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ON RESOLVABILITY AND EXTRARESOLVABILITY

S. GARCIA-FERREIRA AND M. HRUŠÁK

Abstract. Several examples of resolvable spaces are presented.

We construct a countable ω-resolvable space which is not extrare-
solvable, and a compact first countable extraresolvable space. These
examples answer some questions that have been asked in the lit-

erature. It is also shown that CH + 2ω1 < ℵω implies that if X
is a strongly extraresolvable space, then X × ω is strongly extra-
resolvable. We shall also give a condition on the filters on ω that
is equivalent to strong extraresolvability of the corresponding Seq-

like spaces, and we give another condition that implies hereditary
strong extraresolvability of the Seq-like spaces. It is shown that in
the standard Solovay model of ZF where every set of reals has the
property of Baire, every countable space is resolvable and there is

an irresolvable space in this model.

1. Introduction

Our spaces will be Tychonoff. In this article we consider some ques-
tions concerning resolvability and extraresolvability of topological Haus-
dorff spaces. Research in this area stems from the paper of E. Hewit
[11] who calls a topological space X resolvable if X contains two dis-
joint dense subsets. The notion was extended in various ways in the past
few decades. J. G. Ceder [2] introduced and studied the notion of κ-
resolvability (X is κ-resolvable if it contains a family of κ-many pairwise
disjoint sets) with particular emphasis on maximally resolvable spaces,
i.e. spaces X which are ∆(X)-resolvable, where ∆(X) = min{|U | : U is
a non-empty open subset of X} denotes the dispersion character of X.
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According to V. I. Malykhin [15] a space X is extraresolvable if there
is a family {Dα : α < ∆(X)+} of dense subsets of X such that Dα ∩
Dβ is nowhere dense in X for distinct α and β, and finally following
W. Comfort and S. Garcia-Ferreira, a space X is strongly extraresolvable
if there is a family {Dα : α < ∆(X)+} of dense subsets of X such that
|Dα ∩Dβ | < nwd(X), where nwd(X) denotes the minimal cardinality of

a somewhere dense subset of X. We remark that ∆(X) ≤ 22
nwd(X)

, for
every space X.

Let us mention some relationships between the concepts. It has been
shown in [9] that every extraresolvable space is ω-resolvable and in [1]
it is proved that MAσ−centered implies that every countable space of
character less than c is extraresolvable. The question of existence of a
countable extraresolvable space which is not strongly extraresolvable was
posed in [4] and a positive answer was given in [8] and also in [5], where
the authors constructed, for each infinite cardinal number κ, a space X
such that |X| = nwd(X) = ∆(X) = κ. Maximally resolvable spaces
which are not extraresolvable exist in profusion, for instance the real
numbers, but most of the known examples are uncountable and satisfy
|X| > nwd(X). In the paper [5], W. W. Comfort and W. Hu constructed
several examples of maximally resolvable, extraresolvable spaces which
are not strongly extraresovable and |X| = nwd(X). Several years later
in the paper [13], for each infinite cardinal number κ, a space X is con-
structed so that it is maximally resolvable but not extraresolvable satis-
fying |X| = nwd(X) = κ. In [6], W. W. Comfort and W. Hu showed that
any space satisfying S(X) ≤ ∆(X) admits a Tychonoff expansion which
is maximally resolvable but not extraresolvable. S(X) denotes the Suslin
number of a space X.

In the present paper, we give a construction of a countable resolvable
space that is not extraresolvable by using a technique different from the
one used in [13]. This example was presented by the second author at
the 2003 Summer Topology Conference and its Applications, after many
years we finally decided to published it. This example will be described
in the second section. In the third section, we first address the question
of the strong extraresolvablity of a countable free sum of a strongly ex-
traresolvable space. We show that the answer to this question is positive
under the assumption CH + 2ω1 < ℵω. The fourth section is devoted to
answer affirmatively Question 27 of [17] by constructing a compact, first
countable, strongly extraresolvable space in ZFC. In the fifth section
we give two conditions on filters on ω, one of them equivalent to strong
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extraresolvability, and the other implying hereditary strong extraresolv-
ability of the corresponding Seq-spaces. In the final section, we show that
it is relatively consistent with ZF that every countable space is resolvable.

2. A countable, maximally resolvable, non-extraresolvable
space

Several known examples in the theory of irresolvable spaces involve
independent families. We present another such example here. We start
with some basic notation and concepts.

For A,B ∈ P(ω), let A∆B = (A\B)∪(B\A) and for A ⊆ P(ω), we let
⟨A⟩ stand for the set of all non-empty Boolean combinations of elements
of A. All ideals on ω are assumed to contain the ideal [ω]<ω. Given an
ideal I on ω and A,B ∈ P(ω), we write A ⊆I B if A \ B ∈ I. Hence,
given A,B ∈ P(ω) we put A =I B if A∆B ∈ I (equivalently, there is
I ∈ I such that A \ I = B \ I). It is known that =I is an equivalent
relationship between the elements of P(ω). We say that a family A ⊆ [ω]ω

is I − independent provided that for every A ∈ ⟨A⟩, we must have that∩
A ̸=I ∅. It is clear every I − independent family is independent and

every independent family is [ω]<ω-independent.

