
FUNDAMENTA
MATHEMATICAE

167 (2001)

Another ♦-like principle
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Michael Hrušák (North York, ON)

Abstract. A new ♦-like principle ♦d consistent with the negation of the Continuum
Hypothesis is introduced and studied. It is shown that ¬♦d is consistent with CH and
that in many models of d = ω1 the principle ♦d holds. As ♦d implies that there is a MAD
family of size ℵ1 this provides a partial answer to a question of J. Roitman who asked
whether d = ω1 implies a = ω1. It is proved that ♦d holds in any model obtained by
adding a single Laver real, answering a question of J. Brendle who asked whether a = ω1
in such models.

The motivation for this paper is twofold. One motivating factor is the
question (according to A. Miller due to J. Roitman) as to whether the ex-
istence of a dominating subset of ωω of size ℵ1 implies the existence of a
maximal almost disjoint (MAD) family of subsets of ω of size ℵ1.

The other source of motivation comes from recent investigations of ♦-like
principles and their impact on the values of the standard cardinal invariants
of the continuum. The principle ♦ itself is known to imply CH. Other, sim-
ilar, principles are consistent with ¬CH. The best known of these principles
is the ♣ principle which states that there exists {Aα : α ∈ Lim(ω1)} such
that for all α ∈ Lim(ω1), Aα ⊆ α, sup(Aα) = α and for every X ∈ [ω1]ω1

there exists α ∈ Lim(ω1) such that Aα ⊆ X. The ♣ principle has been
used by Ostaszewski (see [Os]) to construct the famous Ostaszewski space,
a countably compact non-compact S-space with closed sets either countable
or co-countable. In the presence of CH, ♣ is equivalent to ♦. The original
proof that ♣+ ¬CH is relatively consistent with ZFC can be found in [Sh].

The relationship between ♣, its variants, and cardinal invariants has
been extensively studied recently. We will give a brief account of the situa-
tion. It is folklore that ♣ implies that cov(Nω1) = cov(Mω1) = p = t = ω1,
and min{cov(M), cov(N )} = add(N ) = ω1 follows easily from a result of
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Truss (see [Tr]). On the other hand, it has been observed by many (includ-
ing I. Juhász and P. Komjáth) that ♣ is consistent with Martin’s Axiom for
countable posets (see e.g. [FSS]). J. Brendle (to appear in [Br2]) announced
that ♣+cov(N ) = ω2 is also consistent. A paper [DžSh] claims to construct
a model where ♣ holds and every Aronszajn tree is special. According to
J. Brendle there seems to be some problem with their argument but the
construction still shows that add(M) = ω2 is consistent with ♣. J. Baum-
gartner (in an unpublished note) showed that ♣ holds in a model obtained
from a model of V = L by adding many Sacks reals side-by-side (for a proof
see [Hr]). According to the author’s best knowledge the following question
remains unanswered: Is ♣+ h > ω1 consistent?

Here a new ♦-like principle, denoted by ♦d, is introduced and studied.
A sequence d = {dα : α < ω1} is called a ♦d-sequence if dα : α→ ω and

∀f : ω1 → ω ∃α ≥ ω f�α ≤∗ dα.
We shall say that ♦d holds if there is a ♦d-sequence. The impact of ♦d on
many of the standard cardinal invariants is settled in this paper. It is shown
that ¬♦d is consistent with CH and that ♦d implies that there is a MAD
family of size ℵ1, providing a partial answer to a question of Roitman. It is
also proved that ♦d holds in many models of d = ω1 including any model
obtained by adding a single Laver real, answering a question of J. Brendle,
who asked whether a = ω1 in such models. The set-theoretic notation is
mostly standard, following [Ku]. For definitions of cardinal invariants of the
continuum consult [Bl], or [vD] and [BJ].

I. Principle ♦d: Not all dominating families are the same. If
there is a ♦d-sequence then there is one satisfying an additional monotonic-
ity property

∀α < β < ω1 dα ≤∗ dβ�α.
Even though this condition is superfluous we will assume it as it makes many
an argument more transparent.

