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ORDERING MAD FAMILIES A LA KATETOV

MICHAEL HRUSAK' AND SALVADOR GARCIA FERREIRA?

Abstract. An ordering (<x) on maximal almost disjoint (MAD) families closely related to destruc-
tibility of MAD families by forcing is introduced and studied. It is shown that the order has antichains of
size ¢ and decreasing chains of length ¢* bellow every element. Assuming t = ¢ a MAD family equivalent
to all of its restrictions is constructed. It is also shown here that the Continuum Hypothesis implies that for
every w®-bounding forcing PP of size ¢ there is a Cohen-destructible, P-indestructible MAD family. Finally,
two other orderings on MAD families are suggested and an old construction of Mréwka is revisited.

§1. Introduction. In this note we dust off an old ordering on ideals (filters)
introduced by M. Katétov in [16]. It will be used to classify MAD (maximal
almost disjoint) families on a countable set. One reason for doing this is to develop
a comprehensive structural theory of MAD families, similar to that studied for
ultrafilters, and another reason is to try to better understand the general question
of destructibility of MAD families by forcing, aiming to wards a solution of an
old problem, sometimes attributed to J. Roitman, of whether the existence of a
dominating family of size w; implies the existence of a MAD family of size w;.

Recall that an infinite family & C [w]® is an almost disjoint (AD) family if every
two distinct elements of & have finite intersection and it is maximal (MAD) if it
is maximal with that property. It is an old result of Sierpinski [26] that there is a
MAD family of size continuum.

If & is a MAD family then .# (&) denotes the ideal of all subsets of w which
can be almost covered by finitely many elements of &/, (&) = P(w) \ F(¥)
denotes the family of sets of positive measure. The following definition can be found
in [16], there formulated for filters. We use the (dual) language of ideals as it is
more suitable in the given context.

DerINITION 1.1. Let %, _# be ideals on w. Let ¥ <k 7 if there is a function
f 1w — wsuchthat f~![I] € # forevery I € .#. If & and & are MAD families
then we write &/ <y % instead of .7 (&) <g ().
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1338 MICHAEL HRUSAK AND SALVADOR GARCIA FERREIRA

We will refer to the ordering as Katétov ordering. When restricted to maximal
ideals (dually ultrafilters) the ordering coincides with the Rudin-Keisler order. Just
to point out a subtle difference recall the definition of the Rudin-Keisler order on
ideals (see e.g., [11]) F <grx F if there is a function f : @ — w such that
f~ e #ifandonlyif I € 7.

Given a forcing notion P a MAD family & is P-indestructible if &/ remains
MAD after forcing with P. This is obviously equivalent to P not diagonalizing the
dual filter #*(&%) (not adding a pseudo-intersection to #*(&), i.e., not adding an
infinite set almost contained in all elements of #*(&)). If a MAD family is not
P-indestructible we say that it is P-destructible. The definitions extend to all proper
ideals .# on w. Allideals considered in this paper are proper, contain Fin (the ideal
of all finite subsets of w) and are tall, i.e., #* does not have a pseudo-intersection.
Note that for an AD family &, .7 (&) is tall if and only if & is MAD if and only if
F () £k Fin. The following easy proposition shows the relevance of the Katétov
ordering to the question of destructibility of MAD families.

PROPOSITION 1.2. Let P be a forcing notion and let %, # be ideals on w. If
F <k JF andP diagonalizes # then P diagonalizes % .

PrOOF. Let f be a witness to F <k £ and let 4 € [w]® N V[G] be a set
diagonalizing .# (G denotes a filter P-generic over V). Let B = f[A]. First note
that B is infinite. To see that B diagonalizes .# assume the contrary, i.e., there is an
I € ZN[B]°. As f~![I] € #, that would, however, contradict the assumption
that [4]* N _# C Fin. 4

Note that the converse of the above proposition does not hold (see the remark
following Proposition 2.5). In [15] it is shown that the hierarchy of MAD families
is stratified using natural ideals on w. The paper [15] contains slight but serious
mistakes which are rectified in the upcoming paper [7] of Brendle and Yatabe. In
these two papers it is shown that for many nicely definable forcing notions P such as
Cohen, Sacks, Miller there are corresponding ideals #p on w such that a tall ideal
 is P-destructible if and only if ¥ <x #p. A particular instance of this is the
following theorem used later on in the text.

THEOREM 1.3 ([15]). 4 MAD family & is Cohen-indestructible if and only if ¢ £ g
nwd, where nwd denotes the ideal of nowhere dense subsets of the rationals.

The set-theoretic notation used here is mostly standard and follows [17]. For the
definitions of the cardinal invariants and forcing notions consult e.g., [30] and [2].

§2. Elementary properties of the Katétov order on MAD families. When looking
at the Katétov order restricted to MAD families there is a particular segment which
is interesting. Recallthat Fin x Fin={A Coxw:{nc€w:{mecw: (nm)e
A} & Fin} € Fin}. Throughout the text, given a set 4 C w, e4 denotes the function
increasingly enumerating A4.

PRrOPOSITION 2.1. For every MAD family &, Fin <x & <k Fin x Fin.

PROOF. Fin <k & is trivially true. To see that & <k Fin x Fin choose {4, :
n € w} C & sothat | J{4, : n € w} =" wand let B; = 4; \ U;; B;. Define
f o x o — o by putting f((n,m)) = ep,(m). Such f is easily seen to be a
witness to & <y Fin x Fin. -
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Recall that a MAD family & refines a MAD family & (¥ < &) if VA € &
B € & A C B. Given a MAD family & andaset X €¢ FH&)let & | X =
{ANX:4 € and |4N X|=Ny}. Note that & | X is a MAD family of subsets
of X. Let & be a MAD family and let (B4 : A € &) be a collection of (not
necessarily distinct) MAD families. Then let

Zy<gA§A€M>:{eA[B]ZAEM,BE.@A}.

if By =% forevery A € &/ denote Ly (B, : A € /) by B Q@ «. It is easy too see
that Xy (B4 : A € &) is a MAD family. Note that:

(1) If ¥ < Bthen ¥ <g B,

(2) & <k & | X forevery X € FH(¥),

(3) Ty (Bu: A€ &)< & and

(4) Ly (By: A€ ) <g Byforevery A € .

PROPOSITION 2.2. Every collection of at most c-many MAD families has a common
<gk-lower bound.

PROOF. Let {#, : a < x < c} be a collection of MAD families. Let & = {4, :
a < ¢} be a MAD family of size c. Let &4, = o, for @ < k and let B4, be
arbitrary otherwise. Put &' = X4 (%4 : A € &). It is obvious that &’ is the
required lower bound. =

PROPOSITION 2.3. For every MAD family & there is a MAD family & such that
B <A (i.p. B <k 5/) and 4 ﬁK ZB.

