a pair

〈Yσ ,Aσ〉, where Aσ = {Aσβ : β < α}.
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Now, property (1) is immediate from the construction. In order to prove

(2), let Y = {αn : n ∈ ω} ⊂ ω1 be any sequence and let β0 < ω1 be an

upper bound for Y . Consider the branch defined by (or rather, which codes)

{〈Y, {Aβ : β < α}〉 : α < ω1}. 3 As g is a ♦(s)-sequence, there is a γ > β0 such

that g(γ) splits F (〈Y, {Aα : α < γ〉). Without loss of generality we can assume

that Aγ =
⋃
n∈g(γ) U

γ
n , the other case being completely analogous. Observe that

A = {Uγn : n ∈ ω} is a maximal antichain in Bγ+1, such that every ultrafilter

in Bγ+1 distinct from the filter U ∩ Bγ+1 generated by {Aα : α ≤ γ}, contains

one of the Uγn ’s, equivalently is contained in one of the (Uγn )∗’s.

For each n ∈ ω let Fn ∈ [αn]<ω be such that (
⋂
δ∈Fn Aδ) ∩ (ω \ Aαn) ⊂ Uγm

where Uγm is the unique element of the maximal antichain A that is a member

of xαn . Let

M = {m ∈ ω : (∀n ∈ g(γ))(Uγn ∩ (
⋂
δ∈Fm

Aδ ∩ (ω \Aαm)) = ∅)}.

As g(γ) splits F (〈Y, {Aα : α < γ}〉), the set M is infinite as required.

We recall the following lemma of Dow and Shelah:

Lemma 2 (Dow-Shelah [8]): If B is a coherently minimally generated Boolean

algebra, then the Stone space of B is scattered and sequentially compact.

Now we are ready to state and prove the main theorem of this section.

Theorem 3: Suppose that ♦(s) holds. For each U ∈ ω∗, there is a sequentially

compact space XU containing ω such that ω has no U-limit in the space. Hence,

the product
∏
U∈ω∗ XU is a product of sequentially compact spaces that is not

countably compact.

Proof. Let U be a free ultrafilter, and let {Aα : α < ω1} ⊂ U be the sequence

constructed in Proposition 1. Consider the Stone space of the Boolean algebra

B generated by {Aα : α < ω1}, and let V = U ∩ B. Note that V is the U-limit

of ω in St(B). Let XU = St(B) \ {V}.
The spaceXU is then a locally compact scattered space with a countable dense

set of isolated points identified with ω. By definition, the sequence ω ⊂ XU has

no U-limit. To see that XU is sequentially compact, by the lemma quoted above,

3 By this we mean that the branch f ∈ 2ω1 is such that Y = {β ∈ ω1 : f(ω · β) = 1} and

Aβ = {n ∈ ω : f(ω · β + n+ 1) = 1} for every β ∈ ω1.
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it suffices to show that no nontrivial sequence in St(B) converges to V. Recall

that St(B) = {V} ∪ {xβ : β < ω1}, hence XU = {xβ : β < ω1}.
Let {xβn : n ∈ ω} ⊂ XU be any sequence. To finish the proof it suffices to

see that there is a γ such that (ω \ Aγ)∗ contains infinitely many elements of

{xβn : n ∈ ω}. Now, consider the sequence {βn : n ∈ ω} ⊂ ω1. By property

(2) of Proposition 1 there is an infinite set M ⊆ ω, an ordinal α < ω1 and a

sequence of finite sets {Fn : n ∈ ω} such that Fn ∈ [βn]<ω with the property

that for every n ∈M the set (
⋂
β∈Fn Aβ) ∩ (ω \Aβn) ∩Aα = ∅. This, however,

means that the clopen set (ω \Aα)∗ contains infinitely many of the xβn ’s.

3. Jakovlev spaces

Let us fix some notation first. We shall consider families A of subsets of ω,

written as a disjoint union of subfamilies Ln(A), n ∈ ω, the family Ln(A)

called the n-th level of A. By In we shall denote the ideal (possibly improper)

generated by
⋃
i<n Li(A). Such a family A will be called a layered family if it

has the following properties:

(a) L0(A) = {{k} : k ∈ ω};
(b) A ∩B ∈ In for every n ∈ ω and distinct A,B ∈ Ln(A), and;

(c) given m < n ∈ ω, A ∈ Lm(A) and B ∈ Ln(A), either A \ B ∈ Im or

A ∩B ∈ Im.

