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Abstract Forcing notions of the type P(ω)/I which do not add reals naturally add ultrafil-
ters on ω. We investigate what classes of ultrafilters can be added in this way when I is a
definable ideal. In particular, we show that if I is an Fσ P-ideal the generic ultrafilter will
be a P-point without rapid RK-predecessors which is not a strong P-point. This provides an
answer to long standing open questions of Canjar and Laflamme.
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1 Introduction

Various types of ultrafilters can be added by definable approximations. C. Laflamme [12]
studied ultrafilters which can be constructed using forcing with definable ideals ordered by
inclusion. This paper broaches a similar topic by studying the generic ultrafilters added by
the quotient algebra P(ω)/I , where I is some definable ideal (we only consider ideals such
that P(ω)/I does not add reals, for example Fσ -ideals). This serves two purposes: (1) It
is a simple method for consistently constructing various types of ultrafilters. In particular,
forcing with quotient algebras over Fσ P-ideals adds a P-point with no rapid RK-predecessor
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which is not a strong P-point. (2) An attempt to classify definable ideals whose quotients do
not add reals.

We now review standard definitions and theorems we will be using.

1.1 Ideals

In the paper we shall always assume that an ideal I is a nonprincipal proper ideal. The ideal
of finite subsets of ω will be denoted by fin. An ideal I is tall if for each A ∈ [ω]ω there is
B ∈ [A]ω ∩ I . It is called nowhere tall (or Fréchet or locally fin) if for each A ∈ [ω]ω there
is B ∈ [A]ω such that I � B = [B]<ω, where I � B = {I ∩ B : I ∈ I}. An ideal is Fσ (or
analytic, etc.) if it is Fσ (or analytic, etc.) when considered as a subset of 2ω viewed as a
Polish space.

Definition 1.1 If ϕ is a property of ideals we shall say that I is locally ϕ if for each I -
positive A there is an I -positive B ⊆ A such that I � B satisfies ϕ.

Definition 1.2 A function μ : P(ω) → R
+
0 ∪ {∞} is a lower semicontinuous submeasure

(lscsm for short) on P(ω) if the following holds:

(i) μ(∅) = 0,
(ii) If A ⊆ B ∈ P(ω) then μ(A) ≤ μ(B) (monotonicity),

(iii) If A,B ⊆ ω then μ(A ∪ B) ≤ μ(A) + μ(B) (subadditivity),
(iv) If A ⊆ ω then μ(A) = limn→∞ μ(A ∩ n) (lower semicontinuity).

If μ moreover satisfies

(v) μ(A ∪ B) = μ(A) + μ(B), for disjoint A,B ∈ P(ω) (additivity),

we say it is a measure.

Definition 1.3 Given a lscsm μ define ideals Fin(μ) = {A ⊆ ω : μ(A) < ∞} and Exh(μ) =
{A ⊆ ω : limn→∞ μ(A \ n) = 0}.

It is not hard to see that Fin(μ) is an Fσ ideal. The following theorem of Mazur (see [14])
shows that each Fσ ideal is of this form.

Theorem 1.4 (Mazur) An ideal I on ω is an Fσ ideal if and only if there is a lscsm μ such
that I = Fin(μ).

We will also need a related theorem of Solecki (see [18, 19]):

Definition 1.5 An ideal I is a P+-ideal if any descending sequence of I -positive sets has
an I -positive pseudointersection. It is a P-ideal if any descending sequence of sets from
I ∗ = {ω \ I : I ∈ I} has a pseudointersection in I ∗.

Theorem 1.6 (Solecki) An ideal I on ω is an analytic P -ideal if and only if there is a lscsm
μ such that I = Exh(μ). Moreover an ideal is an Fσ P -ideal if and only if it is of the form
I = Fin(μ) for some measure μ.

For more on analytic P-ideals consult [5].
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1.2 Ultrafilters

The following definition makes sense for any pair of ideals or filters.

Definition 1.7 Let I, J be ideals (or filters) on ω. Recall that

(i) (Rudin-Keisler ordering, [11]) I ≤RK J if there is a function f : ω → ω such that
I = f∗(J ) = {A ⊆ ω : f −1[A] ∈ J }.

(ii) (Rudin-Blass ordering, [12]) I ≤RB J if I ≤RK J and the function witnessing this can
be chosen to be finite-to-one.

