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1350 MICHAEL HRUSAK AND SALVADOR GARCiA FERREIRA 

COROLLARY 5.6. Every Sacks-indestructible MAD family is zero-dimensional. 

PROOF. Assume that W is not zero-dimensional and let f c --+ Q n [0, 1] be 
such that f[A] has a unique limit point for every A E WV. Let g : n [0, 1] - co be a 
partial inverse off. Then f -[A] has countable closure (in R) for every A E ~ (S), 
hence by Theorem 2.4.5 of [7] W is Sacks-destructible. -1 

LEMMA 5.7. If s is a MAD family such that Id [ PI = c for every non-trivial 
partitioner P then there is a connected MAD family 66 such that J(s) = J(r). In 
fact, there is a continuous closed two-to-one surjective map F : Y(s) - --+ (). 

PROOF. Enumerate all non-trivial partitioners of W as {P : a < n,} for some < 
c. Recursively choose (distinct) A, B, B ~e so that As c* P, and Ba n Pa =* 0. 
There is no problem choosing as there are always c-many possibilities and less than 
c-many already chosen. Then let 

. = {A, U B,: a < nj} U \ {Aa, Ba: a < n}. 
O has obviously no non-trivial partitioners, so by Lemma 5.4 it is connected. H 

COROLLARY 5.8 ((a = c)). For every MAD family W there is a connected MAD 
family T such that J(G') = J(T) and W -< W. Topologically, for every MAD 
family ' there is a connected MAD family W such that 

P(,W) 
maps continuously 

onto TP(,W) by a closed two-to-one map. 

PROOF. It suffices to note that, as a = c, | r[ P| = c for every P E J+({'). - 

COROLLARY 5.9 ([24]). There exists a connected MAD family (in ZFC). 

PROOF. Let, for f E 2", Af = {f [ n : nE w}. Extend {Af : f E 2} to a 
MAD family W (of subsets of 2<W) and list R \ {Af : f E 2•} as {Bf : f E X} 
for some X C 2". For f E 2w \ X let Bf = 0. Let W = {Af U Bf : f E 2)}. All 
that needs to be checked is that F has the property required in Lemma 5.4. To that 
end let P be a non-trivial partitioner of W. Then 

W [ P = {AfUBf : AfUBf C* P} = {AfUBf : Af C* P} = {AfUBf : f E F} 

where F = {f f 2w : (3n E c)(Vm > n) f [ n E P}. F is an F,-subset of 2". 
So it is either countable or of size c. However, it can not be countable as P is a 
non-trivial partitioner and W [P is a MAD family. - 

THEOREM 5.10 ([3]). For every MAD family W there is a zero-dimensional MAD 
family W and a continuous closed two-to-one map F P: Y(s) --+ T(M). 

PROOF. As all spaces of size less than c are strongly zero-dimensional we can 
assume that J1dI = c. Enumerate Q" as {f, : a < r,} and recursively (for a < c) 
choose Aa, Ba distinct elements of W so that if f satisfies (2) of Lemma 5.5 then 
the limit points of f[Aa] and f[B,] are distinct. Then let 

= -{A, U Ba: a< c} U M \ {Aa, B: a< K}. 
0 is obviously a MAD family and it is zero-dimensional by Lemma 5.5. 

COROLLARY 5.11. (1) [24] There is a Mr6wka family (in ZFC). 
(2) [4] (a = c) For every MAD family W there is a Mr6wka MAD family W and 

a continuous closed finite-to-one surjection F : TP(.) -+ T(*). 
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