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Abstract
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is Lindelof for everyn € N and neitherX® nor X x »® are normal. Moreover, we prove that for
every uncountable almost disjoint fami§ on w and every compactificatiobw (A) of ¥ (A), the
spaceC ), (b¥ (A), 2”) is not normal.
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0. Introduction

All spaces considered in this article will be Tychonoff. For spaXemndE, C (X, E)
denotes the space of all continuous functions define® @md with values i with the
topology of pointwise convergence; that is, the topolog¢'e{X, E) is inherited from the
Tychonoff productEX. As usual, we writeC, (X) instead ofC, (X, R). We are going to
use the symbolL (X) for the Lindel6f numbeiof spaceX (the minimum infinite cardinal
numberr such that every open cover &f has a subcover of cardinality 7), ande(X) is
theextentof X (the supremum of the cardinalities of all the closed and discrete subspaces
of X).

Some of the most interesting topics in spa€g$X, E) are related with their normality,
Lindelof degree and extent, and the relation between them. Next, we give some fundamen-
tal results about the foregoing.

0.1 (Reznichenko [17])If e(C, (X)) > R, thenC,(X) is not normal.
0.2 (Reznichenko [17])C,(X) is normal if and only ifC,(X) is collectionwise normal.

As everyC,(X) has cellularity< 8g and every paracompagpace with cellularity< Ko
is Lindelof, we have:

0.3. A spaceC, (X) is paracompact ifC, (X) is Lindelof.
0.4 (Tkachuk [18]) If C,(X) is normal, therC,, (X) is countably paracompact.
0.5 (Tkachuk[18]) The space€, (X) is hereditarily normal iffiC ,(X) is perfectly normal.

0.6 (Baturov [2]). LetX be a Lindel6f¥-space. Then for every subspacef C,(X), the
extente(Y) of Y is equal to the Lindel6f numbédr(Y) of Y.

As a corollary of 0.1 and 0.6, we obtain thatXf is a Lindel6f X-space, normality,
countable extent and Lindelof property coincide&lp(X). However, ifX is the one-point
LindeldficationL (w1) = w1 U {x} of the discrete space of cardinaliyi, thenC,(X) is
normal (thene(C,(X)) = Ro), but it is not Lindeldf. It is of general interest to specify
classes of spaces for which countable exteatmality and the Lindel6f property are well
correlated.

Just, Sipacheva and Szeptygkoved in [9] that the spac = L(w1) X (w + 1) \
{(x, w)} has countable extent ar@, (X) is not normal. This spac& is monolithic and
of charactemw;. They also construct, using the combinatorial principlea separable and
first-countable spack such thaiC, (Y) is not normal and has countable extent. This space
Y is a Mréwka spac& (A) where A is an almost disjoint family built along agwi—p)-
ultrafilter onw.

Most of the known results about normality or the Lindelof number in spaGg)
are of the following type: ifC,(X) is normal or Lindelof, thenX must satisfy certain
topological properties. So, a natural problem is to find some classes of spdcewhich
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C,(X) is normal or Lindelof. In this direction, we know thatXf is an Eberlein compact
space or ifX contains a countable collection of subs#fssuch that every open subset of
X is the union of a subcollection of (in particular, if X is separable and metrizable),
thenC, (X) is Lindelof.

Recently, Buzyakova [3] discovered that for every ordimal”, (X) is Lindelof if X =
a\{B <a: cf(B) > w}.

Motivated by [3], Dow and Bnon [6] analyzed the spac&s, (¥ (A)) whereA is an
almost disjoint family orw and ¥ (A) is the Mréwka space related 14, and answered
several questions posed in [3]. They proved:

(1) for every maximal almost disjoint familyl, C, (¥ (A)) is not Lindelof,

(2) assuming>, they constructed a mad famil§ such thatC,, (¥ (A), {0, 1}) is Lindelof.
This A has the characteristic that the StoGeeh compactification of (A) coincides
with its one-point compactification;

(3) assuming > w1, C, (¥ (A), 2) is not Lindeldf for every mad family.

In this article, we also analyze Lindel6f property and normality in spaces of contin-
uous functions over a Mréwka space. We prove thatlifis a quasi-maximal almost
disjoint family (in particular, if.A is a mad family),C, (¥ (A)) is not normal (Section 3).
Moreover, we construct in Section 4, using CH, a Mrowka mad fandilguch that, for
X =Cp(¥(A),{0,1}), X" is Lindeltf andX® and X x »“ are not normal. We also con-
struct from CH a Luzin gapd such thatC, (¥ (A)) has countable extent. In Section 2 we
prove that for every compactificatian? (A) of an uncountable almost disjoint family,
C,(b¥(A) is not normal. Section 1 is devoted to some basic definitions and basic results
about normality of spaces (A).