The upper density of a subset A ⊆ ω is the number

d(A) = lim sup
n→∞

|A ∩ n|
n

.

In our construction, we shall use the density ideal on ω:

D = {A ⊆ ω : d(A) = 0}.

Also we need the reaping number of a Boolean algebra B:
r(B) is the least cardinal κ such that there is A ∈ [B \ {0B}]κ such that

for every b ∈ B\{0B} there is a ∈ A such that either a ≤B b or a∧ b = 0B.
It is shown in [19] that r(P(ω)/D) = c. We are ready to construct our
example.

Theorem 2.1. There is an ω-resolvable, non-extraresolvable topology on
a countable set.

Proof. We start with a partition {An : n < ω} of ω into infinite pieces
so that d(An) > 0 for each n ∈ N. We will construct a topology τ on ω
so that each set An is τ -dense and so that if X is a τ -dense subset of ω,
then there is an n < ω such that X ∩ An is not nowhere dense. In order
to do this we shall construct a special D-independent family I of subsets
of ω such that:

i). I ∪ {An} is D-independent, for every n < ω, and
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ii). for every X ∈ [ω]ω either:
a. there is I ∈ ⟨I⟩ such that I ∩X =D ∅, or
b. there are n < ω and I ∈ ⟨I⟩ such that An ∩ I ⊆D X.

We will proceed by transfinite induction. First, enumerate [ω]ω as
{Xα : α < c}. Assume that Iα ⊆ ω has been defined for each α < β < c
so that

1). {Iα : α < β} ∪ {An} is D-independent, for every n < ω,
2). For every α < β one of the following statements holds:

a. There is an I ∈ ⟨{Iγ : γ < β}⟩ such that I ∩Xα =D ∅.
b. There are an n < ω and I ∈ ⟨{Iγ : γ < β}⟩ such that

An ∩ I ⊆D Xα.

Put Iβ = {Iα : α < β}. Assume that both conditions a) and b) of clause
ii) do not hold for Xβ . Then,

{An ∩ I ∩ (ω \Xβ) : I ∈ Iβ}
is a D-independent family on An, for all n < ω. Fix n < ω. Observe that
d(An ∩ I ∩ (ω \Xα)) > 0, for each I ∈ ⟨Iβ⟩. Since r(P(ω)/D) = c, there
is Bn ∈ [ω]ω such that

An ∩ I ∩ (ω \Xβ) ̸⊆D Bn and An ∩ I ∩ (ω \Xβ) ∩ Bn ̸=D ∅,
for all I ∈ ⟨Iβ⟩. Hence, we have that

d(An ∩ I ∩ (ω \Xβ) ∩ (ω \Bn)) > 0 and d(An ∩ I ∩ (ω \Xβ) ∩ Bn) > 0,

for all I ∈ ⟨Iβ⟩. Put Iβ = (
∪

n<ω An ∩ Bn) \ Xβ . It is evident that
{Iα : α ≤ β} ∪ {An} is D-independent, for every n < ω and Iβ ∩Xβ = ∅.
Finally we get I = {Iα : α < c}. It is clear that I satisfies clauses i) and
ii).

Having fixed a family I as above, moreover, we may assume that I
satisfies:

iii). For each m,n < ω exists I ∈ I such that |I ∩ {m,n}| = 1.
This is easily accomplished by making finite changes to countably many
elements of I.

To define the topology τ on ω enumerate ⟨I⟩ as {Iα : α < c} and D as
{Dα : α < c} allowing each element of D appearing infinitely many times
in this enumeration. Then, we declare all elements of ⟨{Iα \Dα : α < c}⟩
be clopen. It is not hard to see that condition ii) may be replaced by

ii’). for every X ∈ [ω]ω either:

a. there is I ∈ ⟨{Iα \Dα : α < c}⟩ such that I ∩X = ∅, or
b. there are n < ω and I ∈ ⟨{Iα\Dα : α < c}⟩ such that An∩I ⊆ Xα.

Then (ω, τ) is a zero-dimensional Hausdorff (by iii)) countable space,
which is ω-resolvable as all An are dense in X by requirement i).



ON RESOLVABILITY AND EXTRARESOLVABILITY 239

To show that X is not extraresolvable let A be an uncountable collection
of dense subsets of X. As every X ∈ A is dense, X ∩ I ̸= ∅ for every
I ∈ ⟨{Iα \ Dα : α < c}⟩. So, by ii’.b), there are nX < ω and IX ∈
⟨{Iα \Dα : α < c}⟩ such that AnX ∩ IX ⊆ X. Then, we can find m < ω
and an uncountable B ⊆ A such that nX = m for every X ∈ B. Hence,
for each X ∈ B, Am∩IX ⊆ X. So, X∩Am contains an open subset of Am

for each X ∈ B. As Am is countable, hence satisfying the countable chain
condition, there are two distinct X,Y ∈ B such that X ∩Y ∩Am contains
an open subset of Am. Consequently, X ∩ Y is not nowhere dense, so
(ω, τ) is not extraresolvable. �

3. Extraresolvable spaces

It was proved in [4] that if X is extraresolvable, then X ×α is extrare-
solvable for all infinite cardinals α (here, α is equipped with the discrete
topology). In the same paper, [4, Th. 4.1 (d’)] the authors pointed out
that if X is strongly extraresolvable, then X × α is strongly extraresolv-
able for every α < nwd(X). Hence, if nwd(X) > ω and X is strongly
extraresolvable, then so is X × ω. It is then natural to ask the following
question:

Question 3.1. Is the free sum of infinitely many copies of a strongly
extraresolvable space strongly extraresolvable ?