(iii) (Katětov ordering, [11]) I ≤K J if there is a function f : ω → ω such that preimages
of I -small sets are J -small.

(iv) (Katětov-Blass ordering, [6]) I ≤KB J if I ≤K J and the witnessing function can be
chosen to be finite-to-one.

We now review definitions of various types ultrafilters. Recall that these ultrafilters need
not exist in ZFC.

Definition 1.8 [17] An ultrafilter U is a P -point if for any sequence 〈Xn : n < ω〉 ⊆ U there
is an X ∈ U such that (∀n < ω)(X ⊆∗ Xn) or, equivalently, for any partition 〈Xn : n < ω〉 of
ω consisting of U -small sets, there is a U ∈ U such that |U ∩ Xn| < ω.

Fact Any RK-predecessor of a P-point is its RB-predecessor.

Definition 1.9 [3] An ultrafilter is an Q-point if for any interval partition 〈In : n < ω〉 of ω

there is an U ∈ U such that |U ∩ In| ≤ 1.

Definition 1.10 [16] An ultrafilter U is rapid if the family {eX : X ∈ U } of enumerating
functions of sets in U is a dominating family of functions in (ωω,≤∗) or, equivalently, if for
any interval partition 〈In : n < ω〉 of ω there is a U ∈ U such that |U ∩ In| ≤ n.

As far as we know, the following concept first appeared in [1] and/or in [3]:

Definition 1.11 An ultrafilter is selective (or Ramsey) if for any partition of ω there is a
selector in the ultrafilter. An ultrafilter which is a P-point and rapid is called semiselective

Fact 1.12 An ultrafilter is selective if and only if it is a P-point and a Q-point. A selective
ultrafilter is a minimal ultrafilter in the RK-ordering.

1.3 Forcing

Instead of dealing with the quotient algebra P(ω)/I we will implicitly use the equivalent
forcing notion (I +,⊆). When we say I (or P(ω)/I ) adds an ultrafilter with some property
we, in fact, mean that every generic ultrafilter on (I +,⊆) will have this property. Beware
that this is somewhat different from the usual meaning of “a forcing P adds an object O”.
We use “add” in this sense, since, e.g. under CH, the usual sense trivializes: under CH all
forcings of this form are isomorphic and thus an ultrafilter added by one of the forcings is
added by any other.

Definition 1.13 A forcing P is σ -closed if any countable descending sequence of conditions
has a lower bound.
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2 P-points

The following theorem may be found in [22]

Theorem 2.1 (Zapletal) An ultrafilter U is a P-point if all analytic ideals disjoint from U
can be separated from U by an Fσ ideal (i.e. are contained in an Fσ ideal disjoint from U ).

Using Mazur’s theorem it is easy to prove the following which was first observed in [10]:

Observation 2.2 (Just-Krawczyk) If I is an Fσ ideal then P(ω)/I is σ -closed, in fact, I is
a P+-ideal.

Proof By Mazur’s Theorem 1.4 we may find a lscsm μ such that I = Fin(μ). Assume
〈An : n < ω〉 ⊆ I + is a descending sequence of conditions. Without loss of generality we
may assume that An+1 ⊆ An (since An+1 \An ∈ I ). Using lower semicontinuity and the fact
that μ(An) = ∞ we define by induction finite sets an ∈ [An]<ω such that μ(an) ≥ n. Finally
let A = ⋃

n<ω an. By monotonicity μ(A) = ∞ so A ∈ I+ is a condition. Since μ(A \ An) ≤
μ(

⋃
i<n ai) ≤ ∑

i<n μ(ai) < ∞ so A \ An ∈ I so A is stronger than each An. �

Question 2.3 Suppose I is Borel and P(ω)/I does not add new reals. Is P(ω)/I σ -closed?

Observation 2.4 (Folklore) If I is Fσ then P(ω)/I adds a P-point.

Proof To prove that the generic ultrafilter G is a P-point suppose A ∈ I + forces 〈Ȧn : n <

ω〉 ⊆ Ġ. Since P(ω)/I is σ -closed we may assume 〈An : n < ω〉 ∈ V . As above in the proof
of Observation 2.2 find B ⊆ A, μ(B) = ∞ with μ(B \ An) < ∞. Then B ∈ I + is stronger
than A and forces that B ∈ Ġ is a pseudointersection of 〈An : n < ω〉. �

We shall show that this is essentially the only case when a definable I not adding reals
adds a P-point:

Theorem 2.5 Suppose I is analytic and P(ω)/I adds no new reals. Then P(ω)/I adds a
P-point if and only if I is locally Fσ .

