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Let τ and γ be infinite cardinal numbers with τ � γ . A subset Y of a space X is called
Cτ -compact if f [Y ] is compact for every continuous function f : X → R

τ . We prove that
every Cτ -compact dense subspace of a product of γ non-trivial compact spaces each of
them of weight � τ is 2τ -resolvable. In particular, every pseudocompact dense subspace
of a product of non-trivial metrizable compact spaces is c-resolvable. As a consequence of
this fact we obtain that there is no σ -independent maximal independent family. Also, we
present a consistent example, relative to the existence of a measurable cardinal, of a dense
pseudocompact subspace of {0,1}2λ

, with λ = 2ω1 , which is not maximally resolvable.
Moreover, we improve a result by W. Hu (2006) [17] by showing that if maximal θ-
independent families do not exist, then every dense subset of �θ {0,1}γ is ω-resolvable for
a regular cardinal number θ with ω1 � θ � γ . Finally, if there are no maximal independent
families on κ of cardinality γ , then every Baire dense subset of {0,1}γ of cardinality � κ
and every Baire dense subset of [0,1]γ of cardinality � κ are ω-resolvable.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we use the Greek letters α, β , η, ξ and ζ to denote ordinals, while γ , λ, κ , τ and θ will denoted cardinals.
Every space in this article is Tychonoff and crowded (that is, without isolated points). E. Hewitt [16] called a space X

resolvable if it contains two dense disjoint subsets and a space which is not resolvable is called irresolvable. A space that has
θ -many pairwise disjoint dense subsets, for a cardinal number θ � 2, is called θ -resolvable. The dispersion character �(X) of
a space X is the minimum of the cardinalities of nonempty open subsets of X . If X is �(X)-resolvable, then we say that
X is maximally resolvable. It is shown in [16] (for a proof see [5]) that metric spaces and compact spaces are maximally
resolvable.

Later, El’kin and Malyhin published a number of papers on this subject and their connections with various topological
problems. One of the problems considered by Malyhin in [24] refers to the existence of irresolvable spaces satisfying the
Baire Category Theorem. Afterwards, Kunen, Symański and Tall in [21] proved (see [22] as well):

(1) If we assume V = L, there is no Baire irresolvable space.
(2) The statements “there is a measurable cardinal” and “there is a Baire irresolvable space” are equiconsistent.
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R. Bolstein introduced in [3] the almost resolvable spaces as those spaces which are the union of a countable collection of
subsets with void interior. He proved in [3] that every resolvable space is almost resolvable and also showed that a space is
almost resolvable iff it is possible to define a real-valued everywhere discontinuous function with countable range. A space
that is not almost resolvable is called almost irresolvable. V.I. Malykhin [23] (see also [24]) established the existence of a
model of Z F C in which every topological space is almost resolvable.

Almost-ω-resolvable spaces were introduced in [27]; these are spaces X which can be covered by a countable collection
{Xn: n < ω} of subsets in such a way that for each m < ω, int(

⋃
i�m Xi) = ∅. So every almost-ω-resolvable space is almost

resolvable and every ω-resolvable space is almost-ω-resolvable. Moreover, every almost resolvable space is infinite, and
every T1 separable space is almost-ω-resolvable. It was also proved in [27] that the existence of a measurable cardinal is
equiconsistent with the existence of a Tychonoff space which is not almost-ω-resolvable, and that, on the contrary, if V = L
then every crowded space is almost-ω-resolvable. Later, the following result was pointed out in [2]:

Theorem 1.1. Resolvability and almost resolvability are equivalent in the class of Baire spaces. So, every Baire almost-ω-resolvable
space is resolvable.

It is unknown if every Baire almost-ω-resolvable space is 3-resolvable. With respect to this problem we have the follow-
ing theorems.

Theorem 1.2. ([25]) Gödel’s axiom of constructibility, V = L, implies that every Baire space is ω-resolvable.

Following a similar proof to that given for Theorem 5.9 in [2], we obtain:

Theorem 1.3. Every T1 Baire space such that each of its dense subsets is almost-resolvable is ω-resolvable.

These last two results raise the problem of finding subclasses of the class of Baire spaces such that each dense subset
of each of their elements is almost-resolvable, assuming axioms consistent with Z F C which contrast with V = L. Of course,
a classic subclass of Baire spaces is that of pseudocompact Tychonoff spaces. Related with this problem, W.W. Comfort and
S. García-Ferreira [5] proved that countably compact spaces are ω-resolvable. Thus, the main general problem, still open,
that will be discussed in this article is:

Question 1.4. Is every Tychonoff pseudocompact space resolvable in Z F C?

W.W. Comfort and S. García-Ferreira posed in [5] this question which appears as Question 9 in O. Pavlov’s article in Open
Problems in Topology II [26]. A natural related problem was posed in [2]:

Question 1.5. Is every Tychonoff pseudocompact space almost-ω-resolvable in Z F C?

Independent families were first considered by G. Fichtenholz and L. Kantorovich in [13], and they were initially used
in relation to irresolvable spaces in [21] and [9]. Afterwards, several authors as F.G. Eckertson, W.W. Comfort and W. Hu,
I. Juhasz, L. Soukup and S. Szetmiklossy have also studied the relations between independent families and resolvability (see
[10,6,7,14,17,19]).