It is obvious that♦ ⇒ ♦d and that the functions dα�ω form a dominating
family, hence ♦d ⇒ d = ω1. Notice that for every f the set of those α such
that f�α ≤∗ dα is unbounded. The principle ♦d is seemingly just a slight
strengthening of the assumption that d = ω1 as indicated by the following
proposition.

Proposition I.1. d = ω1 if and only if there exists a sequence
{dα : α < ω1}, dα : α→ ω, such that

∀f : ω1 → ω ∀α < ω1 ∃β ≥ α f�α ≤ dβ�α.
Proof. Having a sequence {dα : α < ω1} as above it is immediate that

the family {dα�ω : α < ω1} is dominating.
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For the other direction fix for every β < ω1 a strictly (not mod fin)
dominating family Fβ on ωβ of size ℵ1. Enumerate

⋃{Fβ : β < ω1} as
{fα : α < ω1}. Choose dα : α → ω such that fα ≤ dα�dom(fα). In order
to check that this works let f : ω1 → ω and β < ω1 be given. As Fβ is a
dominating family (and uncountable) there is an α ≥ β such that fα ∈ Fβ
and fα strictly dominates f�β. Then dα�β ≥ f�β.

The following proposition can be viewed as a partial solution to Roit-
man’s problem. As ♦d holds in many models where d = ω1 it can be per-
ceived as a “machine” for constructing small MAD families.

Proposition I.2. ♦d ⇒ a = ω1.

Proof. Let {Ai : i ∈ ω} be a fixed infinite partition of ω into infinite
pieces. Let {dα : α < ω1} be a ♦d-sequence such that

∀α ≥ ω Aα = ω \
⋃

β<α

[dα(β),→) ∩Aβ

is infinite for every α (by [n,→) we denote the set of all integers greater
than or equal to n). It is easy to make sure that Aα is infinite by possibly
inductively replacing the dα with a larger function.

• A = {Aα : α < ω1} is a MAD family : Assume it is not the case.
Let X be a witness to that and let fX : ω1 → ω be defined by fX(α) =
max(Aα ∩ X) + 1. Let β ≥ ω be such that fX�β ≤∗ dβ . We can assume
that fX�β ≤ dβ . This can be accomplished by changing X by a finite set.
Let x ∈ X \ Aβ . Then x ∈ ⋃γ<β [dβ(γ),→) ∩ Aγ , hence there is a γ < β
such that x ∈ [dβ(γ),→)∩Aγ and in particular x ∈ [fX(γ),→)∩Aγ , which
contradicts the definition of fX .

Proposition I.3. ♣+ d = ω1 implies ♦d.

Proof. Let {gα : α < ω1}, gα : α→ ω, be a sequence such that

∀f : ω1 → ω ∀α < ω1 ∃β ≥ α f�α ≤ gβ�α.
The existence of such a sequence follows from d = ω1 by Proposition I.1. Fix
also a ♣-sequence {Aα : α ∈ Lim(ω1)}. Without loss of generality, the order
type of Aα is ω for every α. Let {aαn : n ∈ ω} be an increasing enumeration
of Aα and let aα−1 = 0. Put

dα =
⋃

n∈ω
gaαn+1

�[aαn−1, a
α
n)

for every α limit. For isolated α let dα be your favorite function from α to ω.
To verify that the sequence {dα : α < ω1} is, indeed, a ♦d-sequence

let f be a function from ω1 to ω. Construct inductively an uncountable set
X ⊆ ω1 such that for every α, β ∈ X, α < β ⇒ f�α ≤ gβ�α. This is easy to
do using the property of {gα : α < ω1}. Now, as {Aα : α ∈ Lim(ω1)} is a
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♣-sequence, there is an α limit such that Aα ⊆ X. It is immediate from the
definitions of dα and X that f�α ≤ dα.

It follows from the proof of the proposition that, in fact, ♣ + d = ω1

implies a stronger version of ♦d, namely:

∃{dα : α ∈ ω1} ∀f : ω1 → ω {α ∈ ω1 : f�α ≤ dα} is stationary.