Proof If I is locally Fσ then P(ω)/I adds a P-point by Observation 2.4.
Suppose on the other hand that P(ω)/I adds a P-point and that A ∈ I +. Work in the

extension by some generic filter G containing A. Clearly G ∩ I = ∅ so, by Zapletal’s Theo-
rem 2.1 there is an Fσ ideal J extending I . Since J is given by a lscsm, which is essentially
given by a real, and P(ω)/I adds no new reals, this J is already in the ground model and
we may assume that A � “Ġ ∩ J = ∅”. Since J � A is an Fσ ideal it is sufficient to show
I � A = J � A. The inclusion from left to right is clear. So suppose some there was some
C ⊆ A, C ∈ J \ I . Then C � “C ∈ Ġ ∩ J ” which would be a contradiction. �

Note that being locally Fσ is not the same as being Fσ even in the class of Borel tall
ideals:

Example 2.6 There are tall Borel ideals of arbitrarily high complexity which are locally Fσ .
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Proof Given a set A ⊆ ωω let IA be the ideal generated by sets of the form (1) {f � n : n <

ω} for f ∈ A, (2) {f � n : n ∈ X} for f �∈ A, X ∈ I1/n and (3) antichains in ω<ω. This is
clearly a tall ideal.

The complexity of IA is at least the complexity of A: Consider � : ωω → P(ω<ω) defined
as follows �(f ) = {f � n : n < ω}. This is a continuous function and �−1[IA] = A.

Note that Iωω is Fσ , as is IA � {f � n : n < ω} for f �∈ A. Suppose X ∈ I +
A . Then either

IA � X = Iωω � X and then IA � X is Fσ or not, and then there is f �∈ A such that Y =
X ∩ {f � n : n < ω} ∈ I +

A . Then IA � Y is Fσ . �

3 Selectivity

Recall the following classical theorem of A.R.D. Mathias [13]

Theorem 3.1 (Mathias) An ultrafilter U is selective if and only if U meets all tall analytic
ideals.

The following fact is folklore:

Fact 3.2 P(ω)/fin adds a selective ultrafilter.

We shall show that, in the class of analytic ideals not adding reals, fin is in a sense the
only ideal adding a selective ultrafilter:

Theorem 3.3 Suppose I is analytic and P(ω)/I does not add reals. Then P(ω)/I adds a
selective ultrafilter if and only if I is Fréchet.

Proof Suppose first that I is Fréchet. Given A ∈ I + there is an I -positive B ⊆ A such that
I � B � P(ω)/fin. Now use Fact 3.2.

The other direction is a direct corollary of Theorem 3.1: Suppose A ∈ I +. By assumption
A � “Ġ is selective”. We need to find a B ∈ [A]ω such that I � B = fin. Since I ∩ Ġ = ∅
and I is analytic, we may apply Theorem 3.1 (taking A instead of ω) to see that I � A is not
tall. So there is an infinite B ⊆ A such that I � B = fin. �

Remark 3.4 This, of course, fails badly in the non-definable case, e.g. P(ω)/I(A) adds a
selective ultrafilter for every MAD family A (see [13]).

4 Q-points and rapid ultrafilters

Now we turn our attention to other properties of ultrafilters and prove two more characteri-
zations.

Definition 4.1 Let � = {(x, y) : x ≤ y}. The ideal E Dfin on � consists of those sets which
can be covered by finitely many functions.

Proposition 4.2 Suppose P(ω)/I does not add new reals. Then the forcing I adds a Q-
point if and only if it is locally not KB-above E Dfin.
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Proof Suppose that I adds a Q-point. We must show that I is locally not KB-above E Dfin.
Pick some I -positive set A and a finite-to-one function f : A → �. Aiming towards a
contradiction suppose this function witnesses I � A ≥KB E Dfin. Let An = f −1[{(n, y) :
y ≤ n}]. Then An is a partition of A into finite sets with no positive selector so A �
“Ġ is not a Q-point” a contradiction.