In this article, we also use independent families in order to obtain partial answers to Questions 1.4 and 1.5. In the second
section, we list some known and some new results on the relationship between independent families A = {Aξ : ξ < γ } and
dense subsets of the Cantor cube {0,1}γ , we prove that if there is no maximal independent family of cardinality γ on κ ,
every dense Baire subset of {0,1}γ of cardinality � κ is ω-resolvable. In Section 3, we improve on a result by W. Hu in [17]
by proving that every dense subset of the box product �θ {0,1}γ is ω-resolvable, assuming that maximal θ -independent
families do not exist, where θ is a regular cardinal number with ω1 � θ � γ . The fourth section is devoted to prove
that for infinite cardinal numbers τ and γ with τ � γ , every Cτ -compact dense subspace of a product of γ non-trivial
compact spaces of weight � τ is 2τ -resolvable. In particular, we obtain that every pseudocompact dense subspace of a
product of γ non-trivial metrizable compact spaces is c-resolvable; as a consequence of this fact we obtain that there are
no σ -independent maximal independent families. Furthermore, we show a σ -independent family L for which the dense
subspace D(L) of a Cantor cube related with it is pseudocompact and it is not maximally resolvable. Finally, in Section 5,
we prove that if there are no maximal independent families on κ of cardinality γ , then every Baire dense subset of [0,1]γ
of cardinality � κ is ω-resolvable.

We would like to thank M. Tkachenko for pointing out to us the proof of Theorem 4.3 which simplifies the one we gave
in a previous version of this article.
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2. Independent families and irresolvable spaces

In this section, we are going to prove that every Baire dense subspace of a Cantor cube {0,1}γ of cardinality κ is
ω-resolvable if there is no maximal independent family of cardinality γ on κ . We begin by giving the definition of an
independent family.

Let θ be an infinite regular cardinal. Let τ be a cardinal number different from 0. Given an infinite cardinal number κ ,
a family A of subsets of κ is called (θ, τ )-independent on κ if for each pair of disjoint subsets A0 and A1 of A such that
|A0 ∪ A1| < θ , we have that∣∣∣∣

( ⋂
A∈A0

A

)
∩

( ⋂
A∈A1

(κ \ A)

)∣∣∣∣ � τ .

A (θ, κ)-independent family on κ is also called uniform θ -independent. A (θ,1)-independent family is called, simply, θ -
independent. An ω-independent family is called independent, and an ω1-independent family is called σ -independent. A θ -
independent family A on κ is maximal if each family of subsets of κ which contains A properly is not θ -independent. It
is not difficult to construct a θ -independent family A on κ such that |A| < θ and |⋂ A| = 1. This θ -independent family is
maximal. Hence, to avoid trivial cases we shall assume that |A| � θ for each θ -independent family A. It is known that Zorn’s
Lemma implies the existence of maximal independent families on ω (for a proof see [18]). Moreover, K. Kunen [20] proved
that the existence of a maximal σ -independent family implies C H and there is a weakly inaccessible cardinal between ω1
and 2ω1 . The existence of such a family is equiconsistent with the existence of a measurable cardinal.

To each independent family A = {Aξ : ξ < γ } ⊆ P (κ) we are going to associate a dense subset D(A) = {rζ : ζ < κ} of
{0,1}γ where, for each ζ < κ , rζ is defined by

rζ (ξ) =
{

0 if ζ /∈ Aξ ,

1 if ζ ∈ Aξ ,

for every ξ ∈ γ .
The following notation is useful to analyze the relations between A and D(A):
For A ⊆ κ , we set A0 = κ \ A and A1 = A. Moreover, for k < ω, ξ1, . . . , ξk < γ and ε1, . . . , εk ∈ {0,1}, the symbol

[ξ1, ξ2, . . . , ξk;ε1, ε2, . . . , εk] will denote the basic open subset { f ∈ {0,1}γ : ∀i ∈ {1, . . . ,k} ( f (ξi) = εi)} of {0,1}γ . In par-
ticular, if ε1 = · · · = εk = 0 (resp., ε1 = · · · = εk = 1), then we will write [ξ1, . . . , ξk;0] (resp. [ξ1, . . . , ξk;1]) instead of
[ξ1, ξ2, . . . , ξk;ε1, ε2, . . . , εk]. In a more general form, if (ξs)s∈S is an S-sequence (a function with domain S) in γ where
S is a non-empty set, and (εs)s∈S is an S-sequence in {0,1}, then the symbol [(ξs)s∈S ; (εs)s∈S ] will stand for the set
{ f ∈ {0,1}γ : ∀s ∈ S, f (ξs) ∈ εs}.

The basic relations between A and D(A) are listed in the next lemma.

Lemma 2.1. Let κ and γ be two infinite cardinals. Let A = {Aξ : ξ < γ } ⊆ P (κ), (ξs)s∈S be an S-sequence in γ , (εs)s∈S be an
S-sequence in {0,1}, M ⊆ κ and U ⊆ {0,1}γ . Then:

(1) ζ ∈ ⋂
s∈S Aεs

ξs
if and only if rζ ∈ [(ξs)s∈S ; (εs)s∈S ]; that is,

⋂
s∈S Aε1

ξs
= {ζ < κ: rζ ∈ [(ξs)s∈S ; (εs)s∈S ]};

(2) [(ξs)s∈S ; (εs)s∈S ] ∩ D(A) = {rζ : ζ ∈ ⋂
s∈S Aεs

ξs
};

(3)
⋂

s∈S Aεs
ξs

⊆ M if and only if [(ξs)s∈S ; (εs)s∈S ] ∩ D(A) ⊆ {rζ : ζ ∈ M}; and

(4) [(ξs)s∈S ; (εs)s∈S ] ∩ D(A) ⊆ U if and only if
⋂

s∈S Aεs
ξs

⊆ {ζ < κ: rζ ∈ U }.

Proof. The proof of each statement follows from the following observation: ζ ∈ Aεi
ξi

and εi = 0 if and only if ζ ∈ κ \ Aξi , if

and only if rζ (ξi) = 0 = εi ; and ζ ∈ Aεi
ξi

and εi = 1 if and only if ζ ∈ Aξi , if and only if rζ (ξi) = 1 = εi .