A layered family A is called a Jakovlev family if additionally it has the property:

(d) for each n ∈ ω and Y ⊂ Ln(A) infinite, there are an m > n, an

A ∈ Lm(A) and an infinite subset Y ′ of Y such that for each y ∈ Y ′ it

happens that y \A ∈ In.

Given an ordinal α ≤ c we shall say that a layered family A is of length α if

A = {Amβ : β < α, 0 < m < ω} ∪ {{k} : k ∈ ω},

with layers Lm(A) = {Amβ : β < α, } for m > 0. We shall call a countable

layered family B = {Bmn : m,n ∈ ω} of length ω canonical if each of its

layers Lm(B) = {Bmn : n ∈ ω} is pairwise disjoint, and if given m′ < m ∈ ω,

B ∈ Lm(B) and B′ ∈ Lm′(B) either B′ ⊂ B or B′ ∩B = ∅.
The following objects will be fixed throughout this section:

• a bijection cω : ω → ω × ω,
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• a family {dα : ω ≤ α < ω1} of bijections dα : ω → α× ω \ {0}.

Given a family A ⊆P(ω) we denote by 〈A〉 the Boolean subalgebra of P(ω)

generated by A. We call a pair of layered families A and B equivalent if they

generate the same Boolean algebra, i.e. 〈A〉 = 〈B〉, if Im(A) = Im(B) = Im

for every m ∈ ω, and there is a bijective function ϕ : A → B which preserves

layers such that Amβ 4ϕ(Amβ ) ∈ Im for every m ∈ ω and β < α. Note that, in

particular, Amβ 4ϕ(Amβ ) ∈ 〈A〉 = 〈B〉.

Lemma 4: For every α ∈ ω1 there is a Borel map Dα which to each layered

familyA of length α assigns a canonical layered family B (of length ω) equivalent

to A.

Proof. For given α, consider the function dα = (d1, d2), where d1, d2 are the

coordinate functions of dα, and let for all n ∈ ω,

An = A
d2(n)
d1(n)

.

Then recursively define {Cn : n ∈ ω} by putting C0 = A0 and

Cn =
(
An ∪

⋃
{Ci : i < n & d2(i) < d2(n) & Ai ⊆Id2(i)

An}
)
∩

∩
⋂
{Ci : i < n & d2(i) > d2(n) & Ai ⊇Id2(n)

An}\

\
⋃
{Ci : i < n & L(Ai) = L(An)}.

Finally, let Bmi = Cni , where ni is the i-th element of the set Nm = {n ∈ ω :

d2(n) = m} in its increasing enumeration. It is easy to check that B is then as

required. The bijection ϕ : A → B witnessing that A and B are equivalent is

then defined by ϕ(An) = Cn for every n ∈ ω.

Proposition 5: Suppose that ♦(b∗) holds. There is a Jakovlev family A.

Proof. We shall define a convenient Borel function F : 2<ω1 → ωω. By a

suitable coding we may assume that the domain of F are pairs of the form

〈Y,A〉, where A = {Anβ : β < α, n ∈ ω} is a layered family of subsets of ω of

length some countable ordinal α, and Y is an infinite subset of one of the levels

of A. Using Lemma 4, we replace the original A by the corresponding canonical

layered family B = Dα(A) and identify Y with its Dα-image as a subset of say

the r-th level of B.
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Enumerate B as {Ck : k ∈ ω} according to the function cω fixed at the

beginning, and let F (〈Y,A〉)(0) = 0, F (〈Y,A〉)(n) = kn and

F (〈Y,A〉)(n+ 1) = min{k : Brk ∈ Y & Brk ∩
⋃

m<kn

Cm = ∅}

if the set {k : Brk ∈ Y & Brk ∩
⋃
m<kn

Cm = ∅} is not empty, otherwise let

F (〈Y,A〉)(n+ 1) = kn + 1.

Let {gα : α < ω1} be a ♦(b∗)-sequence for F . We shall construct recursively

an increasing family of countable layered families {Aα : ω ≤ α < ω1}, Aα of

length α, so that A =
⋃
{Aα : ω ≤ α < ω1} is a Jakovlev family.