PrOOF. Given &, let &' < & be a MAD family of size c. List all elements of &’
as {4, : o < ¢} and also enumerate w® = {f, : @ < ¢}. For every a < ¢ choose
B, € 7 () a subset of f,[A,] such that | f;![Ba] N Aa| = Ro; if fo[Aa] is finite
let By = fa[Aa] and if f,[A4,] is infinite, by maximality of & there is an 4 € &
such that 4 N f,[A4.] is infinite and then let B, = A N f,[4,]. Now, let &, be
any MAD family of subsets of 4, such that f;![B,]N Ay & 7(%,). Finally, let
B = Upcc Ba- It follows from the construction that & is a MAD family and that
B < A.

Now assume that f isa witnessto & <x . Then f islisted as f, forsome o < c.
Then, however, B, € (&) and f~'[B,] ¢ .# (&) which is a contradiction. -

COROLLARY 2.4. There is a strictly decreasing chain of length ¢t below every
MAD family & in the Katétov order.

PRrOOF. It is easy to construct the chain by induction of length ¢*, at isolated
steps using Proposition 2.3 and at limit steps using Proposition 2.2. —

PROPOSITION 2.5. There is a collection of c-many pairwise Katétov incomparable
MAD families <g-below every MAD family & .

PrOOF. Let & be a refinement of & of cardinality ¢. Enumerate & as {B; : £ <
c}. Enumerate also 0® x cas {(f¢, i) : & < c}. Inductively choose ordinals S, ye
and a MAD family % of subsets of B,, so that:

(1) f7'[Bg]N By, is infinite,
(2) if Be & {py : n < &} let B: be a MAD family of subsets of B,, such that
' [Bg 1N By, € 7H(Fy).
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(3) if Bz = y, for some 5 < & let B be a MAD family of subsets of B,, such that
there is a B € &, such that fgl[B] N B, € F*(%B;).
4) ve & {vn: By :n <&}

Having done this let, for o, & < ¢,
@ {@5 ifé =y, and o =iy,

7 1{B:} otherwise.
Then let
o= B2
é<c

It is immediate from the construction that &/, is a MAD family and is a refinement
of &. Hence &, <x ¥, forevery a < c.

All that is left to verify is that for distinct o, @’ < ¢, ¥, Lx o. Assume, that
it is not true, i.e., there are distinct o, &’ < c and an f € w® such that f witnesses
that &, <x ¥.. Then, however, the pair (f,’) is listed as (f, i¢) and it follows
from the construction that thereisa B € &, (B = By, or B € &, forsomen < ¢
with Bz = y,) such that f ~'[B] ¢ .# (&) so [ ~![B] & F (Ha'). .

Call two MAD families &, & equidestructible if for every forcing notion P
& is P-indestructible if and only if & is P-indestructible. All Sacks-destructible
MAD families are, in fact, destroyed by any forcing adding reals (see [7]) and as
a result are equidestructible. Also, Sacks-destructible MAD families exist in ZFC,
for instance the classical construction of Sierpinski produces a Sacks-destructible
MAD family. Proposition 2.5 therefore shows that there are MAD families which
are equidestructible, yet K-incomparable.

Two MAD families &/, & are K-equivalent (¢ ~x RB)if ¥ <x Fand B <g &.
Let TK(.SV) = {.@ T B~k .Sf}, Py () = {.@ B <k .SV} and Sx(¥) = {Q :
B >k A}

LEMMA 2.6. & <g & implies |B| < |¥|

PROOF. Let f witness & <x &. Letford € &/, F4={B€ % :|f ' [A]NB| =
No}. Note that F4 is finite for every 4 € & and B = |J{F4: 4 € ¥} =

PROPOSITION 2.7. Let & be a MAD family. Then:
(1) |Tx (s£)| = |Sk (/)] = 2! and
(2) |Px ()] =2¢.

PrOOF. To see that 21| < |Tk (&) split every 4 € & into two infinite subsets
BY,BL. For f €29 let By = {A: f(4) =0} U{BY, B} : f(4) =1}. All B are
K-equivalent to &, the identity being a witness.

|Tx ()| < |Sk ()] follows directly from the definition. For |Sk(#)| < 2! use
Lemma 2.6; If & € Sk(«) then |B| < |#|, so there is an f : & — P(w) such
that & = rng(f). Hence Sk ()| < [(P(w))¥| < 211

Clause (2) follows easily from clause (1) and the fact that every MAD family has
a refinement of size c. .

It follows from Proposition 2.3 that there are no K-minimal MAD families. We
do not know whether there are (can be) K-maximal MAD families. We will show
next that, at least consistently, there is no K-largest MAD family. Recall that b
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denotes the unboundedness number (see [30]), a denotes the minimal cardinality of
a MAD family, and that b < a < c.

ProOPOSITION 2.8. (b = ¢) For every MAD family &/ there is a MAD family & such
that &/ and & are K-incomparable.

ProOF. Enumerate w® as {f» : @ < ¢}. We will construct & as a union of an
increasing chain of almost disjoint families %, , @ < ¢ by induction so that

(1) A, is a partition of w into infinitely many infinite sets,
(2) |Ba| = |a + w| for every a < «,
(3) (Va < 0)(34 € %)(|{B € Bas1 : |£3'[4]0 B| = No}| = Ro) and
(4) (Vo < ¢)(3B € Bos1)(f5'[BI € F ().
It is obvious that then & = | J{%. : a < c} is as required.

To see that we can proceed with the construction assume that %5 have been
defined for every f < a.. For o limit let Bo = Uy, Bp. If @ =y + 1 consider f,.
As a > b, the family %, is not maximal, i.e., there is an infinite subset C of w almost
disjoint from all elements of %,. Choose 4 € & such that | f~ 41N C| = Ny and
partition the set f~ 114] N C into infinitely many infinite sets {D; : i € w}.

If thereisa B € &, U{D; : i € w} such that f},”I[B] g 7 (), let B, =
B, U{D;:icw} If f7[B] € #(«)forevery B € #,U{D;:i € w},let

{4i:icw}C A \{desl: (3B B, U{D;:ico})f [BINA|l=N)}

This can be done as |#/| = cand [{4d € & : (3B € B, U{D; : i € w})(|f;'[BIN
A| =Ro)}| < c. Let {C; : i € w} be a disjoint refinement of { /,[4;] : i € w}. Let
forevery B € #,U{D; :i € w} andi € w, gg(i) = max(C; N B) + 1. Note that
this is well-defined as C; N B is finite for every i € w and every B € %, U {D; :
i € w}. Now, as b = ¢, there is an f € w® which eventually dominates all gg,
Be®B,U{D;: i€ w}. Let

E = J(C\ £G)).
iCw
Then E N B is finite for every B € %, U{D; : i € w} and f},_l[E] g F() as
S [E]1 N A4; is infinite for every i € w. Set B, = B, U{D; : i € w} U{E}.
Conditions (1)-(4) are then obviously satisfied. -

§3. Special MAD families. MAD families with special properties have been stud-
ied in the literature. In this section we consider these properties in connection with
the Katétov order. In our context the most important properties are those of forcing
indestructibility (see [15, 7).