For the countable case the question was formulated in [8]. The following
result from [8] gives a necessary condition for the strong extraresolvability
of X × α.

Theorem 3.2. If X × α is strongly extraresolvable and nwd(X) < α ≤
∆(X)+, then X is κ-resolvable for every cardinal κ < α. In particular, if
X ×∆(X)+ is strongly extraresolvable, then X is maximally resolvable.

We provide a partial answer to the question by showing that the answer
is consistently yes.

Lemma 3.3. Let X be a strongly extraresolvable space. If ∆(X)ω <
∆(X)+, then nwd(X) > ω and X × ω is strongly extraresolvable.

Proof. Let {Dα : α < ∆(X)+} be a family of dense subsets of X witness-
ing the strong extraresolvability of X, and let U be an open subset of X
with size ∆(X). For each α < ∆(X)+, choose a countably infinite subset
Cα of Dα ∩ U . By assumption, there are only strictly less than ∆(X)+

countable subsets of U and hence we can find α ̸= β < ∆(X)+ such that
Cα = Cβ . So |Dα ∩Dβ | ≥ ω. Therefore, nwd(X) > ω. �
Theorem 3.4. [CH+2ω1 < ℵω] If X is a strongly extraresolvable space,
then X × ω is strongly extraresolvable.
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Proof. The case when ∆(X) = ω is fairly easily handled by diagonaliza-

tion (see [8]). Assume that nwd(X) = ω. Hence, ∆(X) ≤ 22
nwd(X)

=
22

ω

= 2ω1 . According to Lemma 3.3, we must have that ∆(X)ω ≥
∆(X)+. As CH implies that ωω

n = ωn, for all n < ω, and 2ω1 < ℵω,
we must have that ∆(X) = ωn, for some n ∈ ω. Thus, ∆(X)ω = ∆(X)
which is a contradiction. Therefore, nwd(X) > ω. �

A ZFC answer to the Question 3.1 is still unknown. Let us discuss
some another partial positive answer to this question. We need the next
easy lemma.

Lemma 3.5. If {Aα : α < κ} is an almost disjoint family of dense subsets
of a space X, then {

∪
n<ω[(Aα \ n) × n] : α < κ} is an almost disjoint

family of dense subsets of the space X × ω.

Theorem 3.6. If X is strongly extraresolvable, hereditarily separable
space, then X × ω is strongly extraresolvable.

Proof. By assumption, we have that nwd(X)=ω. Let {Aα :α<∆(X)+}
be a family of dense subsets witnessing the strong extraresolvability of X.
SinceX is hereditarily separable, we may assume that Aα ∈ [X]ω for every
α < ∆(X)+. By the previous lemma, we obtain that {

∪
n<ω[(Aα\n)×n] :

α < ∆(X)+} is an almost disjoint family of dense subsets of the space
X × ω. So, X × ω is strongly extraresolvable. �

The question of the existence of an extraresolvable (strongly extrare-
solvable) space that is not maximally resolvable was formulated in [4, Q.
6.7(b)]. We know from [4] that every strongly extraresolvable space X
is cf(nwd(X))-resolvable. For extraresolvable spaces, it is shown in [12]
that for every infinite cardinal number κ there is an extraresolvable space
of dispersion character κ that is not ω1-resolvable. Next, we shall give a
partial positive answer to the question assuming GCH.

Lemma 3.7. [GCH] For every strongly extraresolvable space X, ∆(X) =
nwd(X).

Proof. Assume GCH. Put κ = nwd(X). We know that ∆(X) ≤
22

nwd(X)

= 22
κ

and hence ∆(X) ≤ κ++. Suppose that ∆(X) > κ. As
2κ = κ+, we must have that ∆(X)κ = ∆(X). Let {Dα : α < ∆(X)+}
be a family of dense subsets of X witnessing the strong extraresolvability
of X, and let U be an open subset of size ∆(X). Since nwd(X) = κ
and |Dα ∩ U | ≥ κ, we can pick a set Cα ⊆ Dα ∩ U of size κ, for every
α < ∆(X)+. As ∆(X) > κ, there would be distinct α, β < ∆(X)+ such
that Cα = Cβ , but this contradicts the strong extraresolvability of X. �
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Lemma 3.8. Let X be a strongly extraresolvable space. If nwd(X) is a
regular cardinal, then X is nwd(X)-resolvable.

Proof. Let X be a strongly extraresolvable space and let κ = nwd(X).
Choose any witness {Dα : α < κ+} to the strong extraresolvability of X.
For every α < κ, we define

D′
α = Dα \

∪
β<α

Dβ .