Now, we can think of the inverse process: Let γ be an infinite cardinal. Now suppose that D = {rζ : ζ < κ} is a dense
subset of {0,1}γ . For each ξ < γ , we define Aξ = {ζ < κ: rζ (ξ) = 1} ∈ P (κ). The family A(D) = {Aξ : ξ < γ } is independent
on κ .

It is not difficult to prove the following lemma (see Lemma 2.2 in [14]).

Lemma 2.2. Let A = {Aξ : ξ < γ } ⊆ P (κ) be an independent family. Then,

(1) A(D(A)) = A;
(2) if D is a dense subset of {0,1}γ , then D(A(D)) = D.

Recall that, for an infinite regular cardinal θ , a set F of a space X is a Gθ -set if there is a collection U of open subsets of
X such that |U | < θ and F = ⋂

U . A subspace Y of a space X is said to be Gθ -dense if every nonempty Gθ -set intersects Y .
As usual, we say Gδ-set and Gδ-dense instead of Gω1 -set and Gω1 -dense, respectively. A set Y of X is dense if it is Gθ -dense
when θ = ω. The following result can be proved without difficulty.
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Proposition 2.3. Let θ be an infinite regular cardinal and κ an infinite cardinal. A family A = {Aξ : ξ < γ } ⊆ P (κ) is θ -independent
on κ if and only if D(A) is a Gθ -dense subset in {0,1}γ of cardinality � κ .

As a particular case of the previous result we have that a family A = {Aξ : ξ < γ } of subsets of κ is independent iff
D(A) is dense in {0,1}γ .

Now, we will present a well-known result (a proof is available in [6]).

Theorem 2.4. A collection A = {Aξ : ξ < γ } ⊆ P (κ) is maximal independent if and only if D(A) is a dense irresolvable subset of
{0,1}γ of cardinality � κ .

The authors in [1] constructed by transfinite recursion, a countable dense irresolvable subspace of {0,1}c . Theorem 2.4
says that there are dense irresolvable subspaces in {0,1}2κ

of cardinality κ for every κ � ω because for every infinite
cardinal number κ there are maximal independent families of cardinality 2κ on κ (see for example [8, Theorem 3.16]).

In order to get Theorem 2.8 below, which partially generalizes Theorem 2.4, we introduce some definitions.

Definition 2.5. Let κ be an infinite cardinal number and let A ⊆ P (κ) be an independent family on κ .

(1) We say that A is ai-maximal independent if for every partition {Bn: n < ω} of κ , there are two disjoint finite subsets
A0 and A1 of A and m < ω such that⋂

A∈A0

A ∩
⋂

A∈A1

(κ \ A) ⊆ Bm.

(2) We say that A is aωi-maximal independent if for every partition {Bn: n < ω} of κ , there are two disjoint finite subsets
A0 and A1 of A and m < ω such that⋂

A∈A0

A ∩
⋂

A∈A1

(κ \ A) ⊆
⋃
i�m

Bi .

Every ai-maximal independent family is aωi-maximal independent and maximal independent.

Proposition 2.6. Let κ be an infinite cardinal number and let A = {Aξ : ξ < γ } ⊆ P (κ). Then, A is ai-maximal independent iff D(A)

is a dense almost-irresolvable subspace of {0,1}γ of cardinality � κ .

Proof. Necessity. Assume that A = {Aξ : ξ < γ } ⊆ P (κ) is ai-maximal independent. By Theorem 2.3, D(A) is dense in
{0,1}γ . Now, we take a partition {Un: n < ω} of D(A). For each n < ω, we define Bn = {ζ < κ: rζ ∈ Un}. Hence, {Bn: n < ω}
is a partition of κ . By hypothesis, there are two disjoint finite subsets A0 and A1 of A and m < ω such that⋂

A∈A0

A ∩
⋂

A∈A1

(κ \ A) ⊆ Bm.

This implies that if A0 = {Aξ1 , . . . , Aξs } and A1 = {Aη1 , . . . , Aηt }, then ∅ 
= D(A) ∩ [ξ1, . . . , ξs;1] ∩ [η1, . . . , ηt;0] ⊆ Uk (see
Lemma 2.1). Since the partition {Un: n < ω} of D(A) was chosen arbitrarily, D(A) cannot be almost resolvable.

Sufficiency. Now, assume that D(A) is a dense almost-irresolvable subspace of {0,1}γ . In particular, D(A) is a dense
irresolvable subspace of {0,1}γ . In order to prove that A is ai-maximal independent, we take a partition {Mn: n < ω} of κ .
For each n < ω, we define Un to be the subset {rζ : ζ ∈ Mn} of D(A). The collection {Un: n < ω} is a partition of D(A). Since
D(A) is almost-irresolvable, there is k < ω such that intD(A)Uk 
= ∅. That is, there are ξ1, . . . , ξs < γ and ε1, . . . , εs ∈ {0,1}
such that ∅ 
= [ξ1, . . . , ξs;ε1, . . . , εs] ∩ D(A) ⊆ Uk . From this and Lemma 2.1, we can infer that Aε1

ξ1
∩ · · · ∩ Aεs

ξs
⊆ Mk . This

finishes the proof. �
By using a proof analogous to the one of Proposition 2.6, we obtain:

Proposition 2.7. A collection A = {Aξ : ξ < γ } ⊆ P (κ) is aωi-maximal independent if and only if D(A) is a dense almost-ω-
irresolvable subspace of {0,1}γ of cardinality � κ .

Theorem 2.8. Every Baire dense subset D of {0,1}γ of cardinality less or equal to κ is ω-resolvable if there is not an ai-maximal
independent family of cardinality γ in κ .

Proof. Assume that D ⊆ {0,1}γ is a Baire dense subset of cardinality less or equal to κ . Let D ′ be a dense subset of D .
So, D ′ is dense in {0,1}γ and |D ′| � κ . Because of our hypothesis, D ′ is almost resolvable (Propositions 2.2 and 2.6). By
Theorem 1.3, D is ω-resolvable. �
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Corollary 2.9. Let κ be an infinite cardinal and assume V = L. Then, there is no aωi-maximal family on κ . In particular, in this case,
there is no ai-maximal family on κ .