Another property of MAD families was investigated in [13] in connection with
topological games on Fréchet spaces. Recall that T C w<® is a tree if for every
s€ Tandeveryt Cs,t € T. Atree T is F+(&)-branching if succr(t) = {n € w :
t"neT}e 7t («)foreveryt € T. Finally, [T]|={f €ew”:Vnew f |ne T}
denotes the set of branches through 7.

A MAD family & is +-Ramsey if for every .#*(&/)-branching tree T C w<®
there is a branch f € [T] such that rng(f) € # (). Among other things it is
shown in [13] that +-Ramsey MAD families exist if cov(#) = c.
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A property closely related to Cohen-indestructible MAD families was introduced
in [20]. A MAD family & is tight (in terminology of [20] and [18] Ro-MAD) if
V(I :n € w) CFT(¥))(34 € F(¥))(Vn € w) |AN I,| = Ry. Next proposition
provides a useful characterization of tight MAD families.

PRrOPOSITION 3.1. 4 MAD family &/ is tight if and only if Vf : Q — w) (34 €
F (&) (f ~'[A] is either dense or has non-empty interior).

ProoF. Let {U, : n € w} be an enumeration of a basis for the topology on Q.

Let &/ be tight and let f : Q — w be given. Put I, = f[U,] for every n € w.
If there is an n € w such that I, € #(&%) then we are done as f~![I,] 2 U,,
hence has a non-empty interior. If I, ¢ # (&) for every n € w then, as & is tight,
there is an 4 € #(&) such that |4 N I,| = X, for every n € . This implies that
f~HAIN U, # 0, so f~1[A] is dense. This finishes the proof of the left to right
implication.

For the other direction let & be such that (Vf : Q — w) (34 € #(&)) (f~1[4]
is either dense or has non-empty interior), and let (I, : n € w) C F+(&) be given.
Without loss of generality we can assume that I,, N I,, = () for distinct m, n € w. Let
{4, : n € w} be a partition of Q into non-empty open intervals. Let {C : m € w}
be a disjoint refinement of the family {Uy : Uy C A4,} for every n € w, and let
{JI : m € w} be a partition of I, such that J? € .#+ (&) for every n,m € w. Now
let f : Q — w be such that f | C7 is a bijection between C2 and J. for every
m,n € w. Using the property of &, there is an 4 € (&) such that f~![4] is
either dense or has non-empty interior. If f~![4] is dense then | f ~'[4] N 4,| = Ry
for every n € w which implies that |4 N I,| = R for every n € w. To finish the proof
it is enough to show that the other alternative leads to a contradiction. So, assume
that f ~![4] has non-empty interior for some 4 € #(&). Then there are n,m € w
such that C? C f~'[4]. This, in turn, implies that J” C 4 which contradicts the
assumption that 4 € .7 (&). 4

COROLLARY 3.2. Let & be a tight MAD family. Then:

(1) ([20, 18]) & is Cohen-indestructible,
(2) V& MAD & < & implies that & is tight, and
(3) « is +-Ramsey.

Proor. (1) and (2) follow directly from Theorem 1.3 and Proposition 3.1.

In order to prove (3)let T C w*® bean # ¥ (& )-branching tree. Let I? = succr(t)
for every t € T. As & is tight, there is an 4y € # (&) intersecting each I in an
infinite set. Let By = | J{4 € & : |4 N Ag| = Ro}. Note that By € #(&). Having
defined B;, let I,i+1 = I} \ B;. By tightness of & there is an 4, intersecting each
I/*! in an infinite set and let B;y; = | J{4 € & : |AN A;;1| = Ro}. This procedure
produces a family {B; : i € w} C #(&) of disjoint sets such that:
a)Vt € TVi € w |B; Nsucer(t)| = Vo and
b) VB C w if B intersects each B; in an infinite set then B € #+(&).

Now we are ready to construct a branch b € [T]. Let (m,n) =2"(2n+1) — 1
be the standard pairing function. Construct b by induction so that b({m,n)) €
succr(b | {m,n)) N B,,. Then |rng(b) N B,,| = R for every m € w, hence by b)
rng(b) € FH (). 4

The following nice fact from [18] shows that the existence of a tight MAD family

follows from the existence of a Cohen-indestructible MAD family, i.p. they exist
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assuming b = ¢ ([15, 18]). For the reader’s convenience we provide a proof here
(slightly different from the proof contained in [18]).

PROPOSITION 3.3 ([18]). If & is a Cohen-indestructible MAD family then there is
an X € F*(A) such that &/ | X is a tight MAD family.

Proor. First note that as every element of #*+ (%) can be partitioned into in-
finitely many elements of #* (&), a MAD family & is tight if and only if for
every partition (I, : n € w) C F (&) thereisan 4 € # (&) such that 4 N I, is
non-empty for every n € . We will work with this alternative definition.

Assume that &/ | X is not tight for any X € I*(&/). We will show that & is
Cohen-destructible. Construct a family (X, : 0 € ®<?) so that

(1) Xp =,

(2) X, e I (&) forevery o € w<?,

(3) (X,~, : n € w) is a partition of X, forevery o € o<,

4) Vo cw<®) (VA e #(¥)) (Bnew) AN X,~, =0 and

(5) (Vn#m e w) (Jo € <) | X, N{n,m}| = 1.
This is very easy to do given the assumption that & [ X is not tight for any
X € IT(&7). Note that declaring the sets X, an open base produces a topology on
 which is homeomorphic to the rationals Q. By (4), every 4 € .7 (&) is a nowhere
dense set in this topology. Hence, by Theorem 1.3, & is Cohen-destructible. -

Note that Proposition 3.3 together with Corollary 3.2 (part (3)) show that there
is a +-Ramsey MAD family assuming b = ¢, which provides a partial answer to a
question from [13].

Next we will show another condition sufficient for the existence of a tight MAD
family. Recall the definition of the guessing principle {>(0) from [23]:

For every Borel F : 2<“! — w® thereis a g : w; — w® such that for every

f o —2theset {a < w;: F(f | o) <* g(a)} is stationary.
Recall that a function F : 2<®' — ® is Borel if F | 2° is Borel for every § < w;.
It was shown in [23] that {>(9) holds in many models of @ = X, including the Sacks
model.

PRrOPOSITION 3.4. {(0) implies that there is a tight MAD family of size X;.