Clearly, the sets D′
α’s are disjoint. Now, let α < κ. By the regularity of

κ, we have that

|Dα ∩ (
∪
β<α

Dβ)| ≤ |
∪
β<α

Dα ∩Dβ | < κ.

Hence, Dα∩ (
∪

β<α Dβ) is nowhere dense and consequently D′
α is a dense

subset of X. This shows that X is nwd(X)-resolvable. �

As a direct consequences of Lemma 3.7 and 3.8, we have the following
corollary.

Corollary 3.9. [GCH] Let X be a strongly extraresolvable space. If
nwd(X) is a regular cardinal, then X is maximally resolvable.

4. A first countable, compact, strongly extraresolvable
space

In this section, we shall affirmatively answer Question 27 of [17] (which
originally was listed in [9, Q. 3.25] and was attributed to O. T. Alas) which
asked whether there is a compact, first countable, strongly extraresolvable
space in ZFC. In their paper the authors appeal to a fairly complicated
construction of an S-space due to M. E. Rudin for a consistent example.
We will show that a very nice space definable in ZFC alone, namely
the space [0, 1]ω with the interval topology induced by the lexicographic
order, provides an example.

For f ̸= g ∈ [0, 1]ω denote by f∆g the minimal n ∈ ω such that
f(n) ̸= g(n). Define f < g if f(f∆g) < g(f∆g). Obviously ([0, 1]ω, <)
is a linearly ordered set. Let X be [0, 1]ω with the interval topology
induced by <. Denote by 0 the constant zero function and by 1 the
constant function 1. It is evident that 0 and 1 are the first element and
the last element of ([0, 1]ω, <), respectively. To describe the topology on
([0, 1]ω, <) we need the following terminology:

Theorem 4.1. X = ([0, 1]ω, <) is a first countable compact strongly ex-
traresolvable space.
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Proof. First note that X = ([0, 1]ω, <) is dense in itself and ∆(X) = c. In
order to prove that it is compact it is enough to show that it is Dedekind
complete (see [23, P. 17E]). To do that let A be a non-empty subset of
[0, 1]ω. To define the least upper bound of A we need to define inductively
a function s : ω → ω as follows:

First, we let s(0) = sup{g(0) : g ∈ A}, and for each positive n < ω, we
let s(n) = sup{g(n) : g ∈ A and ∀i < n(g(i) = s(n))}. Notice that s(n)
could not be defined in some cases. Indeed, suppose that there is m < ω
such that s(m) can be defined and g(m) < s(m), for every g ∈ A such
that g(n) = s(n) for all n < m. Then, in this case, we define

f(n) =

{
s(n) for n ≤ m

0 otherwise.

If this is not the case (that is, s(n) exists for every n < ω), then we define
f = s. It is not difficult to prove that f is the lest upper bound of A. So,
X is a compact space. For each f ∈ X and for each n < ω, we define

U(f, n) = {g ∈ X : ∀i < n(f(i) = g(i)) and | f(n)− g(n) |< 1

n
}.

It is not difficult to see that each U(f, n) is open and
∩

n<ω U(f, n) = {f}
for every f ∈ X. As the character and pseudo-character coincides at each
point of X (see [16]), our space X is then first countable. Notice that
w(X) = nwd(X) = ∆(X) = c. According to Theorem 2.3 of [4], we
obtain that X is strongly extraresolvable. �

5. Seq spaces

First, we give some terminology which is very helpful to define the
topology of the Seq spaces.

FF (ω) will denote the set of all free filters on ω. For F ∈ FF (ω), we
let F+ = {A ⊆ ω : ∀F ∈ F(A ∩ F ̸= ∅)}. Let Seq =

∪
n<ω ωn. If s ∈ Seq

and n < ω, then the concatenation of s and n is the function s⌢n =
s∪{(dom(s), n)}. For a function δ : Seq → FF (ω), we define a topology τδ
on Seq by defining V ∈ τδ iff for every s ∈ V , {n < ω : s⌢n ∈ V } ∈ δ(s).
It is well-known that Seq(δ) = (Seq, τδ) is an extremally disconnected,
zero dimensional Hausdorff space for every function δ : Seq → FF (ω)
(see [22]). It was shown in [8] that if δ(s) is a free ultrafilter on ω for
each s ∈ Seq, then the space Seq(δ) is extraresolvable but not strongly
extraresolvable. We shall give a necessary and sufficient condition to
guarantee the strong extraresolvability of Seq(δ). We also give a condition
that implies the hereditary strong extraresolvability of Seq(δ). To do that
we need the following notions introduced by V. I. Malykhin in [15].
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Definition 5.1. Let F ∈ FF (ω).

(1) F is called small if there exists an uncountable AD-family1 A of
subsets of ω such that A ⊆ F+.

(2) F is called everywhere small if whenever A ∈ F+ there exists an
uncountable AD-family of subsets of A contained in F+.

We have changed the terminology “big” and “everywhere big” origi-
nally used by Malykhin since the filters defined in 5.1 are somehow small
in a set-theoretical sense.