We do not know whether this strengthening of ♦d is really stronger.

Question I.4. Does ♦d imply that there is a sequence {dα : α ∈ ω1}
such that {α ∈ ω1 : f�α ≤ dα} is stationary for every f : ω1 → ω?

However, it was pointed out by J. Brendle that if there is a ♦d-sequence
then there is one such that {α ∈ ω1 : f�α ≤∗ dα} is stationary. J. Bren-
dle (see [Br2]) (independently) proved Proposition I.3 and observed that
♣+ d = ω1 implies that there is a MAD family of size ℵ1.

II. ♦d in the presence of CH. With every ♦d-sequence d comes a
natural forcing notion destroying it. We shall denote it by Pd. A function p
is a condition if and only if p : α→ ω for some α < ω1 and

∀β < α+ ω |{γ < α : dβ(γ) < p(γ)}| = ℵ0.

As usual the ordering is reverse inclusion.
In what follows we would like to show that it is possible to iterate these

forcings without adding reals and then show that CH is consistent with ¬♦d.
Let us remind the reader of the following notation.

A forcing notion P is said to be totally proper if for every countable
elementary submodel N of H(θ) (for θ large enough) such that P ∈ N and
for every p ∈ N ∩ P there is a lower bound q ≤ p for a P-generic filter
over N containing p. Every such q will be called totally (N,P)-generic. P is
<ω1-proper if for every α < ω1, every increasing ∈-sequence {Nβ : β ≤ α}
of elementary submodels of large enough H(θ) such that P ∈ N0, and every
p ∈ N0 ∩ P, there is a q ≤ p which is (Nβ ,P)-generic for every β ≤ α. It is
easy to see that P is proper not adding reals if and only if it is totally proper.
However, the property of being totally proper is, in general, not preserved
under countable support iteration.

Lemma II.1. Let d be a ♦d-sequence. Then:

(1) If p ∈ Pd and q : dom(p)→ ω is such that |{γ : p(γ) 6= q(γ)}| < ℵ0

then q ∈ Pd.
(2) q is (N,Pd)-generic if and only if q is totally (N,Pd)-generic.
(3) Pd “d is not a ♦d-sequence”.
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Proof. Clause (1) is obvious. For (2) notice that p and q are compatible
if and only if p ≤ q or q ≤ p, and (3) follows from the fact that the set of
conditions p with α ⊆ dom(p) is dense for every α < ω1.

Lemma II.2. Pd is totally proper.

Proof. Let {Dn : n ∈ ω} be an enumeration of all open dense subsets
of Pd in a suitable elementary submodel N and let p ∈ Pd ∩N . Let further
α = N ∩ ω1 and let f be a function from α to ω almost dominating dβ for
every β < α + ω (for instance dγ for some γ ≥ α + ω). Fix also βn ↗ α.
Recursively choose pn ∈ N so that

(1) p ≥ p0 and pn ≥ pn+1,
(2) pn ∈ Dn,
(3) dom(pn) = γn + 1 and pn(γn) > f(γn), where γn ≥ βn.

Let q =
⋃
pn. The only thing left to verify is that q ∈ Pd. To that end

we have to show that |{γ : dβ(γ) < q(γ)}| = ℵ0 for all β < α+ ω.

• β < α: There is an n such that β ⊆ dom(pn) and since the above holds
for pn and q�β = pn�β it also holds for q.
• α ≤ β < α+ ω: {γn : n ∈ ω} ⊆∗ {γ < β : dβ(γ) < q(γ)} by our choice

of f , hence the latter set is infinite.

Lemma II.3. Pd is <ω1-proper.

Proof. Given α < ω1, {Nβ : β ≤ α} and p ∈ Pd ∩N0 let δβ = Nβ ∩ ω1.
We shall prove the lemma by induction on α assuming the following induc-
tion hypothesis:

• For all γ < β < α if f ≥∗ dδβ+ω and q ∈ Pd ∩ Nγ then there exists
q′ ≤ q which is (N%,Pd)-generic for all γ ≤ % ≤ β and q′ 6≤∗ f .