Proor. Fix for every infinite ordinal 6 < w; a bijection e5 : @ — J. Using
suitable coding, the function F will be defined on triples ((4, : y < J), (I, : n € w),
B) such that {4, : y < 6} U {B} is an almost disjoint family of infinite subsets of
o and (I, : n € w) is a sequence of infinite subsets of w such that each 7, intersects
infinitely many 4, in an infinite set.! Let (4, : y <), (I, : n € w), B be given. If
the triple ((4, : y <), (I, : n € w), B) does not satisfy the above requirements set
F(((4,:7<9),{I, :n € w),B))(n) = 0 forall n € w, otherwise let

F((4,:y<06).,(I, :n € w),B)(n) =min{k € w : BN A4, C k and
(Vi < 1) (| deymy N 1| = Ro = (kN Agyy NI)\ | 4oy # )}
i<n

I'The coding in this case is quite simple: for ¢ € 2° (§ = w® for some o > w) let:
(1) neBifft(n) =1,
(2) nelyifft(w-(m+1)+n)=1and
(3) ned,ifft(w-(w+7y)+n) =1
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It is easy to verify that F is a Borel function. Suppose that g : w; — w® is a
&-sequence for F. Define an almost disjoint family {4s : § < w;} by recursion as
follows. Let {4; : i € w} be a partition of w into infinite sets. At staged > w let

A5 =0\ |40 \ g6)(n)
new
if the set @ \ U, c., (4e;(n) \ €(6)(n)) is infinite. Otherwise, pick 45 arbitrary almost
disjoint from 4,,y < 4.

Clearly, & = {A4; : 6 < 1} is an almost disjoint family. In order to see that it is
maximal and that it is tight, let B C w and let (I, : n € w) be such that for every
i € w thereareinfinitely manyd < w; such that |4sNI;| = Rg. If B is almost disjoint
from 4, for all y < w;. Let a < w; be such that |45 N I;| = ¥, for infinitely many
B < a and pick ad > a such that g(J) eventually dominates F ({4, : y < ), B).
Then 4; = @ \ U,ep(Aesn) \ 800) (1)) 2* @ \ Upeo(Aesomy \ F((4y 1y < 9),
(In : n € w), B)(n)), in particular, B C* 4; and |45 N I;| = Ny foreveryi € w. -

The notion of a tight MAD family suggests the following natural weakening:
Call a MAD family & weakly tight provided that (V(I, : n € w) C F*(¥))(34 €
F(#))(F®n € w) |[ANT,] = Ny. Recall that, given a MAD family &, a set
X € [w]® is a partitioner of  if forevery A € &/ either AC* X orANX =*0. A
partitioner X is trivial if either X € (&) orw \ X € #(&). Itis easy to see that
the equivalence classes (mod fin) of partitioners form a subalgebra of #(w)/fin.
Denote it by Part(%/). The algebra Part(/)/.7 () is the partitioner algebra of & .
For more on partitioner algebras see e.g., [5, 9] or [8].

PROPOSITION 3.5. If & is weakly tight then & £x ¥ @ ¥ .

ProoF. First note that if & is weakly tight then the algebra B = Part(&/)/.7 ()
is finite. Obviously, a Boolean algebra B is finite if and only if every antichain in B
is finite. Now, (I, : n € w) C S (&) represents an infinite antichain in B if and
only if forevery 4 € & and everyn € w A C* I, or AN I, =* §. It easily follows
that if B has an infinite antichain then & is not weakly tight.

Next observe that if & and & are MAD families then & ® & is not weakly tight.
(In fact, & embeds into Part(¥/ @ B)/ 7 (¥ ® F).) This follows immediately from
the definition of & ® &, as B C Part(¥ ® &) and B € (¥ ® &) for every
Be 3%

To finish the proof it is enough to note that being weakly tight is upwards closed
in the Katétov order. 4

We do not know whether MAD families maximal in the Katétov order exist.
However, (weakly) tight MAD families are almost maximal. The following lemma
follows easily from the fact that .#+(&) is a Happy family for every MAD & (see
e.g., [22]).

LEMMA 3.6. Let &/ be a MAD family and let f : w — w. Then there is an
X € 71 () such that f | X is constant or f | X is one-to-one.

PROPOSITION 3.7. Let & be a weakly tight MAD family and let & be a MAD
Jamily. If & <x B then thereisan X € F+ () such that B <yx 4 | X.

ProOF. Let & and & be as above and let f be a witness to & <x Z. Obviously,
f~Un) € #(&B) forevery n € w. By Lemma 3.6, thereisa Y € £+ (&%) such that
f | Y is one-to-one.
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CramM. Theset F ={B € % : f[BNY]e s (¥)} is finite.

Aiming toward a contradiction assume that {B; : i € w} is an infinite subset of # .
Let I; = f[B; N Y] foreveryi € w. As & is weakly tight, there is an 4 € 7 (&)
such that 4 N [; is infinite for infinitely many i € w. This, however, implies that
f~[A] N B; is infinite for infinitely many i € w which, of course, contradicts the
fact that £ ~![4] € 7 (5B).

Now, let X = f[Y\UF)andlet g = f~' | X. Then, X € &7 (&) and
g7 Bl=f 1 (Y\UF)[Ble F ()., 50 B <x /| X. a

We will say that a MAD family & is K-uniformif & >g & | X (or, equivalently,
& ~g A | X)forevery X € F(¥).

CoROLLARY 3.8. If a MAD family & is weakly tight and K-uniform then it is
K-maximal.

Proor. Follows directly from Proposition 3.7. -

We conclude this section by showing that at least consistently K-uniform MAD
families do exist. Recall that t denotes the minimal cardinality of an unfilled tower
in #(w)/fin and that t < b < a.

THEOREM 3.9. (t = ¢) There is a K-uniform MAD family.

In order to prove the theorem we will need two technical lemmata. Given an
almost disjoint family & and a family & C w® consisting of one-to-one functions,
we say that & respects F if f ~![A] € # (/) forevery A € &/ and f € 7.

LemMA 3.10. Given &, F such that & respects ¥, and |¥|,|F | < t and given
an X € (), there is an almost disjoint family B extending ., |B| < t, which
respects F such that B N [X]° # 0.

ProOF. Assume that % N[X]® = 0, as otherwise there is nothing to prove. Let #’
be the closure of # under compositions of functions. Obviously, & also respects
F'. Enumerate 7' as {f, : @ < K}, where k = |¥| < t. Recursively choose a
C*-decreasing sequence {7, : @ < «} of infinite subsets of X so that:

(1) Tp C X is almost disjoint from all elements of &,
(2) Fora < k, f7[T,] € 7 (&) or £7![T,]is almost disjoint from all elements
of &,
(3) For every B,y < a < k such that fﬂ”l[Ta], f7Ta] & (). (fﬁ_l[Ta] N
f7 ' [T is finite) or (5 1 To =" f77' 1 Ta).
Assume that Ty, f < o have been successfully constructed. Choose S € [X]” such
that § C* Ty for every f < a. Consider f 1[S]; either there is an Sy € [S]* such
that £;'[So] € 7 (&), or £ [S]is almost disjoint from all elements of &, in which
case set S = Sy. Note that if T, is any infinite subset of Sy then conditions (1) and
(2) are satisfied. In order to find T, so that (3) holds enumerate all pairs (5, 7).
By < aas {(B:.ye) : £ < A}. Note that A < t. Construct another decreasing
sequence {S; : £ < A} (Sp has already been chosen) so that if

[5'1Se1¢ 7 () and f'[Se] & 7 (/)

then
| 5 [Se1] 0 £ 3 [Seall < Roor £1.1 1 Ser = It T Seqn.
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Now, thisis easy to do asif thereis no Sg4; € [Se]” such that f 5 Senlns v Se41]
is finite then, in fact, f;' | S¢ =* f,;' | S¢. Finally choose T, € [So]” such that
To C* S¢ for every & < A. This finishes the construction.