The concepts, terminology and notations used and not defined in this article can be
foundin [1,8,10].

1. Preliminaries

The set of all natural numbers is denoteddyyN is the set of positive integers, aij
Q andP (or w®) are the spaces of real, rational antional numbers with the natural
topology. ByI we denote the unit closed intenj@l, 1] C R.

We have already mentioned, in the Introduction, what the Lindel6f degree and the extent
of a spaceX mean. Another topological cardinal invariant that we are going to deal with
is the cellularity of a spaceX, which is denoted by (X). This is the supremum of the
cardinalities of all collections of open and pairwise disjoint subsefs.of

Recall that a collectiond of subsets of the natural numbewsis analmost disjoint
family if each A in A is infinite, and for two different elements, B € A, |A N B| < No.

A maximal almost disjoint familymad family) is a maximal element in the family of all
the almost disjoint families with the containment order.

A topological spaceX is aMrowka spacda Mrowka—Isbell spacer a ¥ -space see
[7, Problem 5I]) if it has the formw U A, where A is an almost disjoint family, and its
topology is generated by the following base: eéchis open for every: € w, and an open
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canonical neighborhood of € A is of the form{A} U B whereB C w andA \ B is finite.
In this case, we denot®¥ by ¥ (A). This kind of spaces was introduced by Mréwka in
[13]. For every almost disjoint familyd, ¥ (A) is a 0-dimensionaldcally compact first
countable spaced is a closed discrete subspacelofA) andw is dense. Moreovew (A)
is pseudocompact if and only A is maximal. So¥ (A) is not normal if A is an infinite
mad family.

The following result is obvious.

1.1. Proposition. Let .4 be an almost disjoint family ow. Then,w (A) is collectionwise
normal if and only if| A| < Ro.

The normality of¢ (A) can be expressed in several ways:

1.2. Proposition. For an almost disjoint familyd the following statements are equivalent

(1) w(A) is normal.

(2) Every functiong : A — {0, 1} has a full extensianthat is, there exist a continuous
functiong : ¥ (A) — {0, 1} which extends.

(3) ForeveryB C A, there is a partitionelC C w of B; thatis,A c* C for all A € B, and
IANC|=*@forall Aec A\B.

So, if 2 < 21, the spacel (A) is not normal for every uncountablé. Moreover,
Martin Axiom plus—CH implies that there are spacgg.4) which are normal. Indeed,
for each subseX of the Cantor set2, we take the collectiotdy = {As: f € X} where
Ar={f I n: new}. Ax is an almost disjoint family of subsets of the countable set
2= ={fIn: f€2? new},and¥(Ay) is normal if and only ifX is a Q-set in 2.

We will call an almost disjoint family.4A Mrowka if the one-point compactification
a¥(A) of ¥ (A) coincides with its Stonegsech compactificatiow (A). This kind of
almost disjoint families are maximal and exist in ZFC (see [14]). An almost disjoint family
A is Mréwka iff B¥ (A) is 0-dimensional and one of the sgts*(0) N A4, F~1(1) N Ais
finite for eachf € C(¥ (A), 2).

We are going to frequently use the following well-known facts.

1.3. Lemma.

(1) If the extent of a normal space is countable, therX is collectionwise normal.

(2) If X is a collectionwise Hausdorff space and() < Ro, then the extent of is count-
able.

(3) If Z is dense in a Tychonoff produgt’ and E is separable, then(Z) < Ro.

2. Cp(b¥(A), 2°) isnot normal for every compactification b% (A) of ¥ (.A)

The following is a generalization of a result due to Corson [5].
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2.1. Theorem. Let X = [[{X«: @ € A} be the product of separable metric spaces; X,
Y everywhere dense iX, and let the spac& be a continuous image df. If Z x Z is
normal, thenZ is collectionwise normal.

As a consequence of Theorem 2.1, we have:

2.2. Corollary. Let X be aO-dimensional space. If, (X, 2) is normal, then it is collec-
tionwise normal.

Proof. C,(X,2*) is a dense subset of the product|&fi copies of the separable metric
space 2. We have thaC, (X, 2°) = C,(X,2)* = C, (X, 2)* x Cp(X, 2* = Cp(X, 2°) x
Cp(X,2%).S0,ifC,(X, 2”) is normal, therC, (X, 2°) x C,(X, 2*) is normal. Therefore,
by Theorem 2.1C, (X, 2*) is collectionwise normal. O

A well-known problem which has not been solved asks if normalit'gfX, 2) (re-
spectively,C, (X, )) implies thatC, (X, 2) (respectively,C,(X, w)) is collectionwise
normal for every topological spacé. In our context we can modify this question as fol-
lows:

2.3. Problems. Is it true that for every almost disjoint famil, C, (¥ (A), 2) (respec-
tively, C, (¥ (A), w)) is normal implies thaC, (¥ (A), 2) (respectivelyC, (¥ (A), w)) is
collectionwise normal?