On the other hand suppose A ∈ I + and A � “Ġ is not a Q-point”. Since P(ω)/I does
not add new reals, we can assume that there is an interval partition 〈In : n < ω〉 such that A

forces each selector to be outside of Ġ. Fix an increasing sequence kn of natural numbers
such that |In| ≤ kn and also fix bijections ϕn : In → kn. Finally define f : A → � as follows.
For x ∈ A find n < ω such that x ∈ In and let f (x) = ϕn(x). It is easy to see that this function
witnesses I � A is KB-above E Dfin. �

For dealing with rapid ultrafilters we use the following theorem of P. Vojtáš [21].

Definition 4.3 Given a function f : ω → R
+
0 tending to zero such that

∑
n<ω f (n) = ∞,

we define If = {A ⊆ ω : ∑
n∈A f (n) < ∞} and we call an ideal I summable if I = If for

some such function.

Theorem 4.4 (Vojtáš) An ultrafilter is rapid if and only if it meets every tall summable ideal.

The following proposition, which can be found in [6], shows that we can replace tall
summable ideal with tall analytic P ideal in the above theorem.

Proposition 4.5 (Hrušák-Hernandez) Suppose I is a tall analytic P-ideal. Then there is a
tall summable ideal contained in I .

Proof By Theorem 1.6 there is a lscsm μ such that I = Exh(μ). We shall show that
μ({n}) → 0: Suppose otherwise. Then there is an ε > 0 and an infinite A ⊆ ω such that
μ({a}) ≥ ε for each a ∈ A. Then any infinite subset of A has submeasure ≥ ε so is not
in I contradicting the tallness of I . Now let g(n) = μ({n}). By the preceding Ig is a tall
summable ideal. We claim that Ig ⊆ I . To see this, let A ⊆ ω with

∑
a∈A g(a) < ∞. Since

the sum converges, necessarily
∑

a∈A\n g(a) → 0. Moreover μ(A \ n) ≤ ∑
a∈A\n g(a) so

also μ(A \ n) → 0 so A ∈ I . �

Proposition 4.6 Suppose P(ω)/I does not add new reals. Then forcing with I adds a rapid
ultrafilter if and only if it is locally not KB-above a tall summable ideal.

Proof Suppose I adds a rapid ultrafilter and A ∈ I +. We shall show that I � A is not a tall
summable ideal. Aiming towards a contradiction suppose that I � A ≥KB Ig as witnessed
by some f : A → ω. and define μ(n) = g(f (n)). Then Fin(μ) ⊆ I � A so, in particular,
A � “Ġ ∩ Fin(μ) = ∅” contradicting Vojtáš’s characterization 4.4 (Fin(μ) is tall since f

was finite-to-one, so μ → 0).
Suppose on the other hand that I does not add a rapid ultrafilter. Using Vojtáš’s charac-

terization again, since P(ω)/I does not add any new reals, there must be a condition A ∈ I +

and a tall summable ideal J such that A � “Ġ ∩ J = ∅”. Then necessarily J � A ⊆ I � A

and the identity map shows that I � A is KB-above a summable ideal. Same argument shows
that each I -positive B below A is also Katětov-above a summable ideal. �
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5 Canjar ultrafilters

On the other hand forcing with tall a analytic P-ideal gives a special kind of ultrafilter:

Definition 5.1 An ultrafilter U is Canjar if the forcing MU does not add a dominating real.

M. Canjar (in [2]) showed:

Proposition 5.2 (Canjar) If U is Canjar, then it is a P-point and has no rapid RK-
predecessors.

Conjecture 5.3 (Canjar, Laflamme) U is Canjar if and only if U is a P-point with no rapid
RK-predecessor.

Canjar filters have a combinatorial characterization due to M. Hrušák and H. Minami [7]:

Definition 5.4 Given a filter F on ω we let F <ω be the filter generated by {[F ]<ω : F ∈ F }.

Note that [F ]<ω is a filter on [ω]<ω and it is not an ultrafilter even if F is.

Theorem 5.5 (Hrušák-Minami) U is Canjar if and only if U <ω is a P+-filter.

In [8] we have shown, assuming cov(M) = c, that there are P-points with no rapid RK-
predecessors which are, nevertheless, not Canjar. The following theorem shows, that such
ultrafilters can be added by forcing with P(ω)/I for a tall Fσ P-ideal I .

Theorem 5.6 If I is a tall Fσ P-ideal, then P(ω)/I adds a P-point with no rapid RK-
predecessors which is not Canjar.