To start, let Aω be an arbitrary layered family of length ω. Having cons-

tructed Aα, for some ω ≤ α < ω1, apply Lemma 4, and consider the canonical

layered family

Dα(Aα) = B = {Bmn : m,n ∈ ω}.

Use the function cω to enumerate B as {Ck : k ∈ ω}, and define for every r ∈ ω

Dr
0 =

⋃
{Bri : i < gα(0)}

and for n > 0

Dr
n =

⋃
{Bri : i < gα(n+ 1) & Bri ∩

⋃
m<gα(n)

Cm = ∅}.

Finally let A1
α =

⋃
n∈ωD

0
n, and Ar+1

α = Arα ∪
⋃
n∈ωD

r
n, and

Aα+1 = Aα ∪ {Arα : r ∈ ω \ {0}}.

By possibly replacing the function gα by a faster growing function one can make

sure that each set Arα, r > 0, is infinite.

To check that Aα+1 is a layered family of length α+ 1 it suffices to note that

the family B ∪ {Arα : r ∈ ω \ {0}} is layered, i.e. to note that Bmk ∩ Amα ∈ Im,

and that if m < n then either Bmk ∩ Anα ∈ Im or Bmk \ Anα ∈ Im. One can

easily check this by induction on m using the inductive hypothesis, and the fact

that every Bmk appears as one of the C`’s, hence all but finitely many of the

Bmi (resp. Bni ) whose union is considered in the definition of Amα (resp. Anα)

are disjoint from Bmk .

Now, for limit α we simply let

Aα =
⋃

ω≤β<α

Aβ
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which, by definition, is a layered family of length α. This concludes the cons-

truction, and all that remains to be proved is that

A =
⋃

ω≤β<ω1

Aβ

is a Jakovlev family.

Let Y be a countable subset of some level of A, say level r. Choose a large

enough β so that Y ⊆ Lr(Aβ). Consider the branch that codes {〈Y,Aβ〉 : β <

ω1}. Since {gα : α < ω1} is a ♦(b∗)-sequence, there are stationarily many

α > β such that for infinitely many n ∈ ω there is m ∈ ω such that[
gα(n), gα(n+ 1)

)
⊇
[
F (〈Y,Aα〉)(m), F (〈Y,Aα〉)(m+ 1)

)
.

Fix such α. We claim that there is an A ∈ Aα+1, for which there are infinitely

many y ∈ Y such that y ⊆Ir A.

We may assume that there is no such A ∈ Aα (otherwise we are done), i.e.

every element of B = Dα(Aα) is (almost) disjoint from all but finitely many

elements of Y . Let A = Ar+1
α and recall that

Ar+1
α = Arα ∪

⋃
n∈ω

⋃
{Bri : i < gα(n+ 1) & Bri ∩

⋃
m<gα(n)

Cm = ∅}.

Now, as there are infinitely many n and m such that[
gα(n), gα(n+ 1)

)
⊇
[
F (〈Y,Aα〉)(m), F (〈Y,Aα〉)(m+ 1)

)
.

and (by the above assumption) for every m ∈ ω, if jm = F (〈Y,Aα〉)(m),

F (〈Y,Aα〉)(m+ 1) = min{k : Brk ∈ Y & Brk ∩
⋃
i<jm

Ci = ∅},

i.e., there are infinitely many m and km such that Brkm ∈ Y and Brkm ∩⋃
i<jm

Ci = ∅, hence Brkm ⊆ A for each of those m.

Theorem 6: The principle ♦(b∗) implies the existence of a separable Jakovlev

space of size ω1.

Proof. The space is the Stone space of the Boolean subalgebra BA of P(ω)

generated by the family A with the top point (ultrafilter) {ω} removed. The

set {{n} : n ∈ ω} is then a dense set of isolated points of the space. Note that

for any ultrafilter U over BA distinct from the top, there is a unique element A

of A (say on level n) such that U = {B ∈ BA : A \B ∈ In}, hence St(BA) can

be naturally identified with A equipped with the topology defined as follows:
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Each element A of A (A ∈ Ln(A)) has a countable compact neighbourhood

A∗ = {A} ∪ {B ∈
⋃
m<n

Lm(A) : B \A ∈ Im & B ∈ Lm(A)}.

It follows directly from the properties of A that the space is a separable Jakovlev

space.