The following result was proved in [4, Theorem 3.2].

2.4. Proposition. Let X be a0-dimensional space. Then, the spatg X, 2) is countably
compact if and only i is a P-space.

2.5. Proposition. If X is a 0-dimensional space which is not”axspace, and i, (X, 2) x
»® contains a closed, discrete subspace of cardinalityo, thenC, (X, 2*) is not normal.

Proof. C,(X,2”) is homeomorphic toC,(X,2) x C,(X,2)*. Since X is not a P-
space,C,(X, 2) has a closed copy ab (Proposition 2.4), therC,(X, 2)“ contains a
closed copy of the irrational®®. Sincee(C,(X,2) x v“) > Yo, then the extent of
Cp(X,2) x Cp(X,2)* is also an uncountable cardinal number. But the cellularity of
C,(X,2”) is countable, sa, (X, 2”) cannot be collectionwise normal (Lemma 1.3(2)),
and soC, (X, 2*) is not normal (Corollary 2.2). O

The following result is a consequence of a theorem of R. Pol and D.P. Baturov. A proof
can be foundin [1, p. 166].

2.6. Theorem. Let X be an uncountable separable scattered compactum whgbede-
rived set is empty. Thefi, (X, 2) x »“ contains an uncountable closed discrete subspace.

As a consequence of this result, we obtain the main result of this section.
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2.7.Theorem. Let E € {I, R, P, 2*}. For every uncountable almost disjoint famifyand
every compactificatioby (A) of ¥ (A), the spaceC, (b¥ (A), E) is not normal.

Proof. It is sufficient to prove this theorem whefi = 2. The functionf :b¥ (A) —

a¥ (A) defined byf | w(A) is the identity function, angf (x) = p for all x € bW (A) \

¥ (A) where p is the point which compactifie® (A), is an onto closed continu-
ous function. Letf#:C,(aW¥(A),2°) — C,(b¥(A),2”) defined by f#(g) = g o f.
Then,f#[C,,(oelI/(A), 2*)] is homeomorphic ta”, (¥ (A), 2”) and it is a closed sub-
set of C,(b¥(A),2”). But a¥ (A) is a space that satisfies the conditions in Theo-
rem 2.6; soCp(a¥ (A), 2°) is not normal because of Proposition 2.5. Therefore, since
Cp(@¥ (A), 2*) can be consider as a closed subsef pfb¥ (A), 2”), this last one is not
normal. O

Observe that the previous result is true #orequal tolP or 2° even if bW (A) is not
0-dimensional. On the other hand, Pol gave in [16], using CH, an example of an almost
disjoint family A such thatC,, («¥ (A), 2) is Lindelof.

For k < w, we will denote byC, (X, E) the spaceC,(Cp«-1(X, E), E) where
Cp.0(X, E) = X. For an uncountable almost disjoint famil{t, the space (A) is a
closed subset of , 2, (¥ (A), 2*). If the spaceC), 2, (¥ (A), 2) were normal, it would
be collectionwise normal (Corollary 2.2); the#i(.4) would be collectionwise normal as
well. But this would mean thgtd| < ®q (Proposition 1.1); a contraction. Therefore, for
Ee{l,R,P, 2%}, Cp 2,(¥(A), E) is not normal for every. € N.

Moreover, it is known that ifX and C,(X, I) are normal, then each closed discrete
subset ofX has to be countable. So, for an uncountable almost disjoint fam#ych that
¥ (A) is normal,C, , (¥ (A), E) is not normal for every. € N, whereE € {I, R}. This is
the case for a canonical almost disjoint famity.Ay) defined by aQ-setX.

3. Cp(¥(A)) isnot normal when A isamad family

From now on we are going to use the follmg standard notations. For spacks
and E, n € N, points x1, x2,...,x, of X and subsetsy,..., A, of E, the symbol
[X1,..., X0 A1, ..., A,] will represent the setf € EX: f(x;)) € A; Vie(d,...,n}}. If
Ai=ACEforalli e{1,...,n}, we will write [x1, ..., x,; A] instead of{x1, ..., x,;
A, ... Al

Let A be a mad family. For each € A, we take the characteristic function pd} U
Ain WA, xa:¥(A) — {0,1} (ya(x) =1 iff x = A or x € A), and the characteristic
function of A in w, x4 :w — {0,1} (xa(x) = 1iff x € A). Now, we consider the sé? =
{(Xa, xa): A e A} as a subspace of the produtt= C, (¥ (A), 2) x T, whereT is equal
to {f €2”: | f~1(1)| = Ro} and has the topology inherited by the Tychonoff produtt 2

3.1. Claim. The setD is a closed and discrete subsett= C, (¥ (A), 2) x T of cardi-
nality |A|.
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Proof. ForeachA e A,V =[A; {1}1 x T ={(f,g) € Z: f(A) =1} is an open set con-
taining (x4, x4), andV N D ={(x4, xa)}. S0,D is discrete.