Proof. Since we are assuming V = L, every crowded space is almost-ω-resolvable (see [2, Theorem 5.11]). The conclusion
follows by applying Propositions 2.6 and 2.7 �
Questions 2.10.

(1) Is there an ai-maximal independent family?
(2) Is every aωi-maximal independent family either ai-maximal independent or maximal independent?

Because of Lemma 2.2 we obtain:

Proposition 2.11. A subset D of {0,1}γ is Gθ -dense iff A(D) is θ -independent. In particular, D ⊆ {0,1}γ is dense and pseudocompact
iff A(D) is σ -independent.

Proposition 2.12. A dense subset D of {0,1}γ is irresolvable (resp., almost irresolvable, almost-ω-irresolvable) iff A(D) is maximal
independent (resp., ai-maximal independent, aωi-maximal independent).

3. Dense subspaces of ���θ {0,1}γ

Recall that for a collection {Xs: s ∈ S} of spaces and an infinite cardinal number θ with θ � |S|+ , a set of the form∏
s∈S Gs is called an open θ -box of X = ∏

s∈S Xs if Gs is an open set in Xs and |{s ∈ S: Gs 
= Xs}| < θ . The θ -box topology on∏
s∈S Xs is the topology generated by the base of all the open θ -boxes. �θ X designates

∏
s∈S Xs with the θ -box topology.

Of course, �ω X is the Cartesian product
∏

s∈S Xs with the Tychonoff topology. For uncountable cardinal numbers γ and θ

with θ � γ + , we have

w
(�θ {0,1}γ )

� γ <θ � 2γ = �
(�θ {0,1}γ )

.

So, by a well-known result of A.G. El’kin (see [11]), �θ {0,1}γ is maximally resolvable.
It is well known that every dense subset of �θ {0,1}γ is a Baire space when cf (θ) > ω. The next result is a corollary of

Theorem 2.4 in [17].

Theorem 3.1. Let θ be a regular cardinal with ω < θ � γ . A collection A = {Aξ : ξ < γ } ⊆ P (κ) is (maximal) θ -independent if and
only if D(A) is a dense Baire (irresolvable) subspace of the θ -box product �θ {0,1}γ .

By Lemma 2.2, we obtain:

Theorem 3.2. Let θ be a regular cardinal with ω < θ � γ . A dense subset D of �θ {0,1}γ of cardinality � κ is irresolvable if and only
if A(D) is a maximal θ -independent family on κ of cardinality γ .

Remark 3.3. Let θ be an infinite cardinal. Let τ and κ be two infinite cardinal numbers such that τ � κ . Let A = {Aξ : ξ < γ }
be a maximal θ -independent family of cardinality γ in τ . Considering every Aξ as a subset of κ , the collection A′ =
{Aξ : ξ < γ } is a maximal θ -independent family on κ of cardinality γ .

The following improves Theorem 2.4 from [17].

Theorem 3.4. Let θ be a regular cardinal with ω < θ � γ . The following are equivalent:

(1) there are no maximal θ -independent families of cardinality γ on κ ;
(2) every dense subspace of �θ {0,1}γ of cardinality � κ is resolvable;
(3) every dense subspace of �θ {0,1}γ of cardinality � κ is ω-resolvable.

Proof. The equivalence (1) ⇔ (2) is Theorem 2.4 from [17]. We have only to prove (1) ⇒ (3). Let D ′ be a dense subset
of �θ {0,1}γ of cardinality � κ . Let D be a dense subset of D ′ of cardinality τ . Then A(D) is a θ -independent family of
cardinality γ on τ . By Remark 3.3 and our hypothesis, A(D) is not a maximal θ -independent family on τ . So, D(A(D)) = D
is resolvable. Then, D ′ is Baire and every dense subset of D ′ is resolvable. Thus, by Theorem 1.3, D ′ is ω-resolvable. �

Here, we remark that if A is maximal θ -independent, then D(A) is Baire and irresolvable. This offers an alternative
example to that offered in [21].

The following result is a consequence of Theorem 1 of [20] and Theorem 3.4.
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Corollary 3.5. Let γ be greater or equal to ω1 . If we assume either ¬C H or “there is not a weakly inaccessible cardinal number between
ω1 and 2ω1 ”, then every dense subspace of �ω1 {0,1}γ is ω-resolvable.

Proof. Let D be a dense subset of �ω1 {0,1}γ . Our hypothesis implies that there are no maximal σ -independent families of
cardinality γ on |D|. So, By Theorem 3.4, D is ω-resolvable. �

Now, we introduce two new definitions (compare them with those given in Definition 2.5).

Definition 3.6. Let κ be an infinite cardinal number and let A ⊆ P (κ) be a σ -independent family on κ .

(1) We say that A is ai-maximal σ -independent if for every partition {Bn: n < ω} of κ , there are two disjoint countable
subsets A0 and A1 of A and m < ω such that⋂

A∈A0

A ∩
⋂

A∈A1

(κ \ A) ⊆ Bm.

(2) We say that A is aωi-maximal σ -independent if for every partition {Bn: n < ω} of κ , there are two disjoint countable
subsets A0 and A1 of A and m < ω such that⋂

A∈A0

A ∩
⋂

A∈A1

(κ \ A) ⊆
⋃
i�m

Bi .

It is clear that if A is ai-maximal σ -independent, then it is maximal σ -independent and aωi-maximal σ -independent.

Theorem 3.7. Let A = {Aξ : ξ < γ } be a σ -independent family on a cardinal number κ . Then, the following assertions are equivalent:

(1) A is maximal σ -independent,
(2) A is ai-maximal σ -independent.