Abraham, Gorelic, Juhász in [1] proved that there is a Jakovlev space assum-

ing b = c. There is a Jakovlev space of cardinality ω1 in any model obtained

by adding ℵ1-many Cohen reals or ℵ1-many dominating reals. As ♦(b) holds

in the last two models, Theorem 6 generalizes and provides uniform proof for

these results. It also follows that there are Jakovlev spaces in any canonical

model of ZFC, i.e. a model produced as a countable support iteration of a sin-

gle sufficiently definable and sufficiently homogeneous proper partial order P,

as in any such model either b = c or ♦(b) holds by [9, Theorem 6.6].

4. Sequential order

In this section our goal is to construct, assuming ♦(b∗), a compact scattered

sequential space of sequential order ω1. Recall the following simple facts:

Lemma 7: Suppose that there is a family {Xα : α < ω1} of compact scattered

sequential spaces such that each Xα has so(Xα) < ω1. If {so(Xα) : α < ω1} is

cofinal in ω1, then the one point compactification of
⊕

α<ω1
Xα is a compact

scattered space of sequential order ω1.

Thus, to define the space of sequential order ω1 it is enough to define, for

each ordinal η < ω1, a compact sequential scattered space of sequential order

η + 1.

The following is probably well known but we did not find a reference for it.

Lemma 8 (Folklore): Let X be a compact scattered space of countable height

(Cantor-Bendixson rank, scattered index). Then X is sequential.

Proof. For an ordinal γ, denote by X(γ) the set of all points of X of (scattered)

height γ. Given G ⊆ X not closed, pick x ∈ G \ G of minimum height γ.

Consider U a compact neighbourhood of x “looking down”, i.e. U ⊆ {x} ∪⋃
β<γ X

(β). Observe that G ∩ U \ (G ∩ U) = {x}.
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Since being a scattered space is hereditary, K = {x} ∪ (G ∩ U) is also a

compact scattered space (with likely very different scattered levels). Again,

there is compact neighbourhood W of x in K “looking down”. Let ξ be the

height of x in K. Then either ξ is a successor ordinal or a limit ordinal less than

ω1. If it is a successor ordinal, the last infinite level of W is a closed discrete

subset of G∩U , any sequence of points in it converges to the point x. If ξ < ω1

is limit, choose an increasing sequence 〈αn : n ∈ ω〉 of ordinals less than ξ

converging to ξ and choose a point from each level xn ∈ W ∩K(αn). Then the

sequence 〈xn : n ∈ ω〉 necessarily converges to the point x.

In many ways, the construction follows the general pattern of the construction

given in the previous section, with several important differences: First of all our

space can not be locally countable, so we have to be “expanding” the locally

compact neighbourhoods of every point cofinally along the construction. Also,

the sequences we need to take care of are not only those contained in a fixed level.

To begin we define notions analogous to the ones introduced at the beginning

of last section:

Definition 9: Let η be an infinite countable ordinal. A family of subsets of ω

will be called η-layered if A =
⋃
ξ≤η Lξ(A), where

(1) L0(A) = {{n} : n ∈ ω}, Lξ(A) is a countable family of proper infinite

subsets of ω for 0 < ξ < η and Lη(A) = {ω},
(2) for each ξ ≤ η and A,B ∈ Lξ(A) , A ∩ B ∈ Iξ, where Iξ denotes the

ideal generated by the family
⋃
γ<ξ Lγ(A),

(3) for every ξ < ζ < η, A ∈ Lξ(A) and B ∈ Lζ(A), either A \ B ∈ Iξ or

A ∩B ∈ Iξ.

Given A ∈ A, we say that A is on the level ξ of A and write L(A) = ξ if

A ∈ Lξ(A). We say that an η-layered family A ⊆P(ω) is a canonical η-layered

family if given A,B ∈ A, either A ⊆ B, A ⊇ B or A ∩ B = ∅. We also write

A ⊆I B to mean that A \ B belongs to the ideal I and we say that A is

contained in B mod I . 4 We consider the notion of equivalence of η-layered

families defined in a way analogous to the previous section. Note that if two

4 Let us remark that unlike in the previous section, we do not require the η-layered families

to be enumerated in type η × ω but rather to be enumerated arbitrarily in a countable

transfinite sequence by the “coding mechanism”.
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η-layered families are equivalent then, in particular, they generate the same

Boolean subalgebra of P(ω), and the same ideals Iξ, for ξ ≤ η.