Assume f ≥∗ dδα+ω.

• α = β + 1: Let q ∈ Nα be as in the induction hypothesis, q generic
over all N%, % ≤ β, such that q 6≤∗ dδβ+ω. As in Lemma II.2, extend q to q′

which is generic over Nα and q′ 6≤∗ f .
• α limit : We mimic the proof of Lemma II.2. Let {Dn : n ∈ ω} be an

enumeration of all open dense subsets of Pd in Nα and let βn ↗ α so that
Dn ∈ Nβn . Construct a decreasing sequence pn ∈ Nα so that

(1) p ≥ p0 and pn ≥ pn+1,
(2) pn ∈ Dn,
(3) pn is Nβ-generic for every β ≤ βn,
(4) dom(pn) = γ + 1 and pn(γn) > f(γn), where again γn ≥ δβn .

Let q =
⋃
pn. As in Lemma II.2, it is easy to verify that this construction

works.
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In order to prove that we can iterate these forcings without adding reals
we shall appeal to a theorem of T. Eisworth. First we have to introduce
another definition.

Let P be totally proper and Q̇ a P-name for a forcing notion. We say
that Q̇ is 2-complete for P if whenever

(1) N0∈N1∈N2 are countable elementary models of large enough H(θ),
(2) P, Q̇ ∈ N0,
(3) G ∈ N1 is P-generic over N0 having a lower bound,
(4) q̇ ∈ N0 is a P-name for a condition in Q̇,

then there is a G′ ∈ V , Q̇-generic over N0[G] with q̇[G] ∈ G′ so that if r ∈ P
is a lower bound for G and r is (Ni,P)-generic for i = 0, 1, 2, then there is
a P-name ṡ so that r  “ṡ is a lower bound for G′”.

Theorem II.4 ([ER]). If Pα is a countable support iteration of <ω1-
proper forcings such that Q̇β is 2-complete for Pβ for every β < α then Pα
is totally proper and <ω1-proper.

Lemma II.5. Let P be a totally proper <ω1-proper poset and let Q̇ be a
P-name for Pd for some ♦d-sequence d. Then Q̇ is 2-complete for P.

Proof. Let N0 ∈ N1 ∈ N2 be countable elementary submodels of large
enough H(θ), P, Q̇ ∈ N0. Let G ∈ N1 be a filter P-generic over N0 having a
lower bound and let ṗ ∈ N0 be a P-name for a condition in Q̇. We have to
find a Q̇[G]-generic filter G′ over N0[G] such that whenever r ∈ P is a lower
bound for G which is also P-generic over Ni, i = 1, 2, then there is a P-name
ṡ such that r  “ṡ is a lower bound for G′”.

Let δ = ω1 ∩ N0 and D = {D ∈ N0[G] : N0[G] |= D is dense open
in Q̇[G]}. Since N0, Q̇ and G are all elements of N1, we have D ∈ N1 by
elementarity. N1 also knows that D is countable so (working in N1) we can
enumerate D as {Dn : n ∈ ω}. If N1 knew what ḋδ+ω evaluates to, we could
simulate the proof of Lemma II.2 in N1 and that would give us the G′. This
is simply not the case. What is the case, however, is that N2 knows that
no matter how the generic filter evaluates the sequence d, any r as above
forces dδ+ω ∈ N1. To express this more formally let Ġ denote the canonical
P-name for the (V,P)-generic filter extending G. The previous remark can
then be expressed (in a slight abuse of notation) as

N2 |= ḋδ+ω[Ġ] ∈ N1.