Proof. Assume that A is maximal σ -independent. By Theorem 3.1, D(A) is a Baire irresolvable subspace of �ω1 {0,1}γ .
It follows, by Corollary 1 in [12], that D(A) is almost irresolvable being a Baire space. Let {Mn: n < ω} be a partition of
subsets of κ . For each n < ω, let Tn = {rζ : ζ ∈ Mn} (see the paragraph before Lemma 2.1). Then, {Tn: n < ω} is a partition
of D(A). Since D(A) is an almost-irresolvable subspace of �ω1 {0,1}γ , there is a non-empty canonical open set W =
[ξ0, . . . , ξn, . . . ;ε0, . . . , εn, . . .] in �ω1 {0,1}γ and there is k < ω such that W ∩ D(A) ⊆ Tk . But this means that

∅ 
=
⋂
i<ω

Aεi
ξi

⊆ Mk.

So, A is ai-maximal σ -independent. �
Question 3.8. Is every aωi-maximal σ -independent family maximal σ -independent?

It is not difficult to prove the following proposition.

Proposition 3.9. A collection A = {Aξ : ξ < γ } ⊆ P (κ) is aωi-maximal σ -independent (resp., ai-maximal σ -independent) if and
only if D(A) is a dense (and Baire) almost-ω-irresolvable (resp., almost-irresolvable) subspace of �ω1 {0,1}γ .

A consequence of Lemma 2.2 and Proposition 3.9 is:

Proposition 3.10. A subset D of �ω1 {0,1}γ is dense and almost-ω-irresolvable (resp., almost-irresolvable) of cardinality � κ if and
only if A(D) is aωi-maximal (resp., ai-maximal) σ -independent on κ of cardinality γ .

4. Cτ -compact dense subspaces of a product of compact spaces

Corollary 4.2 in [4] says that, under Souslin Hypothesis (S H), every Baire space with countable cellularity is ω-resolvable.
(Recently, I. Juhasz communicated to us that he and Z. Szentmiklossy proved that if the continuum is less than the first
weakly inaccessible cardinal, then every space with countable celularity is ω-resolvable.) It is known that every dense subset
of a cube {0,1}γ has countable cellularity. Then, assuming S H , every dense Baire subspace of {0,1}γ is ω-resolvable. Recall
that, for an infinite cardinal number τ , a subset Y of a space X is Cτ -compact if for every continuous function f : X → R

τ ,
f [Y ] is compact. We will say that a subset Y of X is C-compact if it is a Cω-compact subset of X . If X is Cτ -compact in itself,
then we say that X is τ -pseudocompact. ω-pseudocompactness coincide with pseudocompactness and every Cλ-compact
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subset is Cτ -compact when τ � λ. In this section, we are going to prove, in Z F C , that every dense Cτ -compact subspace
of a product of γ non-trivial compact spaces of weight less or equal to τ with τ � γ is 2τ -resolvable. A subspace D of a
product

∏
s∈S Xs is called τ -dense if for every J ⊂ S with | J | � τ , the J -projection π J : ∏

s∈S Xs → ∏
s∈ J Xs is surjective.

A function h : X → Y is called semi-open if for each open set U of X , intY (h[U ]) 
= ∅.
First we recall two well-known facts (see, for instance, [15] and [2], respectively):

Lemma 4.1. Let {Xs: s ∈ S} be a family of non-trivial compact spaces each of them with weight less or equal to τ and ω � τ � |S|.
A dense subset D of the topological product X = ∏

s∈S Xs is Cτ -compact if and only if D is Gτ -dense in X, if and only if D is τ -dense
in X.

Lemma 4.2. Let θ � 2 and let Y be a θ -resolvable (resp., almost-resolvable, almost-ω-resolvable) space. If f : X → Y is a semi-open
and onto function, then X is θ -resolvable (resp., almost-resolvable, almost-ω-resolvable).

In the proof of the next result, we follow a suggestion made by M. Tkachenko which simplifies a previous version of this
article.

Theorem 4.3. Let {Xs: s ∈ S} be a family of non-trivial compact spaces with weight less or equal to τ and ω � τ � |S|. Then, every
dense Cτ -compact subspace D of X = ∏

s∈S Xs is 2τ -resolvable.

Proof. Since D is a dense Cτ -compact subspace of X , if J ⊆ S with | J | = τ , π J [D] = ∏
s∈ J Xs = X J . The space X J is

maximally resolvable (that is, X j is �(X J )-resolvable). Each open subset of this last space contains a copy of the Cantor
cube 2τ . So �(X J ) � 2τ . Because of Lemma 4.2, D is 2τ -resolvable. �
Corollary 4.4. Let {Xs: s ∈ S} be a family of non-trivial compact metrizable spaces where S is infinite. Then, every dense C-compact
subspace D of X = ∏

s∈S Xs is c-resolvable. In particular, in this case, every dense pseudocompact subspace D of X = ∏
s∈S Xs is

c-resolvable.

Because of Lemma 4.1 and Proposition 2.11, we have:

Corollary 4.5. For infinite cardinal numbers τ and γ with τ � γ , a dense subset D ⊆ {0,1}γ is a Cτ -compact subset of {0,1}γ if and
only if A(D) is τ -independent.

We have the following consequence of Lemma 4.1, Theorem 4.4 and Propositions 2.11 and 2.12.

Theorem 4.6. Let A be a σ -independent family on κ . Then A is not maximal independent.