Let {T, : @ < K} be a sequence satisfying the above requirements (1)—(3). As
Kk < t, thereisa T € [w]® such that T C* T, for every a < . Set

B=HU{TIU{f'[T):a<k, fIT]¢ 7()and

(V<o) £TI# 51T}

Then & is an almost disjoint family (by (2) and (3)), & N[X]” # 0 (by (1)) and
& respects F , as for every element B = f![T] € &\ & and every f € & either
S Ble F () or fT[B] = (fao f)'[T]=" f5'[T] € & forsome f< k. -

LemMa 3.11. Given &, F such that & respects F, || < aand X € F* ()
there is a one-to-one f € w® such that rng(f) C X and / respects F U {f}.

PROOF. Let f be a bijection between w and a subset of X almost disjoint from
every element of &. 4

Having these two lemmata at hand, the proof of Theorem 3.9 is now straightfor-
ward.

PROOF OF THEOREM 3.9. Assume t = ¢. We construct the K-uniform MAD fam-
ily &/ as the union of an increasing chain of almost disjoint families &,,a < «¢.
In order to do this, enumerate [w]® as {X, : @ < ¢}. By recursion construct an
increasing sequence &,,a < ¢ of almost disjoint families and an increasing se-
quence %,, a < ¢ of subsets of w® consisting of one-to-one functions so that & is
a partition of w into infinitely many infinite pieces and %y = () and for every a < ¢:

(1) |#al, |Fal <,

(2) A, respects Fo,

(3) thereisan 4 € %, such that |4 N X,| = Xo and

(4) if X, € F*(Hay1) then thereis an f € F,, 1 such that rng(f) C X,.

To do this is easy; For o limit let &, = [ J{¥p : f < a} and F, = U{Fs: < a}.
If @ = B + 1 consider %3 and ¥ and use Lemma 3.10 to extend &p to A, so that
S, respects Fp and |4 N Xp| = Vg for some A € #,. Then, if X5 € F+(o,) use
Lemma 3.11 to extend Fy to &, so that &, respects %, and there is an f € F,
such that rng(f) C Xp. Note that the construction never stops as ¢ = tis a regular
cardinal. This finishes the construction.

To see that & = (J{&p : f < ¢} is, indeed, K-uniform note that & respects
F =U{Fps : B < ¢} let X be an element of #* (/). Then X = X,, for some a < ¢
and X € #1(,). By (4) thereis an f € Foy1 C F with rng(f) C X. This in
turn means that f witnesses that & >x & | X. -

The question of existence of Katétov maximal MAD families remains, however,
wide open.
QUESTIONS 3.12. Here is a list of questions we could not answer:

(1) Is there (consistently) a K-maximal MAD family?
(2) Is there is a K-uniform MAD family in ZFC?
(3) Can the hypothesis in Proposition 3.4 be weakened to <>(b)?
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§4. Some remarks on indestructibility of MAD families. As mentioned in the in-
troduction one of the main motives for these considerations stems from the question
of J. Roitman as to whether the existence of a dominating family of size X; implies
the existence of a MAD family of size X;. The answer hinges on the question whether
(which) MAD families can be destroyed by an w®-bounding forcing. A significant
step in this direction has been made by C. Laflamme in [19] where he showed that
Any Fy-filter can be diagonalized by an w®-bounding forcing. A naive approach to
the problem would be to try to show that, under CH, any MAD family is below an
F,-ideal in the Katétov order. This (unfortunately but hardly surprisingly) is not
the case as essentially also pointed out in [19].

From the results of the preceding section one may get the (false) impression that
tightness or (almost equivalently) Cohen-indestructibility is the strongest possible
notion of maximality of AD families. Here we would like to rectify this by looking
at the notion of P-indestructibility, where P is an w®-bounding forcing and, in
particular, at the case of Solovay’s random forcing. Recall that B(w) denotes the
measure algebra Borel (2°)/Null. The following observation is due to J. Brendle:

ProPOSITION 4.1 ((CH)). There is a Cohen-indestructible MAD family which is
B(w)-destructible.

PrOOF. Denote by # the ideal {4 C w x w : (In € w)(3Fm € w)(Vk > n)
H{l € w: (k1) € A} < m}. 7 is B(w)-destructible. It follows from the fact that
B(w) adds an eventually different real (see [2]). So to prove the proposition it is
sufficient to show that

CramM ((CH)). There is a tight MAD family &/ C £.

In order to construct & enumerate as {(I* : n € @) : w < a < w;} all sequences
of infinite subsets of w X w. Construct & C # as {4, : @ < w } recursively so that
(1) 4; ={i} xwfori € w and
(2) Va > w)(3I € #({d4p : p < a})) such that I$ C I for some m € w or
INIF#Qforalln € w.

It is easy to see that if the construction can be carried out then & is indeed tight.
Suppose that 45 have been constructed for all f < a. Enumerate {4z : f < a} as
{B. :n € w}. If there is an n € w such that | J,_, Bx N L # @ for all (but finitely
many) m € o or |J, <n Bx 2 I for some m € w let 4, be an arbitrary element of
# almost disjoint from Ag, f < a. If not, choose recursively (ni,m;) € ® X w so
that

(a) (ni,m;) € I® \ Uk<; B and
(b) niq >n; foralli € w.

Then set 4, = {(n;.m;) 1 i € w}. —|

On the other hand, (assuming CH) no proper w®-bounding forcing of size ¢ is
strong enough to destroy all Cohen-destructible MAD families:

PropOSITION 4.2 ((CH)). Let P be a proper w®-bounding forcing of size c¢. There
is a P-indestructible Cohen-destructible MAD family.

ProoF. The idea is to construct a P-indestructible MAD family & C nwd. Enu-
merate Q as {x, : n € w}. Using properness of P (and CH) construct a sequence
{(Pa>7a) : @ < w1}, where p, € P, 7, is a P-name, such that if 7 is a P-name and
p Ik “7 € [Q]®” then there is an a € w, such that p, < p and p, IF “7 = 7,”.
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Having fixed such a sequence an almost disjoint family & = {4, : a < w1} C nwd
will be constructed recursively. To begin, let {4; : i € w} be a partition of Q into
infinite nowhere dense sets. At stage o consider the pair (pa, o). If po I “(VB < o)
|TaNAg| < w” then let A, be any infinite nowhere dense subset of Q almost disjoint
from all dg, B < a. If po IF “(VB < @) |ta N Ap| < @” let {B,, : m € w} be an
enumeration of pairwise disjoint finite modifications of {4 : f < a}. Let p be a
P-name such that p, IF “p € w® and (Vm € @) B, N1a C {x;:i < p(m)}”. AsP
is w®-bounding, there is an f € w® and a g < p, such thatg I- “p < 7. Put

C= U(Bmﬁ{xi:i<f(m)}).
meEw
Note that C is almost disjoint from all 4g, f < cvand g IF “7, € C”.