Recall that by the convention we adopted, dδ+ω restricted to α dominates dα.
Let f : δ → ω be an element of N2 such that that g ≤∗ f for every g : δ → ω,
g ∈ N1. Now we are all set to describe the G′. Construct a decreasing
sequence pn ∈ N0[G] so that
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(1) ṗ[G] ≥ p0 and pn ≥ pn+1,
(2) pn ∈ Dn,
(3) dom(pn) = γn + 1 and pn(γn) > f(γn), for some γn ≥ δn,

where δn ↗ δ. This is done exactly the same way as in Lemma II.2. Let

G′ = {q ∈ N0[G] : (∃n ∈ ω) pn ≤ q}.
G′ is then obviously (N0[G], Q̇[G])-generic and ṗ[G] ∈ G′. Let r ∈ P be a
lower bound for G, (Ni,P)-generic for i = 1, 2. All that is left to prove is the
following:

Claim. r  “{pn : n ∈ ω} has a lower bound ”.

To prove the Claim it is enough to realize that s =
⋃{pn : n ∈ ω} ∈

Q̇[G ] for every generic filter G extending G. Note that by the construction
r  “dδ ≤∗ f”.

Theorem II.6. Con(CH + ¬♦d).

Proof. Let V |= GCH and construct a countable support iteration P =
〈Pα, Q̇α : α < 2ω1〉 so that Pα “Q̇α = Pd for some ♦d-sequence d”. By a
standard bookkeeping argument one can make sure that all ♦d-sequences in
the intermediate models are listed. To be more careful one should consider
the case where some ♦d-sequence could have been killed by accident before
it was listed but in that case we can just force with a σ-closed forcing adding
many new such sequences and obviously not violating the total properness
of the iteration.

By Theorem II.4, P is totally proper, hence CH holds in the extension.
All the ♦d-sequences that appeared in the intermediate models have been
killed so the only thing that could possibly cause there being one would be
if some cardinals were collapsed to ω1. To finish the proof all we have to
show is

Claim. P does not collapse cardinals.

To prove the Claim it is sufficient (since we know that P is proper and
hence does not collapse ω1) to show that P has the ℵ2-chain condition. This
is standard, as Pα “|Q̇α| = ℵ1”.

The next natural questions are:

(1) Does ♦d + CH imply ♦?
(2) Does ♦d imply CH?

We shall answer both questions in the negative. In particular, we will show
that if we add ℵ1-many Hechler reals by iteration with finite support to any
ground model we also add a ♦d-sequence. Then we show that forcing with
Hechler forcing does not add ♦-sequences.



284 M. Hrušák

Recall that the elements of the Hechler forcing (denoted by H) are pairs
(s, f), where s ∈ ωn for some n ∈ ω and f ∈ ωω, ordered by (s, f) < (t, g)
if t ⊆ s, g ≤ f and g(i) < s(i) for every i ∈ dom(s) \ dom(t). As usual Hω1

denotes the finite support iteration of Hechler forcing. Let 〈rα : α < ω1〉 be
the Hω1-generic sequence of reals.

Lemma II.7. The Hechler forcing Hω1 adds a ♦d-sequence.

Proof. In V fix for every α < ω1 a bijection bα : α → ω. In V [〈rβ :
β ≤ α〉] let dα = rα ◦ bα.

Claim 1. For every f ∈ ωα ∩ V [〈rβ : β < α〉], f ≤∗ dα.

This follows immediately from the fact that H adds a dominating real.

Claim 2. The sequence {dα : α < ω1} forms a ♦d-sequence in V [〈rα :
α < ω1〉].

Let f ∈ V [〈rα : α < ω1〉] be a function from ω1 to ω. All we have to
show is that there is an α < ω1 such that f�α ∈ V [〈rβ : β < α〉] since
then by Claim 1, f�α ≤∗ dα. Notice that for every γ there is a β such that
f�α ∈ V [〈rδ : δ < β〉]. So just let α = sup{αn : n ∈ ω}, where α0 = ω and
f�αn ∈ V [〈rδ : δ < αn+1〉].

It is worth mentioning that the use of Hechler forcing is not essential
here. The proof would go through (basically unchanged) for any iteration of
length ω1 of forcings adding a dominating real.

Theorem II.8. Con(♦d + ¬CH).

Proof. Let V be a model of ¬CH and let G be an Hω1-generic over V .
Since Hω1 is a c.c.c. forcing, ¬CH holds in V [G] and V [G] |= ♦d by Lem-
ma II.7.