A combinatorial proof of this theorem is worth mentioning:

Proof. Let A′ = {An: n < ω} be a subfamily of pairwise different elements of A. For each f ∈ 2ω , we take J f = ⋂
n<ω A f (n)

n .
We can take a dense subset G of the Cantor cube 2ω such that 2ω \ G is dense in 2ω too. Consider the set Z = ⋃

f ∈G J f .
Observe that κ = ⋃

f ∈2ω J f and κ \ Z = ⋃
f ∈2ω\G J f . First, we have that Z cannot be equal to An or to κ \ An for any

n < ω, because there is an f ∈ G ∩ [n;0] and there is h ∈ G ∩ [n;1]; so, if ζ ∈ J f , then ζ ∈ Z ∩ (κ \ An), and if ζ ∈ Jh , ζ

is an element of Z ∩ An . Moreover, the set Z does not belong to A \ A′ because A is σ -independent and if g ∈ (2ω \ G),
J g ∩ Z = ∅. Nevertheless, A ∪ {Z} is an independent family on κ . Indeed, take a finite subcollection B = {B0, . . . , Bn} of

A \ A′ and let ε0, . . . , εn ∈ {0,1}. Let A0 = {An1 , . . . , Ank } and A1 = {As1 , . . . , Asm } be two disjoint finite subsets of A′ . Since
G is dense, there is f ∈ G which belongs to [s1, . . . , sm;1] ∩ [n1, . . . ,nk;0]. Since A is σ -independent, J f ∩ ⋂

A∈A0
(κ \ A) ∩⋂

A∈A1
A ∩ ⋂

i�n Bεi
i 
= ∅. Moreover,

J f ∩
⋂

A∈A0

(κ \ A) ∩
⋂

A∈A1

A ∩
⋂
i�n

Bεi
i ⊆ Z ∩

⋂
A∈A0

(κ \ A) ∩
⋂

A∈A1

A ∩
⋂
i�n

Bεi
i . �

From Corollary 4.4 the following question arises: Is every dense pseudocompact subspace of {0,1}γ maximally resolv-
able? Next, with respect to this question, we are going to show a consistent example of a dense pseudocompact subspace
of {0,1}2λ

, with λ = ω1, which is not maximally resolvable (Example 4.8 below).
Let A be an independent family on an infinite cardinal κ , and let {Aξ : ξ < γ } be an enumeration of A. We can consider

the topology T (A) in κ defined by the collection

B(A) =
{ ⋂

A ∩
⋂

(κ \ A): A0, A1 ∈ [A]<ω, and A0 ∩ A1 = ∅
}

A∈A0 A∈A1
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as a base. This topology will be Hausdorff when the independent family A on κ is separated; that is, if for every {ζ, ξ} ∈ [κ]2,
there exists A ∈ A such that |A ∩ {ζ, ξ}| = 1.

Proposition 4.7. Let A = {Aξ : ξ < γ } ⊆ P (κ) be a separated independent family. Then, the space (κ, T (A)) is homeomorphic to
the subspace D(A) of {0,1}γ .

Proof. Indeed, let φ(ζ ) = rζ as was defined before Lemma 2.1. Since A is separated, φ is injective, and φ is continuous and
open because

φ
[

A1
ξ1

∩ · · · ∩ A1
ξk

∩ A0
η1

∩ · · · ∩ A0
ηm

] = [ξ1, . . . , ξk;1] ∩ [η1, . . . , ηk;0] ∩ D(A). �
Kunen constructed in [20] a maximal σ -independent family L ⊆ P (2ω1 ) from a model in which the Continuum Hypoth-

esis holds, and, if λ = 2ω1 , there is an ω2-saturated λ-complete ideal F over λ (which is equiconsistent with the existence of
a measurable cardinal) with P (λ)/F isomorphic to the complete Boolean algebra B(Fn(2λ,2,ω1)) into which Fn(2λ,2,ω1)

is densely embedded, where Fn(2λ,2,ω1) is the set{
p: p is a function, dom(p) ⊆ 2λ, ran(p) ⊆ {0,1} and |p| < ω1

}
.

Recall that an ideal I of a P (κ) is θ -saturated if every collection M of elements in P (κ) \ I such that A ∩ B ∈ I for every
two different elements A and B in M, has cardinality strictly less than θ .

Example 4.8. Let λ = 2ω1 . Let L = {Lξ : ξ < 2λ} ⊆ P (λ) be the maximal σ -independent family constructed by Kunen in [20].

Then, D(L) is a dense pseudocompact subset of {0,1}2λ
which is ω1-resolvable and it is not maximally resolvable.

Proof. K. Kunen constructed the family as follows: In the ground model M , assume that λ is measurable and C H holds. Let
P = Fn(λ,2,ω1), and let U be a normal ultrafilter over λ. Let G be P -generic over M . Then, in M[G], C H holds, 2ω1 = λ,
and if

F = {
X ⊆ λ: ∃Y ∈ U (X ∩ Y = ∅)

}
,

then F is λ-complete and ω2-saturated. Moreover, there is an isomorphism ψ from B(Fn(2λ,2,ω1)) into P (λ)/F . For
δ < 2λ , let [Aδ] = ψ({(δ,1)}); here Aδ ⊆ λ and [Aδ] ∈ P (λ)/F is its equivalence class. Let F = {Cδ: δ < 2λ} where each
C ∈ F is listed at least ω1 times. Let A′

δ = Aδ \ Cδ , and L = {A′
δ: δ < 2λ}. Then, as was proved by Kunen, L is a maximal

ω1-independent family on λ. Without loss of generality, we can assume that L is separated and uniform. Let T (L) be the
topology in λ generated by L as was defined at the beginning of this section. Because of Proposition 4.7, Theorem 2.3 and
Corollary 4.4, X = (λ, T (L)) is a pseudocompact ω1-resolvable space. Observe that any dense subset of X belongs to F ;
hence, since F is ω2-saturated, X cannot be partitioned in ω2 pairwise dense subsets. But this means, since L is uniform,
that X is not maximally resolvable. Therefore, D(L) ∼= (λ, T (L)) is a dense pseudocompact subset of {0,1}2λ

which is
ω1-resolvable and is not maximally resolvable. �

The results shown above lead us to ask the following:

Questions 4.9.