Find a nowhere dense set D and a r = r, < ¢ such that r IF “|D N 74| = Ro”.
The fact that such a D exists can be distilled from a result of Keremedis (see
Theorem 2.4.5 of [2]) where it is in effect shown that if a forcing PP adds a set almost
disjoint from all ground model nowhere dense sets then P adds a Cohen real. As
our P is w®”-bounding it does not add a Cohen real, hence D and r as required do
exist.

Set A, = C N D. Now, r IF “|4, N 7| = No”, s0 in particular 4, is infinite, A,
is almost disjoint from all Ag f < a as C is and A, is nowhere dense as D is. This
concludes the construction.

The almost disjoint family & = {4, : @ < w;} is Cohen destructible as & C
nwd by Theorem 1.3 so the only thing left to verify is that & is P-indestructible.
Assume not, that is there is a P-name 7 for an infinite subset of Q and a condition
p € Psuch that p IF “(Va < ) [t N 4a| < Ro”. Thereis a f such that pg < p and
pp Ik “7 = 74”. Then, however, rg I- “|t N Ap| = Ro” which is a contradiction.

So, in particular Random-indestructibility and Cohen-indestructibility are in-
comparable notions. As a corollary we obtain that there is a Cohen-destructible
MAD family of size X; in the random real model as well as the side-by-side Sacks
model. It should be also noted here that the fact that the existence of an unbounded
family of size X, does not imply the existence of a MAD family of size X was proved
by Shelah [25] and reproved by a different method by J. Brendle in [6].

§5. Two other orderings on MAD families. One could argue that while the
Katétov order is a useful tool for studying the ideals generated by MAD fami-
lies it identifies MAD families with very different combinatorial (or topological)
properties (see e.g., Corollary 5.8). In this section we introduce two different order-
ings which seem to be more adequate in this respect.

Recall the definition of the Mrowka-Isbell space associated with an almost dis-
joint family &.

DEFINITION 5.1. Let & be an AD family. Define a space ¥(#) as follows: The
underlying set is w U &, all elements of w are isolated and basic neighborhoods of
A € o/ are of the form {4} U (4 \ F) for some finite set F.

It follows immediately from the definition that W(&) is a first countable, locally
compact space. If & is infinite then (&) is not countably compact and (&) is
pseudocompact if and only if & is a MAD family.
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DEFINITION 5.2. Let &/, % be MAD families. We say that:
& <} & if there is a function f : @ —  such that for every 4 € & there is a
B € & such that f~![4] C* B,
o <4p B if there is a continuous surjection F : W(&/) — V().

It is easily seen that if &/ < & then both & <} % and & <, . Itis just as
easy to see that £y (B, : A € &) <} B4 forevery A € &. So the equivalents of
Propositions of Section 2 hold with <k replaced with <%. In particular:

THEOREM 5.3. (1) Every collection of at most c-many MAD families has a com-

mon <k-lower bound,

(2) There is a strictly decreasing chain of length ¢* below every MAD family &/ in
the <%-order,

(3) There is a collection of c-many pairwise <y-incomparable MAD families <%-
below every MAD family &/ .

In [24], S. Mrowka constructed a W-space with a unique compactification. His
result and, more importantly, the technique of “gluing” he used is the basic tool
for constructions in this section. We will say that a MAD family & is Mrowka
if |f¥() \ ¥()| = 1, in other words, if ¥(&/) has a unique compactification,
and we will say that & is connected if ¥ () \ W(&) is connected. Similarly,
we will say that & is zero-dimensional if ¥ (/) \ (&) is zero-dimensional (if
and only if W(&) is strongly zero-dimensional). Obviously, a MAD family & is
Mréwka if and only if it is both zero-dimensional and connected. Teresawa and
Solomon independently (see [29, 27]), were the first to observe that ¥(&/) needs not
be strongly zero-dimensional.

LEMMA 5.4. A MAD family & is connected if and only if ¢ has no non-trivial
partitioners.

Proor. If &/ has a non-trivial partitioner then it has a compactification with
exactly two points. Hence f¥(&) \ W(&) is disconnected. On the other hand, if
B¥ () \ ¥() has a non-trivial clopen subset C, then there are open (in ¥(%/))
sets U, V' which separate C and (B¥(#) \ ¥(&)) \ C. Note that U U V' cover
PP () \W(¥)so, F = N(BY()\ UUV)is finite. It is now easy to see that
P = (U Nnw)\ UF is a non-trivial partitioner of &. -

Let us recall Bashkirov’s results (see [3]) on zero-dimensionality of MAD families.
Obviously if a space X is not strongly zero-dimensional then X maps continuously
onto the unit interval.

LemMA 5.5 ([3]). Let & be a MAD family. Then the following are equivalent:

(1) (&) maps continuously onto [0, 1],
(2) There is a surjective map | : o — QN [0, 1] such that f[A] has a unique limit
point for every A € ¥ .

Proor. For the forward implication note thatif F : ¥(&/) — [0, 1]is a continuous
surjection then F[w]is a countable dense set. Without loss of generality 0,1 € F[w].
There is then a homeomorphism 4 : [0, 1] — [0, 1] which sends F[w] onto QN[0, 1].
hoF | w is the desired f.

The reverse is even easier as f extends uniquely to a continuous surjection (it is
onto as % is maximal). 4

An easy consequence is:
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COROLLARY 5.6. Every Sacks-indestructible MAD family is zero-dimensional.

PrOOF. Assume that & is not zero-dimensional and let f : @ — QN [0, 1] be
such that f[A4] has a unique limit point forevery 4 € &/. Letg : QN[0,1] - wbea
partial inverse of f. Then f ~![4] has countable closure (in R) forevery 4 € 7 (&),
hence by Theorem 2.4.5 of [7] & is Sacks-destructible. -

LemMa 5.7. If & is a MAD family such that | | P| = c for every non-trivial
partitioner P then there is a connected MAD family & such that 7 () = 7 (B). In
fact, there is a continuous closed two-to-one surjective map F : V(&) — ¥(5B).

ProoF. Enumerate all non-trivial partitioners of & as { P, : @ < k} forsome x <
¢. Recursively choose (distinct) 4,, By, € & so that 4, C* P, and B, N P, =* 0.
There is no problem choosing as there are always c-many possibilities and less than
c-many already chosen. Then let

B={AaUB, :a<k}UA\{4a,By:a<k}.
% has obviously no non-trivial partitioners, so by Lemma 5.4 it is connected. -

COROLLARY 5.8 ((a = ¢)). For every MAD family & there is a connected MAD
family & such that # (&) = #(#) and ¥ < &. Topologically, for every MAD
family & there is a connected MAD family % such that ¥ (&) maps continuously
onto ¥(&£) by a closed two-to-one map.