Clearly each everywhere small filter is small. It is evident that an
ultrafilter cannot be small. Observe that the Frechét filter on ω is the
easiest example of an everywhere small filter. More generally, given an
uncountable AD-family, we can find a free filter on ω so that the AD-
family witnesses the smallness of the filter and the filter is everywhere
small. Indeed, if A is an uncountable AD-family, then FA = {F ⊆
ω : ∀A ∈ A(F ⊆∗ A)} is an everywhere small filter, where A ⊆∗ B
means that A\B is finite. These filters are examples of sequential2 filters
(several basic properties of these filters appear in the paper [10]) which
have convergent sequences. This is one of many reasons that we have
called them small. Adding a free ultrafilter and a sequential filter, we get
a big filter which is not everywhere big. Indeed, let A ∈ [ω]ω be with
infinite complement. If p is a free ultrafilter on ω containing A, then the
filter F = {E ∪F : E is a cofinite subset of ω \A,F ⊆ A and F ∈ p} is a
small filter which is not everywhere small.

As we mention above, if the function δ takes only ultrafilters, then the
space Seq(δ) cannot be strongly extraresolvable,

We shall need to introduce the basic open sets of Seq(δ). For s ∈ Seq
we put c(s) = {t ∈ Seq : s ⊆ t}. If f ∈

∏
t∈c(s)\{s} δ(t), then we let

c0(s, f) = {s} and, for each positive n < ω, we inductively define

cn(s, f) = {t⌢n : t ∈ cn−1(s, f) and n ∈ f(t)}.

And then c(s, f) =
∪

n<ω cn(s, f) is a basic open of the space Seq(δ) that
contains s, for each s ∈ Seq and for each f ∈

∏
t∈c(s)\{s} δ(t).

To prove our first theorem we need some lemmas.

1A family A of infinite subsets of ω is called almost disjoint (AD) if for distinct
A,B ∈ A we have that | A ∩B |< ω.

2A free filter F on ω is called sequential if for each E ∈ F+ there is an infinite
subset A of E such that A \ F is finite for every F ∈ F .
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Lemma 5.2. If D is dense in Seq(δ), then for every s ∈ Seq and for
every f ∈

∏
t∈C(s)\{s} δ(t) there is t ∈ c(s, f) such that

∀F ∈ δ(t)(F ∩ {n < ω : t⌢n ∈ D} ̸= ∅).
Proof. Suppose that there are s ∈ Seq and f ∈

∏
t∈C(s)\{s} δ(t) such that

for every t ∈ c(s, f) there is Ft ∈ δ(t) with Ft ∩ {n < ω : t⌢n ∈ D} = ∅.
Now, we define g ∈

∏
t∈C(s)\{s} δ(t) as

g(t) =

{
f(t) ∩ Ft if t ∈ c(s, f)

f(t) otherwise.

Observe that c(s, g) ⊆ c(s, f). Then, there is t ∈ c(s, g) ∩ D. Choose
r ∈ c(s, g) and k ∈ g(r) so that t = r⌢k. Then, by definition, k ∈ g(r) =
f(r) ∩ Fr, but this is impossible since t = r⌢k ∈ D. �
Lemma 5.3. Let δ : Seq → FF (ω) be a function. If Seq(δ) admits a
dense subset D such that:

(1) δ(s) is small for every s ∈ D; and
(2) For every s ∈ D there is an AD-family As of size ω1 which can

be indexed as {A(s, ν) : ν < ω1} such that
a. As witnesses the smallness of δ(s); and
b. for every ν, µ < ω1, the set {s ∈ D : A(s, ν) ∩ A(s, µ) ̸= ∅}

is finite,

then Seq(δ) is strongly extraresolvable.

Proof. Suppose that Seq(δ) has a dense subset D satisfying all the con-
ditions stated in clauses 1 and 2. For ν < ω1, we define Dν = {s⌢n :
n ∈ A(s, ν) and s ∈ D}. It is evident that Dν is dense in Seq(δ), for all
ν < ω1. By clause b, we get that Dν ∩Dµ is finite whenever ν < µ < ω1.
Thus, {Dν : ν < ω1} witnesses the strong extraresolvability of Seq(δ). �

We need to introduce some notions concerning the topology of the
Stone-Čech compactification β(ω) of ω with the discrete topology. We
identify β(ω) with the set of all ultrafilters on ω, and ω∗ will denote the

set of all free ultrafilters on ω. For A ⊆ ω, we let Â = {p ∈ β(ω) : A ∈ p}
and, ifA ∈ [ω]ω, we letA∗ = {p ∈ ω∗ : A ∈ p}. We know that {Â : A ⊆ ω}
and {A∗ : A ∈ [ω]ω} are bases consisting of clopen sets for β(ω) and ω∗,
respectively.

There is a one-to-one correspondence between the free filters on ω and
the non-empty closed subsets of ω∗:

F ∈ FF (ω) −→ MF =
∩
F∈F

F̂ , and

C ⊆ ω∗ closed −→ FC = {F ⊆ ω : C ⊆ F̂}.
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We know that FMF = F and C = MFC
, for every F ∈ FF (ω) and for

every closed subset C ⊆ ω∗.