Assume now that f, g) € cly D whereY = Cp,(¥ (A),2) x 2¢. If for somen € w,
f(n) £ gm), thenW = [n; {f(n)}] x [n; {g(n)}] is an open subset df, (f, g) € W and
W N D =@. This is not possible; hencé,| w = g.

If (f,g)eclyD\D,thenf | A=0.Infact,ifA,Be AwithA£Bandf(A)=1=
f(B), then[A, B; {1}] x 2“ is an open subset df which containg f, g) and which does
not intersectD. Now, if f takes the value 1 only in one elementf say A, then, since
flo=gand(f,g) ¢ D, either there is: ¢ A such thatf(n) = 1 or there isn € A for
which f(n) = 0. So,W = [A, n; {1}] x 2% in the first case, oW = [A, n; {1}, {0}] in the
second case, is an open settin(f, g) € W andW N D = @, which is not possible. We
conclude thatf | A = 0. But this means (sincd is a mad family) that f | w)~1(1) is
finite. Therefore(f,g) ¢ Z. O

3.2. Claim. The spacé& is homeomorphic ta®.

Proof. Infact, 7 is dense in 2, its complement2\ 7 is equal tofF = J,,_,, F. Where
F,={fe€2” |{s <w: f(s) =1} <n}. So,F is dense and; in 2. We conclude that
7T is homeomorphic to the irrational numbers (see [8, p. 370]).

So, the spac&€, (¥ (A), 2) x v® contains a closed and discrete subspace of cardi-
nality |A|. Since¥ (A) is not aP-space,C,(¥(A), 2) has a closed copy ab (Propo-
sition 2.4). (The sefy,: n < w} where x, is the characteristic function db, ..., n}
in ¥(A), is a closed and discrete subspaceCgi¥ (A), 2).) Thus,C, (¥ (A),2) x o®
is a closed subspace d,(¥(A),2”), C,(¥(A),I) and C,(¥(A)). So, we have
JAl < e(Cp(¥(A),27)) < e(Cp(W(A), 1)) < e(Cp(¥(A)) < w(Cp¥(A)) = Al <
L(Cp(¥(A),27)) < LICr(W(A), ) < LICp(¥(A)) < w(Cp(¥(A)) = |A|, where
w(Cp, (¥ (A))) is the weight of spac€, (¥ (A)). Thatis:

3.3. Claim. Let A be a mad family. Theng(C, (¥ (A),2°)) = e(Cp(W(A), 1)) =
e(Cpr(W(A)=L(Cp(W(A),2°) =L(Cp(¥(A), ) =L(Cr¥(A)) =I|Al

Besides, ifX is collectionwise normal and X) < Rg, then the extent ok is countable.
Therefore, we conclude:

3.4. Theorem. Let A be an infinite maximal almost disjoint family an Then, the spaces
Cr(W(A),2%),Cr(¥(A), w?), Cp(¥(A), I, C,(¥(A)) are not normal, and their extent
and Lindel6f number are all equal {oA].

Proof. In fact, the cellularity ofC, (¥ (A), 2”) is equal taRo. If Cj, (¥ (A), 2”) were nor-
mal, it would be collectionwise normal (Corollary 2.2), and, by Lemma 1.3, its extent must
be countable, contrary to Claim 3.3. The last assertion of this theorem is Claim(3.3.

It is easy to prove from Theorem 3.4 that for every almost disjoint fardilyuch that
there is a mad familys > A with |B\ A| < Ro, the space€’, (¥ (A), 2¢), C, (¥ (A), »®),
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Cp,(¥(A), I)andC, (¥ (A)) are not normal, and their extents coincide with their Lindelof
degrees and they are all equal . In the cased has a countable infinite difference with
a mad family, we cannot further use the same techniques, but they have the same properties
as we are going to prove next. In order to obtain our purpose we are going to use general
results. We decided to present Theorems 3.4 and 3.9 below and their proofs separately
because for mad families we were able to give a more constructive proof, which shows the
nature of spac€, (¥ (A)) more clearly.