Theorem II.9. Con(CH +♦d + ¬♦).

Proof. Let V |= CH+¬♦ and let againG be anHω1-generic over V . Then
V [G] |= CH + ♦d by Lemma II.7 and since Hω1 adds only ℵ1-many reals.
So the only thing we have to show is that Hω1 does not add a ♦-sequence.
Assume on the contrary that {Sα : α < ω1} is a ♦-sequence in V [G]. Put
(in V )

Aα = {S ⊂ α : (∃p ∈ Hω1) p  “S = Ṡα”}.
• {Aα : α < ω1} is a ♦−-sequence: Since Hω1 is c.c.c., |Aα| ≤ ℵ0 for

every α. Let A ⊂ ω1 be a set in V . Since {Sα : α < ω1} is forced to be a
♦-sequence, there is a q ∈ G and an α < ω1 such that q  “A ∩ α = Sα”,
which implies that A ∩ α ∈ Aα.

So if there were a ♦-sequence in V [G] there would have to be a
♦−-sequence in V , which is a contradiction since ♦ ⇔ ♦− (see [Ku]).
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III. ♦d in the Random real extension. In this section it will be
shown that a measure algebra is essentially completely oblivious to the va-
lidity of the principle ♦d. Let B denote any measure algebra (i.e. any atom-
less Boolean algebra carrying a strictly positive probability measure) and
let G be a B-generic filter. The measure on B will be denoted by µ.

Theorem III.1. If V |= ¬♦d then V [G] |= ¬♦d.

Proof. Assume on the contrary that there is a ♦d-sequence d = {dα :
α < ω1} in V [G]. Put

Sα = {f ∈ ωα : (∃q ∈ B) q  “f ≤∗ dα”}.
Since B is ωω-bounding and satisfies the countable chain condition there

is a function d′α ∈ ωα which dominates Sα in V . Let f : ω1 → ω. There is an
α such that f�α ≤∗ dα (in V [G]). By the definition of Sα we have f�α ∈ Sα,
hence f�α ≤∗ d′α. Therefore {d′α : α < ω1} is a ♦d-sequence in V , which is
a contradiction.

The model obtained by forcing with a large measure algebra over a
ground model produced as in Theorem II.6 is the only model of ¬CH we
know where d = ω1 and ♦d fails. However, if one is not careful, ♦d can hold
even in the Random real model.

Theorem III.2. If V |= ♦ then V [G] |= ♦d.

Proof. Using ♦ we will construct a ♦d-sequence indestructible by any
measure algebra.

Claim. (♦) There is a sequence {dα : α < ω1} in V such that

(1) dα : α→ ω for every α < ω1 and
(2) for every F : ω1 × ω → [0, 1] such that

∑
n∈ω F (ξ, n) = 1 for every

ξ < ω1, there exists ω ≤ α < ω1 with
∑

ξ<α

( ∑

k>dα(ξ)

F (ξ, k)
)
< 1.

A standard coding argument provides a sequence {aα : α < ω1} such
that for every F : ω1 × ω → [0, 1] there is a stationary set S such that
F �(α × ω) = aα for every α ∈ S. Having this, construct dα as follows: If
aα is not a function from α × ω to [0, 1] or if there is a ξ < α such that∑
n∈ω aα(ξ, n) 6= 1 let dα be any function from α to ω. If aα : α×ω → [0, 1]

and
∑
n∈ω aα(ξ, n) = 1 for every ξ < α, then enumerate α as {ξn : n ∈ ω}

and let
dα(ξn) = min

{
k :
∑

i>k

aα(ξn, i) < 2−(n+2)
}
.

It is easy to verify that this construction works.
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To finish the proof of the theorem let ḟ be a B-name for a function from
ω1 to ω such that B “(∀ω ≤ α < ω1) ḟ 6≤∗ dα” and put

F (α, n) = µ([[ḟ(α) = n]]).

By the Claim there is an infinite α such that
∑

ξ<α

( ∑

k>dα(ξ)

F (ξ, k)
)
< 1.