Now, let F ∈ FF (ω) and suppose that A = {Aν : ν < ω1} is an
AD-family such that A ⊆ F+. Then, we have that MF ∩ A∗

ν ̸= ∅, for
every ν < ω1. Hence, for each ν < ω1, we choose pν ∈ MF ∩A∗

ν , and put
G = F{pν :ν<ω1}. Clearly, F ⊆ G and Aν ∈ G+ for all for each ν < ω1.

Observe that A ⊆ G+ and G+ ⊆ F+. In the proof of the next Lemma,
we will replace a filter F by the filter G.
Lemma 5.4. Let {Fn : n < ω} be a countable subset of FF (ω). Suppose
that, for every n < ω, there is an uncountable AD-family An such that
An ⊆ F+

n . Then, for every n < ω and for every ν < ω1, there is A(n, ν) ∈
[ω]ω such that

i. A(n, ν) is almost contained in an element of An, for every n < ω
and for every ν < ω1;

ii. {A(n, ν) : ν < ω1} is an AD-family, for every n < ω;
iii. A(n, ν) ∈ F+

n , for every n < ω and for every ν < ω1; and
iv. the set {n < ω : A(n, ν) ∩ A(n, µ) ̸= ∅} is finite, for every ν, µ <

ω1.

Proof. For each n < ω, let Gn ∈ FF (ω) be the filter constructed as in the
comment above by using the filter Fn. We will use the filters {Gn : n < ω}
rather than the filters {Fn : n < ω}. It is evident that An ⊆ G+

n , for each
n < ω. By removing only countably many elements of each An, we may
assume that

(∗) for every n < ω, we have that the set {A ∈ Am : A∗ ∩MGn ̸= ∅}
is either empty or uncountable, for all m < ω.
We shall proceed by transfinite induction. Suppose that for every n < ω
and for every ν < θ < ω1 we have defined A(n, ν) ∈ [ω]ω so that

i. A(n, ν) is almost contained in an element of An, for every n < ω
and for every ν < θ;

ii. {A(n, ν) : ν < θ} is an AD-family, for every n < ω;
iii. A(n, ν) ∈ F+

n , for every n < ω and for every ν < θ; and
iv. the set {n < ω : A(n, ν)∩A(n, µ) ̸= ∅} is finite, for every ν, µ < θ.

By (∗), for each n < ω, we may find An ∈ Gn and pn ∈ A∗
n ∩MGn such

that pn /∈ [
∪

ν<θ

∪
m<ω A(m, ν)∗] ∪ [

∪
m<n A

∗
m], for each n < ω. Now, fix

a bijection f : ω → θ. Then, we define

A(n, θ) = An \ [(
∪
k<n

Ak) ∪ (
∪

i,j≤n

A(i, f(j)))],

for every n < ω. Observe that pn ∈ A(n, θ)∗, for every n < ω. Suppose
that there is ν < θ such that A(ni, ν) ∩ A(ni, θ) ̸= ∅, for every i < ω,
and ni ̸= nj whenever i < j < ω. Let k < ω be such that f(k) = ν.
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If k < ni, then we have that A(ni, ν) ∩ A(ni, θ) = ∅, but this is a con-
tradiction. Therefore, {n < ω : A(n, ν) ∩ A(n, θ) ̸= ∅} is finite, for every
ν < θ. �

Theorem 5.5. Let δ : Seq → FF (ω) be a function. Then, Seq(δ) is
strongly extraresovable if and only if the set D = {s ∈ Seq : δ(s) is small}
is dense in Seq(δ).

Proof. Necessity. Let {Dν : ν < ω1} witness the strong extraresolvability
of Seq(δ). Fix s ∈ Seq and f ∈

∏
t∈C(s)\{s} δ(t). For each ν < ω1, we

define Sν = {t ∈ c(s, f) : ∀F ∈ δ(t)(F ∩ {n < ω : t⌢n ∈ Dν} ̸= ∅)},
which is not void by Lemma 5.2. Since Seq is countable there must be
t ∈ c(s, f) and It ∈ [ω1]

ω1 such that ∀F ∈ δ(t)∀ν ∈ It(F ∩{n < ω : t⌢n ∈
Dν} ̸= ∅). For each ν ∈ It, we define A(t, ν) = {n < ω : t⌢n ∈ Dν}.
Clearly, {A(t, ν) : ν ∈ It} witnesses the smallness of δ(t) and we have that
t ∈ c(s, f). Therefore, D = {s ∈ Seq : δ(s) is small } is a dense subset of
Seq(δ). In conclusion, for every s ∈ D, we have found Is ∈ [ω1]

ω1 and an
uncountable AD-family {A(s, ν) : ν ∈ Is} witnessing the smallness of σ(s)
such that if ν, µ < ω1, then {s ∈ D : ν, µ ∈ Is and A(s, ν) ∩ A(s, µ) ̸= ∅}
is finite.