For the rest of the section, given an infinite ordinal α < ω1 we fix bijections

aα : α → η × ω and cα : ω → α. The function aα will be used to canonically

enumerate a given countable η-layered family A of length α in such a way that

Lγ(A) = {Aγm : m ∈ ω} for every γ ≤ η. We shall also fix for every 0 < ξ < η a

bijection eξ : ω → ξ × ω.

We have a result similar to Lemma 4.

Lemma 10: For each α ∈ ω1 there is a Borel map Dα which to each countable η-

layered family A indexed by α assigns a canonical η-layered family B equivalent

to A.

Proof. For given α, consider the function aα = (a1, a2), where a1, a2 are the

coordinate functions of aα, and let, for every n ∈ ω

An = A
a1(cα(n))
a2(cα(n))

.

Then recursively define {Cn : n ∈ ω} by putting C0 = A0 and

Cn =
(
An ∪

⋃
{Ci : i < n & L(Ai) < L(An) & Ai ⊆IL(Ai)

An}
)
∩

∩
⋂
{Ci : i < n & L(Ai) > L(An) & Ai ⊇IL(An)

An}\

\
⋃
{Ci : i < n & L(Ai) = L(An)}.

Observe that An4Cn ∈ IL(An). Finally, let Bγi = Cni , where ni is the i-the

element of the set

Nγ = {n ∈ ω : a1(cα(n)) = γ}
in its increasing enumeration. It is easy to check that B = {Bγi : γ < η & i ∈ ω}
is a canonical η-layered family. The bijective function ϕ : A → B witnessing that

A and B are equivalent is defined by ϕ(An) = Cn.

Given an η-layered family A, call an infinite Y ⊆ A slim if there is a ξ ≤ η

such that 〈L(y) : y ∈ Y 〉 increasingly converges to ξ, if ξ is limit, or Y ⊆ Lζ(A),

if ξ = ζ + 1, and there is a C ∈ A such that

• (∀∞y ∈ Y )(y ⊆IL(y)
C),

• the set {y ∈ Y : y ⊆IL(y)
D} is finite for every D ∈ A such that

L(D) < L(C).

Note that such a C ∈ A is uniquely determined by Y .
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Proposition 11: The principle ♦(b∗) implies that for each ordinal η < ω1

there is an η-layered family A such that for every slim Y ∈ [A]ω there is a

C ∈ A such that

(1) (∀∞y ∈ Y )(y ⊆IL(y)
C),

(2) |{y ∈ Y : y ⊆IL(y)
D}| < ω for every D ∈ A with L(D) < L(C), and

(3) L(C) = sup{L(y) + 1 : y ∈ Y }.

Proof. Fix η < ω1. We shall define a Borel function F : 2<ω1 → ωω as follows.

By a suitable coding we may assume that the domain of F are pairs of the form

〈Y ,B〉, where B is an η-layered family of subsets of ω ordered in a sequence of

length α for some α < ω1, and Y is a slim subset of B.

Using Lemma 10, we consider the canonical η-layered family A = Dα(B)

equivalent to B, as witnessed by the (unique) bijection ϕ : B → A preserving

levels, and let Y = ϕ[Y ]. Note that Y is then slim with respect to A, and if C

is the (unique) element of A witnessing that Y is slim then

(1) (∀∞y ∈ Y )(y ⊆ C) and

(2) |{y ∈ Y : y ⊆ D}| < ω for every D ∈ A such that L(D) < L(C).

If also the clause (3) is satisfied we do not have to do anything, i.e we can

define F (〈Y ,B〉) to be arbitrary, e.g. constant 0. If (3) is not satisfied, i.e. if

γ = L(C) > sup{L(y) + 1 : y ∈ Y }, use the function eγ to provide a canonical

enumeration {Cn : n ∈ ω} of all proper subsets of C which are members of A
defined recursively as follows: If eγ(0) = (ζ, k) then let C0 = Aζ` , where

` = min{j ∈ ω : Aζj ⊆ C}

and similarly, for n > 0, if eγ(n) = (ζ, k) then let Cn = Aζ` , where

` = min{j ∈ ω : Aζj ⊆ C and Aζj /∈ {Ci : i < n}.

Then define F (〈Y ,B〉) = 〈kn : n ∈ ω〉 by putting

k0 = min{k ∈ ω : (∃y ∈ Y )(y ⊆ Ck)},

and

(<) kn+1 = min{k > kn : (∃y ∈ Y )(y ⊆ Ck & y *
⋃
i≤kn

Ci)}.