(1) Is there in Z F C a dense pseudocompact subspace of {0,1}γ which is not maximally resolvable?
(2) Is every dense Baire subspace of {0,1}γ resolvable?

5. Baire dense subspaces of [0,1]γ

In this section, we shall study the Baire dense subspaces of [0,1]γ . To make this possible we shall transfer information
from the Cantor cube {0,1}γ to [0,1]γ , via a semi-open function. The main result will follow from a sequences of claims.
The first claim is easy to prove and well-known:

Claim 1. For θ � 2, if X is θ -resolvable (resp., almost-resolvable, almost-ω-resolvable) and f : X → Y is a bijective continuous func-
tion, then Y is θ -resolvable (resp., almost-resolvable, almost-ω-resolvable).

Claim 2. Let f : X → Y be a semi-open function, and let D be a dense subset of Y . Then f −1[D] is dense in X.

Proof. Let U be a non-empty open subset of X . We have that int( f [U ]) 
= ∅. So there is y ∈ int( f [U ]) ∩ D . Thus, there is
x ∈ U such that f (x) = y ∈ int( f [U ]) ∩ D ⊆ f [U ] ∩ D . So, x ∈ f −1[D] ∩ U . �
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Claim 3. If f : X → Y is a continuous semi-open and injective function, and D is a dense subset of X , then f � D : D → f [D] is
continuous semi-open and bijective.

Proof. We are only going to verify that f � D : D → f [D] is semi-open. Let U be an open subset of D . There is an open
set U ′ in X such that U ′ ∩ D = U . Since f is semi open, W = intY f [U ′] is not empty. Since f is continuous, f [D] is dense
in Y . Then, W ∩ f [D] is a non-empty open subset of f [D]. Now, by using the fact that f is an injective function, we obtain
f [U ] = f [U ′ ∩ D] = f [U ′] ∩ f [D] and this set contains W ∩ f [D]; that is, int f [D] f [U ] 
= ∅. �
Notation. Let τ be a cardinal number different to 0. Let {Xξ : ξ < τ } be a family of topological spaces. Let X = ∏

ξ<τ Xξ

be the Tychonoff product of the family {Xξ : ξ < τ }. Let (ξs)s∈S be an injective S-sequence in τ where S is a non-empty
set (in particular, ξs 
= ξt if s 
= t). For each s ∈ S , let Us be a subset of Xξs . The symbol [(ξs)s∈S ; (Us)s∈S ] will represent
the set { f ∈ X: ∀s ∈ S, f (ξs) ∈ Us}. Observe that [(ξs)s∈S ; (Us)s∈S ] is not empty if and only if each Us is not empty.
For every family of functions {φξ : Xξ → Yξ | ξ < τ }, Φ : ∏

ξ<τ Xξ → ∏
ξ<τ Yξ will be the product function of the family

{φξ : Xξ → Yξ | ξ < τ }; that is,

Φ
(
(xξ )ξ<τ

) = (
φξ (xξ )

)
ξ<τ

.

Claim 4. Let τ > 0. Let {φξ : Xξ → Yξ | ξ < τ } be a family of functions. Let (ξs)s∈S be an injective S-sequence of τ , and for each s ∈ S
let Us be a subset of Xξs . Then:

(i) Φ[[(ξs)s∈S ; (Us)s∈S ]] ⊆ [(ξs)s∈S ; (φξs [Us])s∈S ],
(ii) if each φξ is surjective (resp., injective, bijective), then Φ is surjective (resp., injective, bijective),

(iii) if each φξ is surjective, then

Φ
[[

(ξs)s∈S ; (Us)s∈S
]] = [

(ξs)s∈S ;
(
φξs [Us]

)
s∈S

]
, and

(iv) if each φξ is surjective and semi-open, then Φ is semi-open.

Proof. (i) Let x ∈ [(ξs)s∈S , (Us)s∈S ]. Φ(x) = ((φξ (xξ ))ξ<τ . If s ∈ S , xξs ∈ Us , hence φξs (xξs ) ∈ φξs [Us]. Then, Φ(x) ∈
[(ξs)s∈S , (φξs [Us])s∈S ].

(ii) This is obvious.
(iii) Let y ∈ [(ξs)s∈S , (φξs [Us])s∈S ]. Since each φξ is surjective, for each ξ < τ , there is xξ ∈ Xξ such that φξ (xξ ) = yξ ; and

for each s ∈ S we can choose xξs in Us . Therefore, (xξ )ξ<τ ∈ [(ξs)s∈S ; (Us)s∈S ].
(iv) Let U be a non-empty open subset of X = ∏

ξ<τ Xξ . There are n < ω, ξ1, . . . , ξn < τ and non-empty open
sets U1, . . . , Un of Xξ1 , . . . , Xξn respectively, such that ∅ 
= [ξ1, . . . , ξn; U1, . . . , Un] ⊆ U . Because of (iii), Φ[[ξ1, . . . , ξn;
U1, . . . , Un]] = [ξ1, . . . , ξn;φξ1 [U1], . . . , φξn [Un]]. Since each φξ is semi-open, int(φξi [Ui]) 
= ∅ for all i ∈ {1, . . . ,n}. So,[

ξ1, . . . , ξn; int
(
φξ1 [U1]

)
, . . . , int

(
φξn [Un]

)]
is not void. Therefore,[

ξ1, . . . , ξn; int
(
φξ1 [U1]

)
, . . . , int

(
φξn [Un]

)]
is a non-empty open set contained in Φ[[ξ1, . . . , ξn; U1, . . . , Un]] ⊆ Φ[U ]. �

Let φ be the function from {0,1}ω to [0,1] defined as

φ(x) =
∑
i<ω

x(i)

2i+1
.

Claim 5. φ is an onto continuous, semi-open function and each fiber of φ has cardinality � 2.