Sufficiency. Suppose that Seq(δ) admits a dense subset D such that
δ(s) is small, for every s ∈ D. For each s ∈ D, choose an uncountable AD-
family As witnessing the smallness of δ(s). Enumerate D as {sn : n < ω}.
For each n < ω, let Gsn ∈ FF (ω) be the filter constructed as in the
comment above by using the filter δ(sn), and define γ : Seq → FF (ω) by

γ(s) =

{
Gs for s ∈ D

δ(s) for s ∈ Seq \D.

We then have that Gs traces on every element of As, for every s ∈ D.
According to Lemma 5.4, for every n < ω and for every ν < θ < ω1, we
may find A(sn, ν) ∈ [ω]ω such that

i. A(sn, ν) is almost contained in an element of Asn , for every n < ω
and for every ν < ω1;

ii. {A(sn, ν) : ν < ω1} is an AD-family, for every n < ω;
iii. A(sn, ν) ∈ γ(sn)

+, for every n < ω and for every ν < ω1; and
iv. the set {s ∈ D : A(s, ν)∩A(s, µ) ̸= ∅} is finite, for every ν, µ < ω1.

It then follows from Lemma 5.3 that Seq(γ) is strongly extraresolvable.
Hence, we obtain that Seq(σ) is strongly extraresolvable. �

We now turn out to study the hereditary strong extraresolvability of
the spaces Seq(σ). For that we need the next lemma.

Lemma 5.6. Let δ : Seq → FF (ω) be a function. If X ⊆ Seq(δ) is dense
in itself, then for every s ∈ X and for every f ∈

∏
t∈C(s)\{s} δ(t), there is

r ∈ C(s, f) such that {n < ω : r⌢n ∈ X} ∈ δ(r)+.
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Proof. Suppose that there are s ∈ X and f ∈
∏

t∈C(s)\{s} δ(t) such that

for every r ∈ C(s, f) there is Fr ∈ δ(r) for which

i. Fr ∩ {n < ω : r⌢n ∈ X} = ∅, for every r ∈ C(s, f), and
ii. Fr ⊆ f(r), for every r ∈ C(s, f).

Now, we define g ∈
∏

t∈C(s)\{s} δ(t) by

g(r) =

{
Fr for r ∈ C(s, f)

f(r) otherwise.

Since s ∈ C(s, g) ∩ X ⊆ C(s, f) ∩ X and X is dense in itself there is
t ∈ C(s, g)∩X such that t = r⌢n for some r ∈ C(s, g) and n ∈ g(r) = Fr,
but this is a contradiction. �

Theorem 5.7. Let δ : Seq → FF (ω) be a function such that δ(s) is
everywhere small for every s ∈ Seq. Then, Seq(δ) is hereditarily strongly
extraresolvable.

Proof. Let X ⊆ Seq(δ) be dense in itself. Put D = {s ∈ Seq : {n <
ω : s⌢n ∈ X} ∈ δ(s)+}. We know that D is an infinite set because of
Lemma 5.6. Enumerate D as {sn : n < ω} and, for each n < ω, let
En = {k < ω : s⌢n k ∈ X}. By hypothesis, for every n < ω, we may find
an uncountable AD-family An consisting of infinite subsets of En so that
An ⊆ δ(sn)

+. By Lemma 5.4, for every n < ω and for every ν < θ < ω1,
we may find A(sn, ν) ∈ [En]

ω such that

i. A(sn, ν) is almost contained in an element of Asn , for every n < ω
and for every ν < ω1;

ii. {A(sn, ν) : ν < ω1} is an AD-family, for every n < ω;
iii. δ(sn) traces on A(sn, ν), for every n < ω and for every ν < ω1;

and
iv. for every ν, µ < ω1, the set {s ∈ D : A(s, ν) ∩ A(s, µ) ̸= ∅} is

finite.

Then, for every ν < ω1, we define

Dν = {s⌢k : s ∈ D and k ∈ A(s, ν)}.

It is easy to verify that {Dν : ν < ω1} witnesses the strong extraresolv-
ability of the space X. �

Theorem 5.8. Let δ : Seq → FF (ω) be a function. If Seq(δ) is heredi-
tarily strongly extraresolvable, then

D = {s ∈ Seq : δ(s) is everywhere small}

is a dense subset of Seq(δ).
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Proof. Suppose the contrary. That is, there are s ∈ Seq and f ∈∏
t∈C(s)\{s} δ(t) such that if t ∈ C(s, f), then δ(t) is not everywhere small.