Proor. It suffices to note that,asa =¢, |& | P| = cforevery P € S (¥). H
COROLLARY 5.9 ([24]). There exists a connected MAD family (in ZFC).

PrOOF. Let, for f € 2%, Ay = {f [ n:n € w}. Extend {4y : f € 2} toa
MAD family & (of subsets of 2<*) and list & \ {4, : f € 2“}as {B; : [ € X}
for some X C2¢. For f € 2\ X let By = 0. Let® = {4, U B, : f € 2°}. All
that needs to be checked is that & has the property required in Lemma 5.4. To that
end let P be a non-trivial partitioner of €. Then

K4 rP={AfUBf2AfUBf c* P} ={AfUBf :Af c* P}= {AfUBf !fEF}

where F = {f € 2 : (3n € w)(Vm > n) f | n € P}. F is an F,-subset of 2.
So it is either countable or of size ¢. However, it can not be countable as P is a
non-trivial partitioner and & | P is a MAD family. -

THEOREM 5.10 ([3]). For every MAD family &/ there is a zero-dimensional MAD
Sfamily B and a continuous closed two-to-onemap F : ¥(¥) — VP (B).

PROOF. As all spaces of size less than ¢ are strongly zero-dimensional we can
assume that || = c¢. Enumerate Q® as {f, : a < x} and recursively (for a < ¢)
choose A4,, B, distinct elements of % so that if f satisfies (2) of Lemma 5.5 then
the limit points of f[A4,] and f[B,] are distinct. Then let

B ={AaUBy:a<c}UX\{A4a,By:a<k}.
% is obviously a MAD family and it is zero-dimensional by Lemma 5.5. -

CoRrOLLARY 5.11. (1) [24] There is a Mrowka family (in ZFC).
(2) [4] (a = ) For every MAD family & there is a Mrowka MAD family & and
a continuous closed finite-to-one surjection F : ¥(&) — ¥(2Z).
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ProOF. (1) follows directly from Corollary 5.9 and Theorem 5.10 and (2) just
as easily from Corollary 5.8 and Theorem 5.10. Note that a continuous strongly
zero-dimensional image of W(&) for &/ connected has to be Mréwka. -

PROPOSITION 5.12. For every connected MAD family &/ there is a MAD family %
suchthat ¥ < B, 7 () = F(B)and B £} .

ProOF. Let & be a connected MAD family of size c. We will construct & so that
& refines &, in fact, every element of & will be a union of at most two elements of
.

Note thatif f isa witnessto B <} & then f witnesses that &/ <% . Enumerate
all witnesses to & <* & as {f, : a < s}, where K < ¢. For each o < « and
A,B € ¥ let

@o(4) =B iff f;'[4]C" B.
Note that @, is finite-to-one for every a < k, as f,[A] has to be a partitioner of &/
for every A € & and as & has no non-trivial partitioners.

Now, we are ready for the construction of &. Recursively choose B,,, C,, distinct
elements of & so that ®,(B,) # ®,(C,) for every o < k. Then set

B={BsUCq:a<klUA\{Bs,Co:a<k}

Obviously, # (&) = 7 (&), so all that remains to be seen is that & £} & . Assume
not, i.e,, there is an f € w® such that for every B € % there is an A € & such that
f~Y[B] C* 4. Then f = f, for some a < x, however,

ST [Ba U Cal N ®a(By) #* 0, yet f ™' [Ba U Ca] L @a(Ba)
which is a contradiction. -
Now we have all the tools necessary to show that <gx and <} are indeed different
(pre)orderings. Assuming a = ¢, one can actually show much more. In particular,

an analogue for the quest for a maximal MAD family turns out to be futile for the
<k-order.

COROLLARY 5.13. (1) There are & and % MAD such that .# (/) = .# (%) and
B Ly A.
(2) (a = c¢) For every MAD family & there is a MAD family & such that &/ < %
(ip &<yB)butF £y «.
ProoF. (1) follows directly from Corollary 5.9 and Proposition 5.12 and (2) from
Corollary 5.8 and Proposition 5.12. -
So, in particular, there are neither maximal nor minimal MAD families in the
<k-order.
Now we turn our attention shortly to the <,,,-order. First we give its combina-
torial reformulation.
PROPOSITION 5.14. B <;,, & if and only if there is a surjection f : w — w such
that f ~'(n) € Part(&) foralln € w and f ~'[A] € Part(B) forall A € « .
Proor. For the forward implication fix a continuous surjection F : ¥(%#) —
Y (). Note that theset P = {n € w : F(n) € &/} is a partitioner of & and F[P]
is finite. Note also that F[w \ P] = w. Set

_JFm) ifnew\P
f(")_{o ifneP
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For the reverse implication note that f extends uniquely to a continuous surjection
F : ¥(%) — ¥(&) defined by putting

F(4) = n if{k € A: f(k) # n} is finite,
~ | B if f[A]is infinite and f[A4] C* B. o

This easy observation has the following curious consequence:
PROPOSITION 5.15. If & is connected then ¥ <,,, B implies that B <g ¥ .

PROOF. Let f : @ — w be a surjection such that f~!(n) € Part(%/) for all
n € w and f~![B] € Part(/) for all B € &. Note that as all partitioners are
trivial £ ~1[B] € .#(&) for all B € &, which in turn shows that f witnesses that
B <g HA. -

Note that Theorem 5.10 and Corollary 5.11 imply that: For every MAD family
there is a zero-dimensional MAD family & such that 4 <,,, % and (assuminga = c),
Sfor every MAD family & there is a Mréowka MAD family & such that & <,,, %.
For more on continuous functions between W-spaces consult [12] and [21].

REFERENCES

[1] B. BALCAR and P. SIMON, Disjoint refinement, Handbook of Boolean Algebras (J. D. Monk and
R. Bonnet, editors), vol. 2, 1989, pp. 333-386.

[2] T. BarTOszYNsk1 and H. JUDAH, Set Theory, On the structure of the real line, A. K. Peters, 1995.

[3] A. 1. BASHKIROV, On continuous maps of Isbell spaces and strong O-dimensionality, Bulletin of the
Polish Academy of Sciences, vol. 27 (1979), pp. 605-611.

[4] , On Stone-Cech compactifications of Isbell spaces, Bulletin of the Polish Academy of Sci-
ences, vol. 27 (1979). pp. 613-619.

—+ J. E. BAUMGARTNER and M. WEESE, Partition algebras for almost disjoint families, Transactions of
the American Mathematical Society, vol. 274 (1982), pp. 619-630.

[6] J. BRENDLE, Mob and mad families, Archive for Mathematical Logic, vol. 37 (1998), pp. 183-197.