Proof By Observation 2.4 P(ω)/I adds a P-point and by Observation 2.2 it is σ -closed. We
first show that the generic has no RB-predecessors. By Proposition 4.5 and the characteri-
zation Theorem 4.4 of rapid ultrafilters, it will be sufficient to show that for each f : ω → ω

finite-to-one, f∗(I) is a tall analytic P-ideal. Let I = Fin(μ) = Exh(μ) by Theorem 1.6.
Define μ∗(A) = μ(f −1[A]). Then μ∗ is a submeasure on ω and since f is finite-to-one it
is lower semicontinuous. It is easy to see that f∗(I) = Fin(μ∗). It remains to verify that
Exh(μ∗) = Fin(μ∗). The ⊆ inclusion is clear and for the other one we use the fact that,
since f is finite-to-one, for each n there is k ≥ n such that f −1[A \ k] ⊆ f −1[A] \ n. Since
RK-predecessors of P-points are its RB-predecessors we are finished.

We next show that the generic is not Canjar. To do this, we show that it fails the combina-
torial condition of Theorem 5.5. Let Xn = {a ∈ [ω]<ω : μ(a) ≥ (n + 1)}. Clearly P(ω)/I �
Xn ∈ (Ġ<ω)+. Pick A ∈ I + and let X be a pseudointersection of the Xn’s. We shall find
a stronger condition B ⊆ A, B ∈ I + which will force X to be in (Ġ<ω)∗. Let g(n) =
min{k : a ∈ X \Xn → a ⊆ k}. By increasing g we may assume 1 ≤ μ([g(n), g(n+ 1))∩A)

and μ({x}) ≤ 1/8 for each x ∈ [g(n), g(n + 1)) ∩ A. For n let bn ⊆ [g(n), g(n + 1)) ∩ A

be minimal such that 1/4 ≤ μ(bn). Then, by the minimality of bn, μ(bn) < 1/2. Let
B = ⋃

n<ω bn. Then 1/4 ≤ μ(B \ n) for each n so B ∈ I + by exhaustivity and clearly
B ⊆ A. We will show that [B]<ω ∩ X = ∅. Let b ∈ [B]<ω and let k = max{n : b \ g(n) �= ∅}.
If b ∈ X then b ∈ Xk by the definition of g. Then μ(b) ≥ (k + 1). However b ⊆ ⋃

i≤k bi so
μ(b) ≤ ∑

i≤k μ(bi) < (k + 1)/2 ≤ k + 1 which is absurd. This finishes the proof. �
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One way to construct Canjar ultrafilters is to force with Fσ ideals (ordered by reverse
inclusion). This suggests the following question:

Question 5.7 Is there a Borel ideal I on ω such that P(ω)/I adds a Canjar ultrafilter?

By the previous results such an ideal would have to be locally Fσ , locally KB-above a
tall analytic P-ideal and locally not P.

6 Examples

We conclude by presenting a few illustrative examples.

Example 6.1 The ideal E Dfin adds a semiselective ultrafilter with a selective ultrafilter RB-
below.

Proof First notice that E Dfin = Fin(μ) where μ(A) = min{|K| : K ⊆ ωω & A ⊆ ⋃
K}. This

shows that E Dfin is Fσ so it is σ -closed and adds a P-point.
To show it adds a rapid ultrafilter, pick 〈an : n < ω〉 a partition of � into finite sets

and a condition A ∈ E Dfin
+. We must find B ⊆ A, B ∈ E Dfin

+ such that |B ∩ an| ≤ n.
We shall actually find a B such that |B ∩ an| ≤ n2 which is clearly sufficient. For each
n < ω let kn = min{k : (∀i < n)(ai ⊆ k × k ∩�)}. By recursion pick an increasing sequence
〈ln : n < ω〉 such that kn < ln and |A ∩ {ln} × ln| ≥ n. Then choose bn ∈ [A ∩ {ln} × ln]n and
let B = ⋃

n<ω bn. Clearly B ∈ E Dfin
+ and, moreover, |B ∩ an| ≤ n2 by the definition of kn.