For each t ∈ C(s, f), choose Bt ∈ [ω]ω witnessing that δ(t) is not every-
where small. Define X = {s} and Xn+1 = {t⌢n : n ∈ Bt and t ∈ Xn},
for each 1 ≤ n < ω. Clearly, the set X =

∪
n<ω Xn is dense in itself. By

assumption, X is strongly extraresolvable. Then X admits an AD-family
{Dν : ν < ω} consisting of dense subsets. According to Lemma 5.6, the
set Eν = {t ∈ c(s, f) : {n ∈ Bt : t⌢n ∈ Dν} ∈ δ(t)+} is not void, for
every ν < ω1. We then deduce that there are r ∈ C(s, f) and I ∈ [ω1]

ω1

such that δ(r) traces on the set Aν = {n ∈ Br : r⌢n ∈ Dν}, for each
ν ∈ I. But this is a contradiction to the choice of Br since {Aν : ν ∈ I}
is an uncountable AD-family of infinite subsets of Br. This proves the
theorem. �

6. Irresolvability in models of ZF

Let us look at the complexity of the notion of irresolvability. It seems to
require some form of the Axiom of Choice. Usual constructions deal with
maximal topologies or maximal independent families, strongly utilizing
the Kuratowski-Zorn lemma (see for instance [5], [7] and [12]). Indeed,
the next theorem suggests that some version of the Axiom of Choice is
necessary for the existence of an irresolvable space.

Lemma 6.1. [Countable Axiom of Choice] The ideal of nowhere
dense subsets of a countable irresolvable space is saturated 3.

Proof. Assume that X = (ω, τ) is a countable irresolvable space and let I
denote the ideal of nowhere dense subsets ofX. Without loss of generality,
we may assume that X is hereditarily (w.r.t. open sets) irresolvable, since
the union of resolvable spaces is resolvable ([3]). To see this we only
need Countable Axiom of Choice as X is countable. Let A be an almost
disjoint, mod I, family of somewhere dense subsets of X. Assume that A
(note that here uncountable simply means not countable) is uncountable.
As X is hereditarily irresolvable, each A ∈ A has non-empty interior. Let
D = {n < ω : ∃A ∈ A(n ∈ int(A))}. Pick for every n ∈ D a set An ∈ A
such that n ∈ int(An). Only Countable Axiom of Choice was needed here.
So, by almost disjointness of A, A = {An : n ∈ D} is countable. �

Lemma 6.2. [Countable Axiom of Choice] No meager ideal on ω is
saturated.

3An ideal I is called saturated if every almost disjoint (mod I) family of subsets of
P(ω) \ I is countable.
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Proof. Let I be a meager ideal on ω. By the Jalali-Naini–Talagrand
Theorem (see either [21, Th. 1] or [20, Th. 21]), which also requires only
Countable Axiom of Choice, there is a partition {In : n < ω} of ω into
finite sets such that

(*) For every A ∈ I, the set {n : In ⊆ A} is finite.
Let B be an uncountable almost disjoint (mod Fin) family of subsets

of ω and let

A = {
∪
n∈A

In : A ∈ B}.

No element of A is then an element of I by (*), yet for distinct A,B ∈ A,
A∩B is finite, hence A∩B ∈ I. So the family A witnesses that I is not
saturated. �

Theorem 6.3. It is relatively consistent with ZF that every countable
space is resolvable.

Proof. Consider the standard Solovay model M of ZF where every set of
reals has the property of Baire (for the construction of the model see for
instance [18]). It is known that the Countable Axiom of Choice holds in
this model. Suppose that X is a countable irresolvable space and let I be
the ideal of nowhere dense subsets of X. According to Lemma 6.1, the
ideal I is saturated. We may assume that the underlying set of the space
X is ω. That is the ideal I is a subset of P(ω) and via characteristic
functions can be considered a subset of the Cantor set 2ω. As a subset of
the Cantor set the ideal I has the Baire property. By Theorem 1 of [21],
it is meager. This, however, contradicts Lemma 6.2. Therefore, every
countable space is resolvable in the model M . �

We shall remark that in the model M considered in the proof of the
previous theorem there is an irresolvable space. This space is the Ellentuck
space. Let us recall the Ellentuck topology on [ω]ω: Given s ∈ [ω]<ω and
A ∈ [ω]ω, s < A means that max{s} < min{A}, and if s < A, then we let
[s,A] = {B ∈ [ω]ω} : s ⊆ B ⊆ s∪A}. The Ellentuck topology τE has the
family {[s,A] : s ∈ [ω]<ω, A ∈ [ω]ω and s < A} as a basic base of open
sets. It is evident that the partition relation ω → (ω)ω2 is equivalent to
the fact that ([ω]ω, τE) is irresolvable.

The partition relation does not hold assuming the Axiom of Choice.
On the other hand, it is consistent with ZF that it holds. It is true in the
L(R) of a collapse of an inaccessible cardinal to ω, the standard Solovay
Model.
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resolvability, Top. Appl., 153 (2006), 1800–1824.
[14] A. S. Kechris, Classical Descriptive Set Theory, Graduate Text in Mathematics

vol. 156, Springer, 1994.
[15] V. I. Malykhin, Irresolvability is not descriptively good, Preprint.
[16] P. R. Meyer and R. G. Wilson, Cardinal functions on topological spaces satisfying

order conditions, Houston J. Math., 5 (1979), 107–118.

[17] O. Pavlov, Problems on (ir)resolvability, Open Problems in Topology II, Editor
E. Pearl, Elsevier, 2007.

[18] S. Shelah, Can you take Solovay’s inaccessible away?, Israel J. Math., 48 (1984),

147.
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Instituto de Matemáticas (UNAM), Apartado Postal 61-3, Xangari, 58089,
Morelia, Michoacán, México
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