Given a topological spacé and a subspacdé of X, we denote by (Y, X) thecharacter
of Y in X; thatis, x (Y, X) = min{|B|: B is a base ot in X}, whereB3 is a base ot in
X means that each elementihis open inX, and for each open set of X containingy’,
there isB € Bsuchthatr € B C A.

3.5. Definition. An almost disjoint family.A of subsets ob is quasi-maximalf there is a
maximal almost disjoint family3 containingA and such tha3 \ A| < Ro.

Obviously, every maximal almost disjoint family is quasi-maximal and, since every
almost disjoint family with cardinalityg is not maximal, every guasi-maximal almost
disjoint family has cardinality not equal t&y.

3.6. Proposition. Let A be an almost disjoint family o@. Then,y (A, ¥ (A)) = Rg if and
only if A is quasi-maximal.

Proof. Assume thaty (A, ¥ (A)) = Rg and | A| > Rg. Let M = {M,;: n € w} C P(w)

be a countable collection of subsetswiwvhich are closed i (A) and such tha3 =

{(W(A\M: M e M}isabaseofdinW(A). LetD ={M e M: |M|=Rg}.Let{L,: ne

w} be an enumeration dP in such a way that ifD is finite, thenLo, ..., L,, are all
different,D = {Lo, ..., Lyy} andL, = L, for all n > ng, and if D is infinite, L, # L,

if n % m. Now we takeSo = Lo, S1=L1\ Lo,...,Sp+1 = Lp+1\ Uign L;,..., and
S ={S,: n < w}. It happens that the new collectichU {S € S: |S| = Rp} is a maximal
almost disjoint family.

For the converse implication assume tiiis an almost disjoint family an# is a mad
family such thatd c B and|B \ A| < Ro. LetC =B\ AandH ={¥(A4) \ JK: KC
[w]=® U C and|K] < Ro}. Of course,H is countable. Without loss of generality, we can
assume that the elementsdrare pairwise disjoint. It is not difficult now to verify thét
isabasefordin¥(A4). O

The following result is a generalization ofdposition IV.7.4 in [1] and its proof requires
a slight modification to that given for it in [1].

3.7. Theorem. Let X be a0-dimensional space with an open, countable and dense subset
M such that the set of isolated points inF = X \ M is not countable and is dense in

If moreovery (F, X) < Ro, thenC,(X, 2) x »® contains a closed, discrete subspace of
cardinality |A].
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3.8. Theorem. Let A be an infinite quasi-maximal almost disjoint family @nThen, the
spacesC, (¥ (A), 2?), Cp(¥ (A), v*), C, (P (A), I), Cp(¥ (A)) are not normal.

Proof. Because of Proposition 3.6 and Theorem 8./(¥ (A), 2) x »® contains a closed

and discrete subset of cardinalityl| > Xo. Now, we use Proposition 2.5 in order to
conclude thatC, (¥ (A), 2*) is not normal. SinceC, (¥ (A),2*) is a closed subset of
Cp,(W(A), ), Cp(¥(A), I andC,(¥(A)), they are also not normal.0

3.9. Theorem. Let A be a quasi-maximal almost disjoint family an Then, the extent
of spacesC, (¥ (A), 2°), C,(¥(A), 0”), Cp,(¥(A), ), Cp(¥(A)) coincide with their
Lindel6f degree and they are all equaltd|.

Proof. This is a consequence of Theorem 3.8 and some similar arguments to those given
before Claim 3.3. O

Proposition 0.3 and Theorem 3.8 induce us toiftthere is a maximal almost disjoint
family A for which C, (¥ (A), 2*) is countably paracompact. Following some argumenta-
tions in [19] it is possible to prove that = L implies that every countably paracompact
space of characteg 2% is collectionwise Hausdorff. So, singe(C, (¥ (A), 27)) < 280
andc(C, (¥ (A), 2°)) < Ro, we obtain the following result (see Lemma 1.3(2) and Theo-
rem 3.9).

3.10. Theorem (V = L). For every quasi-maximal almost disjoint famil, the space
C, (¥ (A), 2*) is not countably paracompact.

3.11. Problem. Can Theorem 3.10 be proved in ZFC without any additional set theoretical
axiom?

4. A Lindelof Cp (¥ (A), 2) from CH

In this section we present the construction of a maximal almost disjoint fadnify{ w]®
such thatC, (¥ (A), 2) is Lindeltf. We assume CH.