Note that as A is canonical, the set y ∈ Y whose existence is required in the

definition of kn+1 has the property that y ∩ Ci = ∅, or Ci ⊆ y and hence

Ci ∈ IL(y), for every i ≤ kn.
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Let {gα : α < ω1} be a ♦(b∗)-sequence for F satisfying (©). Assume that

each gα is an increasing function. We shall recursively construct an increasing

family of countable η-layered families {Aα : α < ω1} so that A =
⋃
α<ω1

Aα
will have the properties stated in the proposition.

To begin with, let A0 be an arbitrary canonical countable η-layered family.

Assume now that we have already constructedAα, for some α < ω1. Applying

Lemma 10, we may assume that Aα is canonical. We shall construct a family

{D(A, ξ) : A ∈ Aα & ξ < L(A)} of subsets of ω whose members will be

candidates for elements of the next layered family Aα+1. To define D(A, ξ), use

again the function eξ to enumerate

{A′ ∈ Aα : A′ ⊂ A} = {Cn : n ∈ ω}

then let

Dn(A, ξ) =
⋃
{Ci : i < gα(n+ 1) & L(Ci) < ξ} \

⋃
{Cj : j ≤ gα(n)}

and

(e) D(A, ξ) =
⋃
{Dn(A, ξ) : n ∈ ω}.

Consider the family DAα = {D(A, ξ) : A ∈ Aα & ξ < L(A)} and enumerate

it as {En : n ∈ ω} (note that here we do not require the enumeration to be

canonical). In order to suitably modify the sets En’s to add them to the next η-

layered family, define recursively finite families Dn ⊆P(En) of pairwise disjoint

IL(Ei)-positive subsets of En as follows: First, let D0 = {E0}. Now, if n > 0

assume that Di, for i < n have already been defined. If En = D(A, ξ), for some

A ∈ Aα and some ξ < L(A), let Dn be the set of those atoms of the finite

Boolean algebra generated by

(b) {En} ∪
⋃
i<n

Di

which are subsets of En and are Iξ-positive.

Extend the family Aα to a family Aα+1 by putting

Lξ(Aα+1) = Lξ(Aα) ∪
⋃
{Di : L(Ei) = ξ}.

Observe that instead of adding D(A, ξ) to Aα+1 we have added a finite Iξ-

almost partition of it. Note also that if A ∈ Aα and B ∈ Aα+1 \Aα then either

A ⊆IL(A)
B or A ∩B ∈ IL(A).
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To verify that Aα+1 is an η-layered family, we have to check clauses (2) and

(3) of Definition 9.

For (2), let ξ < η and A,B ∈ Lξ(Aα+1). There are several cases.

(i) If A,B ∈ Aα, it is clear that A ∩B ∈ Iξ.

(ii) If A ∈ Aα, B /∈ Aα, then there is H ∈ Aα such that B ⊆ D(H, ξ). Since

we are assuming that Aα is canonical, we have A∩H = ∅ or A ⊆ H. It follows

that A ∩ D(H, ξ) ∈ Iξ either because is empty, or because by (e) D(H, ξ) is

Iξ-almost disjoint from every element of Aα below H. Hence A ∩B ∈ Iξ.

(iii) Now, assume that A,B /∈ Aα such that there are distinct G,H ∈ Aα
with A ⊆ D(G, ξ) and B ⊆ D(H, ξ). Now, as Aα is canonical, either G∩H = ∅
or one is contained in the other, say G ⊆ H. Then A ∩ B ∈ Iξ as either it is

empty, or as D(H, ξ) is Iξ-almost disjoint from every element of Aα below H,

D(H, ξ) is Iξ-almost disjoint from G ⊇ D(G, ξ) ⊇ A.

(iv) The remaining case deals with A,B /∈ Aα which are contained in the

same D(H, ξ). They are then Iξ-almost disjoint by definition.

For clause (3) of Definition 9, let ξ < ζ ≤ η and A ∈ Lξ(Aα+1), B ∈
Lζ(Aα+1). Once again, we have to consider a few cases.

(i) If A,B ∈ Aα, it is clear that A ∩B ∈ Iξ.