Proof. It is a well-known fact that φ is an onto continuous function each of its fibers having cardinality � 2.
Furthermore, φ is semi open because for m < ω and ε0, . . . , εm ∈ {0,1},

φ
[[0, . . . ,m;ε0, . . . , εm]] =

[
i=m∑
i=0

εi

2i+1
,

(
i=m∑
i=0

εi

2i+1

)
+ 1

2m+1

]
. �

We denote by F the set {x ∈ {0,1}ω: for every n < ω there is s > n such that x(s) = 0}∪ {1̃} where 1̃(n) = 1 for all n < ω.

Claim 6. H = φ � F : F → [0,1] is a bijective continuous and semi-open function.

Proof. Since φ : {0,1}ω → [0,1] is continuous, so is φ � F : F → [0,1]. The bijectivity of H follows from the following
remarks: if x, y ∈ {0,1}γ with x 
= y, then φ(x) = φ(y) if and only if when k is the first natural number n such that
x(n) 
= y(n), we have either x(k) = 0 and x(i) = 1 for all i > k and y(i) = 0 for all i > k, or x(k) = 1 and x(i) = 0 for all i > k
and y(i) = 1 for all i > k. This fact follows from the equality

∑∞
i=k+1

1
i+1 = 1

k+1 .

2 2
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Finally, the function H is semi open because for m < ω and ε0, . . . , εm ∈ {0,1},(
i=m∑
i=0

εi

2i+1
,

(
i=m∑
i=0

εi

2i+1

)
+ 1

2m+1

)
⊆ H

[[0, . . . ,m;ε0, . . . , εm] ∩ F
]
. �

Claim 7. For a cardinal number γ > 0, F γ is a dense subset of ({0,1}ω)γ .

Next, we are going to obtain some results about resolvability for dense subspaces of [0,1]γ when γ is uncountable.

Proposition 5.1. Let γ and κ be uncountable cardinal numbers. If there are no ai-maximal independent families of cardinality γ on κ ,
then every dense subset of [0,1]γ of cardinality � κ is almost-ω-resolvable.

Proof. Let D ⊆ [0,1]γ be a dense subset of cardinality � κ . Since H : F → [0,1] is a bijective continuous and semi-open
function (Claim 6), Hγ : F γ → [0,1]γ is bijective continuous and semi-open (Claim 4). Thus, (Hγ )−1[D] is a dense subset of
F γ of cardinality � κ (Claim 2). By Claim 7, (Hγ )−1[D] is dense in ({0,1}ω)γ ∼= {0,1}γ . By Remark 3.3 and Proposition 2.12,
(Hγ )−1[D] is almost-ω-resolvable. Moreover, Hγ � (Hγ )−1[D] : (Hγ )−1[D] → D is a continuous and bijective function; thus,
by Claim 1, D is almost-ω-resolvable. �
Theorem 5.2. Let γ and κ be uncountable cardinal numbers. If there are no ai-maximal independent families of cardinality γ on κ ,
every dense Baire subset of [0,1]γ of cardinality � κ is ω-resolvable.

Proof. Let D be a dense Baire subspace of [0,1]γ of cardinality � κ . Let E ⊆ D be a dense subset of D . By Proposition 5.1,
E is almost-ω-resolvable. By Theorem 1.3, D is ω-resolvable. �
Remarks 5.3.

(1) Let f : X → Y be a continuous semi-open and onto function. If X is a Baire space, then Y is a Baire space.

Proof. Let {Un: n < ω} be a countable family of open and dense subsets of Y . For each n < ω, f −1[Un] is open and dense
because f is continuous and semi-open (Claim 2). Since X is a Baire space, then D = ⋂

n<ω f −1[Un] is a dense subset of X .
Then, f [D] is dense in Y and is contained in

⋂
n<ω Un . �

(2) Let γ be an uncountable cardinal number. If every dense (and Baire) subset of [0,1]γ is θ -resolvable (resp., almost
resolvable, almost-ω-resolvable), then every dense (and Baire) subset of F γ is θ -resolvable (resp., almost resolvable,
almost-ω-resolvable).

Proof. Let D be a dense (and Baire) subspace of F γ . Then (Hγ )[D] is dense (and Baire by (1)) in [0,1]γ . By hypothesis,
(Hγ )[D] is κ-resolvable (resp., almost resolvable, almost-ω-resolvable). Moreover, Hγ � D : D → (Hγ )[D] is a continuous
semi-open and bijective function (Claim 3); thus, by Lemma 4.2, D is κ-resolvable (resp., almost resolvable, almost-ω-
resolvable). �
(3) The non-existence of ai-maximal independent families of cardinality γ on κ , implies that every Baire subset of {0,1}γ

of cardinality � κ contained densely in some subspace of {0,1}γ homeomorphic to F γ is ω-resolvable.

We call an onto function f : X → Y semicontinuous if int( f −1[U ]) is not empty for every open set U of Y . A space X is
semicompact if every semicontinuous function f : X → R is bounded. So, we have:

(4) Let γ be an uncountable cardinal number. Then, every dense semicompact subspace D of [0,1]γ is c-resolvable.

Proof. Let D be a dense semicompact subspace of [0,1]γ . Then (Hγ )−1[D] is dense and pseudocompact in F γ because for
every continuous function f : (Hγ )−1[D] → R, the composition (Hγ )−1 ◦ f : D → R is semicontinuous. By Corollary 4.4,
(Hγ )−1[D] is c-resolvable. Therefore, D is c-resolvable (Lemma 4.2). �
Questions 5.4.

(1) Is the statement “every dense subset of [0,1]γ is almost-ω-resolvable” equivalent to “every dense subset of {0,1}γ is almost-
ω-resolvable”?

(2) Is the statement “every Baire dense subset of [0,1]γ is ω-resolvable” equivalent to “every Baire dense subset of {0,1}γ is
ω-resolvable”?
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