For an almost disjoint familyl andi € {0, 1}, we denote by (A) the closed subspace
{f € Cr(W(A),2): |f71G) N Al <n}of C,(W(A),2). If Ais Mrowka (that is, if the
one-point compactification a¥ (4) coincides with its Stondsech compactification), then
Cp(¥(A).2) = U, ew.ic(0.1) o4 (A). For everyn < », 62(A) is homeomorphic te,} (A).
We are going to writer, (A) instead obnl(A). Thus,

4.1. Theorem. If A is a Mrowka mad family, the@', (¥ (A), 2) is Lindel6f if and only if
ox(A) is Lindelof for eachn € w.

To characterize when;, (A) is Lindel6f, we need certain terminology and notation.
For an almost disjoint family4, A~ is the ideal{b C w: |b Na| < Rg Ya € A}; and for
a, b € P(w), aAb will denote their symmetric difference; thatd\b = (a U b) \ (a N b).
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For a subset of w, we will distinguish between the characteristic functiomoh 2 and
the characteristic function af in 2¥“Y by denoting asy, the former and, the latter.
Given an almost disjoint familyd and) € P(w), we will say thatA” is concentratedn
Y, if for each open subséf of the Cantor set? containingxy = {x,: y € V}, there is
a countableB € A such thaty ), € U for all x € [A\ B]". And we will say that4" +
Al is concentratecbn ), if for each open set/ © ), there is a countablB8 € A such
that x(vapr € U for all x e [A\ B]" and allb € AL. We now state a theorem which
characterizes whet, (A) is Lindel6f, for an almost disjoint family.

4.2. Theorem. Suppose thatd is an almost disjoint family and > 0. Theno,(A) is
Lindelof if and only itA* + AL is concentrated ovd* for eachk < n.

Before we prove this theorem, we note one corollary:

4.3. Corollary. Suppose thatl = {ay: @ < w1} is mad. Themw, (A) is Lindeldf if and only
if A¥ is concentrated ofw] << for all k < n.

Proof. Here A is precisely{w]<“, so by the theorem it suffices to show théft is con-
centrated oriw]<¢ if and only if A* 4+ [w]<® is concentrated ofw]<“. One direction is
trivial, for the other direction, assume th4f is concentrated ofw] <. Fix an open neigh-
borhoodU of xyj<e = {xs: s € [w]=?}. For eachs € [w]=“, letUs = {f + xs: f e U}

be the translate d’ by x;. We have thaty, € U, if and only if x,os € U. EachUs is an
open neighborhood gf,<~, and there are only countably many such translates. It follows
that there is a countable subggbf A such that for allx € [A \ B]* and alls € [w]<®,

XUx € Us. Thatis,x(oyas €U. O

Proof of thetheorem. By induction onz. Note first thabo(A) = {%5: b € AL} is home-
omorphic to the subsél,: b € AL} of 22, soog(A) is Lindelof. Suppose > 1 and that
forall k < n, A¥ + AL is concentrated osl-. By induction assume that,_1(A) is Lin-
deldf. Fix a coveld of o, (A) constituted by canonical open subset€g{¥ (A), 2). By
the inductive hypothesis, there is a countale ¢/ such that,,_1(A) € [ JV. For each
x € [Al", let F, ={f € 0,(A): f~1(1) N A= x}. EachF, is homeomorphic to a subset
of 2¥; soitis covered by a countable sub&gtof /. Thus it suffices to prove the following
lemma:

4.4.Lemma. D = {x € [A]": F, is not covered by} is countable.

Proof. If D is not countable, choose an uncountablgsgta € w1} C [A]" andf, € Fy,
such thatf, ¢ | JV. By going to a subset we may assume thatif's form a A-system
with rootr. So, for eachy, there is a membér, of A such thatf, | w is the characteristic
function of (| x4) Aby.

ConsiderF,. It is covered by . Let

W= J{vn2»: vevandvnF 0}
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Let W, be the translate dV by (Jr: W, = {f + x_J,: f € W}. Thatis, fora C o, x, €
W, if and only if x,A( - € W. First, note thaW, is a neighborhood afl*. To see this,
fix x € AL, Thus the characteristic function oA (| Jr) extends to a continuous function
f € Fr. And sinceV coversF;, there is aV € V with f € V. So, x,aqJH) € V N 2%
Therefore x, € W, as required.

By changing the setk, on a finite set, we may assume that|  is the characteristic
function of JrA(J(xq \ r) U by). By our assumption of concentration, we may fixo
that ((Jxo \ 1) Uby € W, for all « > 8. Thus f, | @ € W for all « > 8. If we choose
a > f large enough so that the supports oftale V lie belowa we get thatf,, is covered
by V. Contradiction. This finishes the proof of the lemma; hence, we have demonstrated
the necessity of 4.2. 0

Now we give the proof of the sufficiency of Theorem 4.2. Supposediat A* is not
concentrated otd* for somek < n. So, we may fix an opely C 2¢, a disjoint family
{ya: @ < w1} € [AJF, andb, € A+ such that

(1) xar={x»: be At} CU,and
(2) 8o = X(Uye)ab, & U for eacha < ws.