This finishes the proof that E Dfin adds a rapid ultrafilter.
To see that the generic filter always has a selective ultrafilter below, let π : � → ω be the

projection on the first coordinate. Given A ∈ E Dfin and 〈In : n < ω〉 an interval partition of
ω, choose an increasing sequence 〈kn : n < ω〉 such that |{kn}×kn ∩A| ≥ n. Then pick some
infinite N ⊆ ω such that (∀j < ω)(|{kn : n ∈ N}∩Ij | ≤ 1), and let B = π−1{kn : n ∈ N}∩A.
Then clearly B ∈ (E Dfin)

+ and B forces that π∗(G) contains a selector for the partition
〈In : n < ω〉. �

Recall that Fin×Fin = {X ⊆ ω×ω : (∀∞k)(|X ∩{k}×ω| < ω)}. Even though Fin×Fin
is not an Fσ -ideal, P(ω × ω)/Fin × Fin is σ -closed (see [4] or [20]).

Example 6.2 The ideal Fin × Fin adds a Q-point which is not a P-point.

Proof To see that it does not add a P-point, notice that if we let An = [n,∞) × ω then
An ∈ (Fin × Fin)∗ so they will be in any generic. However any pseudointersection of the
An’s is in Fin × Fin.

To see that the generic is a Q-point, fix A ∈ ω×ω positive and some partition 〈an : n < ω〉
of ω × ω into finite sets. Enumerate {n : |{n} × ω ∩ A| = ω} as 〈nk : k < ω〉 so that each
number appears infinitely often. By induction choose xl ∈ A∩{nl}×[l,ω)\⋃

i<s(l) ai where
s(l) = max{i : (∃j < l)(xj ∩ ai �= ∅)}. Then B = {xl : l < ω} is a Fin × Fin-positive subset
of A which is a selector for the partition. This shows that the generic is a Q-point. �

Example 6.3 Let GC = {X ⊆ [ω]2 : (∀A ∈ [ω]ω)([A]2 �⊆ X)} (see [15]). Then GC adds a
rapid ultrafilter which is neither a P-point nor a Q-point.
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Notice that P([ω]2)/GC is not σ -closed, but does not add new reals, since it has a dense
subset isomorphic to P(ω)/f in (take the embedding A �→ [A]2). This shows that the Ques-
tion 2.3 can be answered in the negative for co-analytic ideals.

Proof of Example 6.3 Notice that E Dfin ≤KB GC : let Fn = {{m,n} : m < n} then [ω]2 =⋃
n<ω Fn and all selectors are in GC . Next Fin × Fin ≤KB GC let In = {{m,n} : n < m} then

[ω]2 = ⋃
n<ω In and each infinite subset A of ω has |[A]2 ∩ In| = ω for infinitely many n

(every n ∈ A). The first implies that the generic is not a Q-point while the second shows that
it cannot be a P-point via the same argument as for Fin × Fin.

To show that it adds a rapid ultrafilter, by Proposition 4.6 and homogeneity it suffices to
show that GC is not KB-above any tall summable ideal Ig . So suppose f : [ω]2 → ω is finite-
to-one. Now construct a sequence 〈ni : i < ω〉 such that for each i < j , g(f ({ni, nj })) <

1
j ·2j . This is easy to do and then f ′′[{ni : i < ω}]2 ∈ Ig , so GC is not KB-above Ig via f . �

Definition 6.4 [9] If μ is a lscsm and there is a partition 〈an : n < ω〉 of ω into finite sets
and a sequence of submeasures 〈μn : n < ω〉, such that μ(A) = sup{μn(A ∩ an) : n < ω},
then we say the submeasure μ is fragmented. The ideal Fin(μ) is then called a fragmented
ideal.

Example 6.5 If I is a fragmented ideal, then P(ω)/I adds a P-point RB-above a selective
ultrafilter.

Proof The forcing adds a P-point by Theorem 2.5. We show that the generic is RB-above
a selective ultrafilter. Let 〈an : n < ω〉 be the partition of ω witnessing the fragmentation
of I = Fin(μ). Fix some finite-to-one function such that μ(f −1(n)) ≥ n and each an is
contained in some f −1(k). Suppose A ∈ I + and 〈Xn : n < ω〉 is a partition of ω. For k < ω

choose nk such that μ(f −1(nk) ∩ A) ≥ k (this is possible since μ(A) ≤ sup{μ(A ∩ f −1(n) :
n < ω}). Now either there is an infinite X ⊆ {nk : k < ω} which is almost contained in some
Xn or we can pick an infinite X ⊆ {nk : k < ω} such that |X ∩ Xn| ≤ 1 for each n < ω.
Then B = f −1[X] ∩ A ∈ I + and B forces that either some Xn is in the generic or there is a
selector in the generic. �
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