Then, however,

µ([[(∀ξ < α) ḟ < dα(ξ)]]) = µ([[(∀ξ < α)(∃k ≤ dα(ξ)) ḟ(ξ) = k]])

= µ
( ∧

ξ<α

∨

k≤dα(ξ)

[[ḟ(ξ) = k]]
)

= µ
(( ∨

ξ<α

∨

k>dα(ξ)

[[ḟ(ξ) = k]]
)c)

≥ 1−
∑

ξ<α

( ∑

k>dα(ξ)

F (ξ, k)
)
> 0,

which is a contradiction.

Question III.3. Does V |= ♦d imply that V [G] |= ♦d?

IV. ♦d holds after adding a single Laver real. This section is
devoted to showing that adding a single Laver real adds a ♦d-sequence.
This answers a question of J. Brendle (see [Br1]) who asked whether adding
one Laver real adds a MAD family of size ℵ1. The proof is an extension of
Brendle’s result that adding a Laver real adds a dominating family of size ω1,
contained in [Br1].

Recall that a tree T ⊆ ω<ω is called a Laver tree if there is a t ∈ T
(called the stem of T ) such that for all s ∈ T , s ⊆ t or t ⊆ s, and t ⊆ s
⇒ |{n ∈ ω : san ∈ T}| = ℵ0. If T ⊆ ω<ω is a tree and s ∈ T we let
Ts = {t ∈ T : t ⊆ s or s ⊆ t} and [T ] = {f ∈ ωω : f�n ∈ T for all n ∈ ω}.

The Laver forcing L is the set of all Laver trees ordered by inclusion. It
is well known that the Laver forcing satisfies Axiom A for some sequence of
orderings ≤n. There is no need to specify the orderings here. For a Laver
tree T we say that A ⊆ T is a front if for every f ∈ [T ] there is exactly one
n ∈ ω such that f�n ∈ A. The following can be found in [JS] or [Br1].

Lemma IV.1 (The Strong Fusion Lemma, [JS]). Given a family {Dn :
n ∈ ω} of open dense subsets of L and a T ∈ L there is a T ′ ≤ T such that
{t ∈ T ′ : T ′t ∈ Dn} contains a front for every n.

We shall actually use a fact from the proof of the above lemma, namely:
Given T ∈ L, an open dense subset D of L and an n ∈ ω there is a T ′ ≤n T
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such that {t ∈ T ′ : T ′t ∈ D} contains a front . In this situation define a rank
function on T ′ as follows:

rkD(t) =
{

0 if T ′t ∈ D,
sup{rkD(tan) : tan ∈ T ′} otherwise.

Since {t ∈ T ′ : T ′t ∈ D} contains a front rkD(t) is defined for every
t ∈ T ′. Let αD(T ) = rkD(∅).

Theorem IV.2. Let G be an L-generic filter over V . Then V [G] |= ♦d.

Proof. We shall start by constructing names for the functions dα. The
construction is virtually identical to the one in [Br1]. For fixed α < ω1 let
Tα be a well-founded tree of rank α such that if tan ∈ Tα for some n then
tan ∈ Tα for every n and let %α be the standard rank function on Tα. Define
%nα on a subset of ω<ω recursively by putting

%0
α(t) =

{
%α(t) if t ∈ Tα,
0 otherwise,

let dom(%n+1
α ) = {t : %nα = 0} and for t ∈ dom(%n+1

α ), let m be minimal such
that %nα(t�m) = 0 and let s be such that t = t�mas. Then put

%n+1
α (t) =

{
%α(s) if s ∈ Tα,
0 otherwise.

Fix also a bijection bα : α→ ω for every α. Then define a name ḋα so that

T  “ḋα(β) = m” if and only if %bα(β)
α (s) = 0 and s(k − 1) = m,

where s is the stem of T and k is minimal such that %bα(β)
α (s�k) = 0.