Eachg, extends naturally to a continuoys : ¥ (A) — 2 such thatf, (a) = 1 if and
onlyif a € y,. Since{y,: o < w1} is a disjoint family, any coplete accumulation point of
the f;'s must be inog(.A). Moreover, sincd/ containsy 4. = oo(A), there is a neighbor-
hoodV of op(A) such thatf | w € U for eachf € V. Thus, f, ¢ V for all « < w;. This
means tha{ f,: @ < w1} has no complete accumulation pointan(A4). 0O

4.5. Theorem. AssumeCH. There is a Mréwka maximal almost disjoint famiysuch that
Cp(¥(A),2) is Lindelof.

Proof. Let{U,: o < a € w1} enumerate all open sets ifi that contaifw]<®. For eaclg,
let g be a family of canonical basic open sets fhuch thal Jifg = Up. Let {xq: o <
o < w1} enumerate all infinite co-infinite subsets of We will construct{a,: o < w1}
recursively, so that its a Mréwka mad family4 satisfying.A" is concentrated oftw] <
for eachn. To begin the construction, I&t,: n € w} be any partition o into infinite sets.

Assume thafag: B < «} has been chosen so that:

(a) For eachp € [w, @) and for eachx € [ay: B <y <al™®, x(xas € Up for every
s € [w]=%.

(b) {ag: B <} is an almost disjoint family.

(c) For eachp € [w, a), ag has infinite intersection withg and withw \ xg (unless one
of these sets is covered by a finite uniorugs with £ < ).

If xo orw\ x, is covered by a finite set frofug: B < «}, we do nothing at stage
(or just chooser, almost disjoint from previougg arbitrary). Otherwise, to construct
ay, enumerate asV,, y,) all pairs (u}g,y) whereg € [w,a), y € [a,: By <a]=®
and U is a finite translate oldg (U = {U + xs: U € Ug} for a s € [w]<* where
U+ xs ={f + xs: f € U}). Note that (a) can be equivalently formulated as for each
suchx, xx is in every finite translate of/g. Thus, by (a), we have thatay, is in
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UVn for everys € [w]<“. Also enumeratdag: B < «a} as{b,: n € w}. We will con-
structa, as the union of finite sets, by recursion om as follows: having choser,
and integers,, for m < n so thats,, € k,, ands,, N k; = s; for eachi <m < n, we
consider the paitV,, y,). Note that the characteristic function ef_1 U |y, is of
the form x,ay,, for as € [w]=®. Thus by (a), we have that,, .y, € UVa- So,
there isV, = [to, ..., t; {eo}, . . ., {ex}] € Vi (&i € {0, 1}) such thaty,, .y, € Va. Take
k), > maxro, ..., t, k,—1}. Now choosejo € x, and j1 ¢ x, such thatj; > k,, and such
thatj; ¢ U{bi: i <n}. Lets, =s,-1U {jo, j1}, and letk, > max jo, j1}. This completes
the recursive construction af,. Clearly, by construction, (b) and (c) are preserved. To
see that (a) is preserved, suppose &t [w, @) andx € [a,: <y <a]™, and fix a
finite setC. Consider the translatg _j, + xc of x( .. If a« ¢ x then there is nothing to
show. So, suppose thaf € x. Then,(Us + xc.x \ {as}) iS enumerated ag),, y,) in
the construction of,, whereldg + xc ={U + xc: U € Ug}. Recall thatyy, ,yJy, isan
element of the basic open 9@, . .., %; {€0}, . .., {ex}]. By the construction we have that
XagUU v (i) = Xs,_1UU y, (ti) = &i- Thusx ), € V. Hence, by definition o¥,,, we have
that x j, + xc € Up as required.

This completes the construction of the almost disjoint famdily: {ay: @ € w1}. By (b)
and (c).A is a Mréwka mad family. And by (a}* is concentrated ofw]<® for eachk as
required. O

4.6. Corollary. For the mad family4 constructed in Theore5, the space”, (¥ (A), 2)
is Lindelof.

Proof. It is sufficient to observe that the functiop,:0, — {f € C,(B¥(A),2):
| #~1(1)| < n} defined byg,(f) equal to the continuous extensighof f to ¥ (A),
is a continuous functionforall e N. O

The spaceC, (¥ (A), 2) where A is the Mréwka mad family constructed in Theo-
rem 4.5, provides us, in CH, with a nice example dlighael spacdsee [11,12]). Indeed,

4.7. Theorem. Let A be the Mréwka almost disjoint family constructed in TheorkeB)
and letX be the spac€, (¥ (A), 2). Then we have

(1) X" is Lindelof for every: € N and X is not normal.
(2) X x w® is not normal.