(ii) If A ∈ Aα, B /∈ Aα, then there is H ∈ Aα such that B ⊆ D(H, ξ) and

L(H) ≥ ζ + 1. Then A ∩H = ∅, or A ⊆ H and then A ∩D(H, ζ) ∈ Iξ by (e).

(iii) If A /∈ Aα and B ∈ Aα. Then A ⊆ D(G, ξ) for some G ∈ Aα and

G ∩ B = ∅, G ⊆ B or B ( G. Hence A ∩ B = ∅ or A ⊆ B in the first two

cases. In the remaining case B ( G, the definition of D(G, ξ) in (e) implies

that A ∩ B ∈ Iξ. To see this, observe that to define D(G, ξ) we are using the

enumeration {Cn : n ∈ ω} of all elements of Aα which are subsets of G, in

particular B appears as some Cn0
. So,

D(G, ξ) ∩B ⊆
⋃
{B ∩ Ci : i ≤ n0 & L(Ci) < ξ} ∈ Iξ

by (e). Thus D(G, ξ) ∩B ∈ Iξ.

(iv) If A,B /∈ Aα, there are G,H ∈ Aα such that A ⊆ D(G, ξ) and B ⊆
D(H, ζ). Then there are four subcases:

(a) G ∩H = ∅, in which case A ∩B = ∅.
(b) H ( G in which case ζ ≤ L(G), then A∩H ∈ Iξ. This is analogous to

case (iii) using H instead of B.
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(c) G ( H, there are two options here: ξ < L(G) ≤ ζ < L(H) or ξ < ζ <

L(G). Both of these are analogous, let us assume that ξ < L(G) ≤ ζ <
L(H).

Like in the case (iii), to define D(H, ζ) we are using the enumeration

{CHn : n ∈ ω} of the family of all elements of Aα which are subsets of

H, thus for some n0 ∈ ω, we have that,

D(H, ζ) ∩G ⊆
⋃
i≤n0

G ∩ CHi ⊆
⋃
i≤n0

CHi .

To define D(G, ξ) we are using the enumeration {CGn : n ∈ ω} of all

elements of Aα which are subsets of G. There is k ∈ ω such that

CHi ∩ CGj = ∅ for all i ≤ n0 and all j ≥ k. Therefore

D(G, ξ) ∩D(H, ζ) ⊆
⋃
j≤k

⋃
{CGj ∩ CHi : i ≤ n0 & L(CGj ) < ξ} ∈ Iξ

by (e).

(d) G = H, then the definition in (e) implies that D(G, ξ) ⊆ D(H, ζ).

Moreover A and B are subsets of D(G, ξ) and D(H, ζ), respectively, and

they are atoms of finite Boolean algebras according to their definition

in (b). So, depending to which set D(G, ξ) or D(H, ζ) comes first in

the enumeration {En : n ∈ ω} we have that A ⊆ B or A ∩B = ∅.
For α ≤ ω1, a limit ordinal, if Aξ is defined for all ξ < α, define Aα =⋃
β<αAβ . It is clear that an increasing union of η-layered families is an η-

layered family. Finally we let

A =
⋃
β<ω1

Aβ .

We are left with showing that the η-layered family A has the required pro-

perties. To that end let Y ⊆ A be slim with respect to A. Note that Y is then

slim with respect to Aβ for every β < ω1 such that Y ⊆ Aβ .

As {gα : α < ω1} is a ♦(b∗)-sequence for F satisfying (©), there is an α < ω1

such that for infinitely many n ∈ ω there is m ∈ ω such that[
gα(n), gα(n+ 1)

)
⊇
[
F (〈Y ,Aα〉)(m), F (〈Y ,Aα〉)(m+ 1)

)
and Y ⊆ Aα is slim with respect to Aα. We apply Lemma 10 to transform Aα
into an equivalent canonical η-layered family B, and denote by ϕ the bijection

which witnesses that Aα and B are equivalent. Finally we consider Y = ϕ[Y ] a
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slim subset Y of B. Recall that the set C ∈ B witnessing that Y is slim has the

property that

(1) (∀∞y ∈ Y )(y ⊆ C),

(2) |{y ∈ Y : y ⊆ D}| < ω for every D ∈ B with L(D) < L(C).

Now, if (3) L(C) = sup{L(y) + 1 : y ∈ Y }, the same will hold in A, i.e.