[7] J. BRENDLE and S. YATABE, Forcing indestructibility of MAD families, 2003, preprint.

[8] A. Dow and R. FRANKIEWICZ, Remarks on partitioner algebras, Proceedings of the American
Mathematical Society, vol. 114 (1991), no. 4, pp. 1067-1070.

[9] A. Dow and P. NYIKOS, Representing free Boolean algebra, Fundamenta Mathematicae, vol. 141
(1992), pp. 21-30.

[10] P. ERDOs and S. SHELAH. Separability properties of almost-disjoint families of sets, Israel Journal
of Mathematics, vol. 12 (1972), pp. 207-214.

[11] 1. FARAH, Analytic quotients: Theory of liftings for quotients over analytic ideals on the integers,
Memoirs of the American Mathematical Society, vol. 148 (2000), no. 702.

[12] F. GARCIA FERREIRA, Continuous functions between Isbell- Mrowka spaces, Commentationes Math-
ematicae Universitatis Carolinae, vol. 39 (1998), no. 1, pp. 185-195.

[13] M. HRUBAK, Selectivity of almost disjoint families, Acta Universitatis Carolinae, vol. 41 (2000),
no. 2, pp. 13-21.

[14] . Another {-like principle. Fund ta Mathematicae, vol. 167 (2001), pp. 277-289.

[15] . MAD families and the rationals, Commentationes Mathematicae Universitatis Carolinae,
vol. 42 (2001), pp. 245-352.

[16] M. KATETOV, Products of filters, Commentationes Mathematicae Universitatis Carolinae, vol. 9
(1968), pp. 173-189.

[17] K. KUNEN, Set Theory. An Introduction to Independence Proofs, North Holland, Amsterdam,
1980.

[18] M. KURILIC, Cohen-stable families of subsets of integers, this JOURNAL, vol. 66 (2001), no. 1,
pp. 257-270.




ORDERING MAD FAMILIES A LA KATETOV 1353

=+| G. LAFLAMME, Zapping small filters, Proceedings of the American Mathematical Society, vol. 114
(1992), pp. 535-544.

[20] V. 1. MALYKHIN, Topological properties of Cohen generic extensions, Transactions of the Moscow
Mathematical Society, vol. 52 (1990), pp. 1-32.

[21] V. I. MALYKHIN and A. TAMARIZ-MASCARUA, Extensions of functions in Mrowka-Isbell spaces,
Topology and its Applications, vol. 81 (1997), pp. 85-102.

=+ A.R. D. MaTHIAS, Happy families, Annals of Mathematical Logic, vol. 12 (1977), pp. 59-111.

[23]1J. T. MooRrg, M. HruU3AK, and M. DZAMONIA, Parametrized { principles, Transactions of the
American Mathematical Society, to appear.

[24] S. MROWKA, Some set-theoretic constructions in topology, Fundamenta Mathematicae, vol. 94
(1977), pp. 83-92.

[25] S. SHELAH, On Cardinal invariants of the continuum, Contemporary Mathematics, vol. 31 (1984),
pp. 183-207, Also in Axiomatic Set Theory (J. Baumgartner, D. Martin and S. Shelah, editors).

[26] W. S1ERPINSKI, Cardinal and ordinal numbers, Panstwowe wydawn naukowe, Warsaw, 1958.

[27] R.S. SOLOMON, 4 scattered space that is not zero-dimensional, Bulletin of the London Mathematical
Society, vol. 8 (1976), pp. 239-240.

[28] J. STEPRANS, Combinatorial consequences of adding Cohen reals, Set theory of the reals, Proceed-
ings of the Israel Conference on Mathematics (H. Judah, editor), vol. 6, 1993, pp. 583-617.

[29] J. TERESAWA, Spaces N U R need not be strongly O-dimensional, Bulletin of the Polish Academy of
Sciences, vol. 25 (1977), pp. 279-281.

[30] E. vaN DOUWEN, The integers and topology, Handbook of Set Theoretic Topology (K. Kunen and
J. Vaughan, editors), North-Holland, Amsterdam, 1984, pp. 111-167.

INSTITUTO DE MATEMATICAS
UNAM
A. P 61-3, XANGARI
C. P. 58089, MORELIA, MICH., MEXICO
E-mail: michael@matmor.unam.mx
E-mail: sgarcia@matmor.unam.mx



	Article Contents
	p. 1337
	p. 1338
	p. 1339
	p. 1340
	p. 1341
	p. 1342
	p. 1343
	p. 1344
	p. 1345
	p. 1346
	p. 1347
	p. 1348
	p. 1349
	p. 1350
	p. 1351
	p. 1352
	p. 1353

	Issue Table of Contents
	Journal of Symbolic Logic, Vol. 68, No. 4 (Dec., 2003), pp. 1065-1416+i-vi
	Volume Information [pp. i-vi]
	Front Matter
	Universally Baire Sets and Definable Well-Orderings of the Reals [pp. 1065-1081]
	A Theory for Log-Space and NLIN versus co-NLIN [pp. 1082-1090]
	The Axiom of Choice and Combinatory Logic [pp. 1091-1108]
	Ranked Partial Structures [pp. 1109-1144]
	Simple Stable Homogeneous Groups [pp. 1145-1162]
	Cardinal-Preserving Extensions [pp. 1163-1170]
	Partitioning Large Vector Spaces [pp. 1171-1180]
	An Application of Kochen's Theorem [pp. 1181-1188]
	Recovering Ordered Structures from Quotients of Their Automorphism Groups [pp. 1189-1198]
	A Computably Categorical Structure Whose Expansion by a Constant Has Infinite Computable Dimension [pp. 1199-1241]
	Parallel Strategies [pp. 1242-1250]
	Finite-to-One Maps [pp. 1251-1253]
	Additivity Properties of Topological Diagonalizations [pp. 1254-1260]
	Distinguishing Types of Gaps in P(ω)/fin [pp. 1261-1276]
	A Short Proof of the Strong Normalization of Classical Natural Deduction with Disjunction [pp. 1277-1288]
	Proof Normalization Modulo [pp. 1289-1316]
	Categoricity and U-Rank in Excellent Classes [pp. 1317-1336]
	Ordering Mad Families a La Katětov [pp. 1337-1353]
	The Cofinality of the Infinite Symmetric Group and Groupwise Density [pp. 1354-1361]
	The Kolmogorov-Loveland Stochastic Sequences Are Not Closed under Selecting Subsequences [pp. 1362-1376]
	On Countable Simple Unidimensional Theories [pp. 1377-1384]
	Ample Dividing [pp. 1385-1402]
	A Proof-Theoretic Study of the Correspondence of Classical Logic and Modal Logic [pp. 1403-1414]
	Corrigendum to "Strong Normalization Proof with CPS-Translation for Second Order Classical Natural Deduction" [pp. 1415-1416]
	Back Matter [pp. ii-ii]