Proof. By Claim 3.1 and Theorem 3.4X x ow“ = Cp(¥(A),2) x »” and X =
Cp(¥(A),2*) are not normal.
FurthermoreC, (¥ (A), 2F = C, (¥ (A), 2"), and

»(w (4.2 = U o (A).

n<wie{0,1,...,2x-1}

But, eacho; (A) is Lindelof (Theorem 4.5), s6, (¥ (A), 2)% is Lindeléf. O
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We could ask about the psibility of constructing a almost disjoint family4 for which
C,(¥(A),2) is o-compact. But this is in vain; in fact, Paniagua proved in [15] that for
every uncountable almost disjoint fami, C, (¥ (A), 2) is noto-compact.

A classical problem irC,-theory guestions whether Lindel6fness©f(X) implies
thatC,(X) x C,(X) is Lindeldf. We do not know the answer even for a Mrowka sp¥ice
yet.

4.8. Problem. Let A be an almost disjoint family, and assume thgi(¥ (.A)) is Lindelof.
Then, isC, (¥ (A))? Lindel6f?

An almost disjoint family.A4 is separableif for each countablés C A, B can be sepa-
rated fromA \ B. That s, there i € w suchthatdA C* X foreachA e BandANX =*¢
for eachA € A\ B. An almost disjoint family4 is aLuzin gapif no disjoint uncountable
B, C C A can be separated in this way. If an almost disjoint family= {A,: a < w1} has
the property that for eact and for eachs, {8 < a: Ag N A, C n} is finite, thenA is a
Luzin gap. Any such4 will be called astandardLuzin gap.

In the paper [9], a separable Luzin gapsuch thatC, (¥ (A)) is not normal but has
countable extent, was constructed us{ng In the same paper the authors asked whether
C, (¥ (A)) has countable extent for every sepaeablizin gap. Here we construct a stan-
dard Luzin gap using CH such thai(.A) has uncountable extent. We do not know if it can
be made separable.

Example. Assuming CH there is a standard Luzin g4psuch that(A) has uncountable
extent. Moreover, it has the property thafis not concentrated ad .

Proof. We first construct a perfect treB € 2= as follows. LetX € » consist of all
elements, of the form

k, = (ZZ’) +n.
i=0

Suppose that € w andT N 2511 has been defined so thatN 2¢+1 has exactly 2+1
elementds;: j < 2'+1}. For eachj < 2"+, let t; be the unique extension ef such that
dom(t;) =k, +1+ 2+l tj(kp+ j+1) =1 and; has value 0 at all other new coordinates.
Let 7 N 2%+ = {z;: j < 2"*1} and let

T2t = i j <2t i e2).

This completes the recursive definition ©f If f is a maximal branch througf, we
denote bya s = f~1(1). let [T] denote the set of all suahy. Note that this is a perfect
subset of 2. Note also that" has the following key properties

() Foranyu €[T], a\ X isinfinite.
(b) Forany subset C X, thereisa € [T] suchthabt N X =Y.
(c) If a andb are distinct elements ¢f'], thenaNb N (w \ X) is finite.
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We now construct an almost disjoint family by recursion. The point of the construc-
tion is (a) to maked a Luzin gap, (b) to make sure that the open $&t 27'] contains all
elements ofA", and finally, (c) to make sure thgf] N A is uncountable. If we do this, it
will follow that 4 will not be concentrated od*, thus completing the proof.

To do all this we fix an enumeratiopy,: « € w1} of [T]. Having defined an almost
disjoint family A, = {afgz B <a, i €2} forsomex < wj, So that

(1) foreach8 <a, if yg € Ag thenag N yg is infinite. Moreover, in this casag =ygor
ag = yg Uzg for some othetg € [T7;
(2) for <a,a} e[T].

If y, € AL, enumerated, as{b,: n € w}. Construct by recursioli € X so thaty is
almost disjoint from each,, and so that Nb,, Z n. Leta € [T] be suchthat N X =Y.
This is possible by property (b) @f. The branchf of T that determines is distinct from
all the branches that determine the setsdin thus, by property (c) is almost disjoint
from all elements of4,,. Let ag =a U y,. In the case thap, ¢ A", proceed as above,
and Ietag =a.To defineaolt repeat the construction using, U {ag} in place ofA,. This
completes the construction gf. It follows by construction tha#l is a standard Luzin gap.
Also, by choice of theA(},, AN[T] is uncountable. Finally, it also follows by our choice
of a2, that noy, ¢ A+ so that4+ < 2*\ [T] as required. O
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