• V [G] |= {ḋα[G] : α < ω1} is a ♦d-sequence: Let τ be an L-name
for a function from ω1 to ω and let T ∈ L. Fix a countable elementary
submodel N of large enough H(θ) containing L, τ and T and let δ = N ∩ω1.
We will construct an S ≤ T such that S  “τ�δ ≤∗ ḋδ”. Let Dn = {S′ : S′

decides τ(b−1
δ (n))}. Notice that Dn ∈ N for every n even though N does

not know bδ. Recursively choose Tn ∈ N so that

(1) T0 ≤ T ,
(2) Tn+1 ≤n Tn,
(3) {t ∈ Tn : (Tn)t ∈ Dn} contains a front.

Let T ′ =
⋂{Tn : n ∈ ω}. Then {t ∈ T ′ : T ′t ∈ Dn} contains a front for

every n (since Tn does) and αDn(T ′) < δ. The latter may require a little
bit of an argument. Note that αDn(Tn) can be evaluated without leaving N
and that αDn(T ′) ≤ αDn(Tn) as T ′ ≤ Tn.

Let t be the stem of T ′. Let n be minimal such that %nδ (t) > 0 or t 6∈
dom(%nδ ). By, possibly, extending t we can assume the former. Construct a
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tree S ≤ T ′ so that t ∈ S and

s ∈ S ⇒ (∀m ≥ n) 0 ≤ rkDm(s) < %mδ (s) or

0 = rkDm(s) = %mδ (s) and ∃l1 < l2 < |s| minimal

such that rkDm(s�l1) = 0 and %mδ (s�l2) = 0 and

s(l2 − 1) > l3, where T ′s�l1  “τ(b−1
δ (m)) = l3”.

Intuitively, we make sure that the value of τ is decided prior to the value of
dδ which is then decided to be at least as large as the value of τ .

To do this assume s ∈ S and that m ≥ n is minimal such that %mδ (s)
> 0 (and also rkDm(s) < %mδ (s)). If %mδ (s) = 1 and rkDm(s) = 0 then
let l1 ≤ |s| be minimal such that rkDm(s�l1) = 0 and let l3 be such that
T ′s�l1  “τ(b−1

δ (m)) = l3”. Put sal into S if and only if sal ∈ T ′ and l > l3.
In all the other cases %mδ (sal) > rkDm(sal) for all but finitely many l such
that sal ∈ T ′ and we put these in S. We do not have to worry about m’s
such that %mδ (s) = 0 since then the condition is satisfied automatically, and
about m’s such that m > m since then s 6∈ dom(%mδ ). That finishes the
construction of S.

In order to verify that, indeed, S  “τ�δ ≤∗ ḋδ” let β be such that
m = bδ(β) > n. All that has to be checked is that whenever Ss decides
both ḋδ(β) and τ(β) then Ss  “ḋδ(β) > τ(β)”. By the definition of ḋδ,
Ss  “ḋδ(β) = l” if and only if %mδ (s) = 0 and s(l2 − 1) = l where l2 is
minimal such that %mδ (s�l2) = 0 and by the construction of S in that case
Ss  “l > l3 = τ(β)”.

V. Concluding remarks. Now we can summarize the impact of ♦d

on the values of the cardinal invariants of the continuum. As mentioned in
Section I, ♦d ⇒ d = a = ω1. An immediate consequence of this is that all
of the following cardinal invariants are equal to ω1 assuming ♦d: p, t, h, s,
g, b, d, a, add(N ), add(M) and cov(M).

It has been shown in [Br1] that it is consistent that adding a single Laver
real to a model of MA can leave non(M) = cof(M) = non(N ) = cof(N ) =
c > ω1. By Theorem IV.2 that model satisfies ♦d. An alternative proof of
Con(♦d + non(N ) > ω1) is provided by Lemma II.7. It is well known that
adding ℵ1 many Hechler reals to a model of MA keeps non(N ) big.

As a corollary of Theorem III.2 one finds that ♦d + cov(N ) = r = i =
u > ω1 is consistent with ZFC.

A question we do not know the answer to is whether ♦d implies that the
irrationals can be partitioned into ℵ1-many compact sets.
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