(1) (∀∞y ∈ Y )(y ⊆IL(y)
C = ϕ−1(C)),

(2) {y ∈ Y : y ⊆IL(y)
D} is finite for every D ∈ A with L(D) < L(C) =

L(C), and

(3) L(C) = sup{L(y) + 1 : y ∈ Y },

and we are done.

Now, if ξ = sup{L(y) + 1 : y ∈ Y } < L(C), then by the definitions of the

function F (〈Y ,Aα〉) and D(C, ξ)

(∃∞y ∈ Y )(y ⊆IL(y)
D(C, ξ)).

To see this note that if F (Y ,Aα)(m) = km then

(∃y ∈ Y )(y ⊆IL(y)
Ckm \

⋃
i<km

Ci)

where {Ci : i ∈ ω} is the same canonical enumeration of all elements of B which

are proper subsets of C as the one used in the definitions of F (〈Y ,Aα〉) and

D(C, ξ). For infinitely many n ∈ ω there is m ∈ ω such that[
gα(n), gα(n+ 1)

)
⊇
[
F (〈Y ,Aα〉)(m), F (〈Y ,Aα〉)(m+ 1)

)
and as

D(C, ξ) =
⋃
n∈ω

(⋃
{Ci : i < gα(n+ 1) & L(Ci) < ξ} \

⋃
{Cj : j ≤ gα(n)}

)
,

it follows that there are infinitely many y ∈ Y such that y ⊆IL(y)
D(C, ξ), and

we are done.

Now, recall that D(C, ξ) is almost partitioned into a finite family of Iξ-

positive subsets D ∈ Aα+1 all of them with the property that for all B ∈ Aα
then either B ⊆IL(B)

D or D ∩ B ∈ IL(B). In particular, y ⊆IL(y)
D or

D ∩ y ∈ IL(y) for every y ∈ Y . Therefore for one of these D’s there are

infinitely many y ∈ Y such that y ⊆IL(y)
D. Finally, since y4ϕ(y) ∈ Iξ for

every y ∈ Y , there are infinitely many y ∈ Y such that y ⊆IL(y)
D.
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Theorem 12: The principle ♦(b∗) implies that for each ordinal η < ω1, there

is a separable compact sequential scattered space of sequential order η + 1.

Proof. Let A be a η-layered family from the previous proposition. Let BA ⊆
P(ω) be the Boolean algebra generated by A. Observe that every A ∈ A
produces an ultrafilter xA on BA defined by

xA = {B ∈ BA : A \B ∈ IL(A)}.

Let X = St(BA) = {xA : A ∈ A} be the Stone space of BA. Note that a slim

subset Y of the η-layered family A, corresponds to a convergent sequence in

X and that, if C ∈ A is the witness to Y being slim in A, then the sequence

{xy : y ∈ Y } converges to xC . Also observe that the scattered levels, X(γ), of

the space X correspond to the levels of the η-layered family A. Thus X is a

compact scattered space of height η+ 1 and, by Lemma 8, X is also sequential.

To prove that X is of sequential order η + 1, it is enough to consider the

level 0 of our space and show that we need to iterate the operator seqcl η

times to get the whole space X. Moreover, by the properties of the η-layered

family A in the previous proposition, we have that if {yn : n ∈ ω} is contained

in
⋃
ξ<γ Lξ(A), then every slim subset of {yn : n ∈ ω} is witnessed by some

element of
⋃
ξ<γ+1 Lξ(A). In other words, every convergent subsequence of a

sequence contained in X(≤γ), the first γ levels of X, has a its limit in X(≤γ+1).

This shows that seqclα(X(0)) ⊆
⋃
β≤αX

(β) for all α < η.

Corollary 13: In any model where♦(b∗) is valid there are compact sequential

scattered spaces of any sequential order α ≤ ω1.

As in the previous section, our result combined with the result of [6] shows

that there is a compact sequential scattered spaces of sequential order 4 in any

canonical model of ZFC.
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cardinal invariants, Topology Proceedings 44 (2014), 189-196.

[6] A. Dow, Sequential order under MA, Topology Appl. 146/147 (2005), 501510.

[7] A. Dow, Sequential order under PFA, Canad. Math. Bull. 54 (2011), no. 2, 270276.

[8] A. Dow, S. Shelah, An Efimov space from Martin’s axiom, Houston J. Math. 39 (2013),

no. 4, 14231435.
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