Selections on Ψ-spaces

M. Hrušák, P.J. Szeptycki, A.H. Tomita

Abstract

We show that if \mathcal{A} is an uncountable AD (almost disjoint) family of subsets of ω then the space $\Psi(\mathcal{A})$ does not admit a continuous selection; moreover, if \mathcal{A} is maximal then $\Psi(\mathcal{A})$ does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.

Keywords: MAD family, Vietoris topology, continuous selection
Classification: 54C65, 54B20, 03E05

The program of studying continuous selections on topological spaces was initiated by E. Michael in an influential series of papers in the 1950's (see [Mi]). Since then a number of both positive and negative results have been established and research in the area is blooming.

The concept of a Ψ-space, introduced independently by S. Mrówka and J. Isbell, provides an important class of examples in the theory of Fréchet spaces. Let us mention Mrówka's construction of a Ψ-space with a unique compactification ($[\mathrm{Mr}]$) and P. Simon's example ([Si]) of two compact Fréchet spaces whose product is not Fréchet. The set-theoretic notation used here is standard and follows [Ku].

Recall that an infinite family $\mathcal{A} \subseteq[\omega]^{\omega}$ is almost disjoint $(A D)$ if every two distinct elements of \mathcal{A} have only finite intersection. A family \mathcal{A} is $M A D$ if it is almost disjoint and maximal with this property. Given an almost disjoint family $\mathcal{A}, \mathcal{I}(\mathcal{A})$ denotes the ideal of those subsets of ω which can be almost covered by finitely many elements of $\mathcal{A}, \mathcal{I}^{*}(\mathcal{A})$ denotes the dual filter and $\mathcal{I}^{+}(\mathcal{A})=$ $\mathcal{P}(\omega) \backslash \mathcal{I}(\mathcal{A})$ the coideal of large sets.
Definition 0.1. Let \mathcal{A} be an AD family. Define the space $\Psi(\mathcal{A})$ as follows: The underlying set is $\omega \cup \mathcal{A}$, all elements of ω are isolated and basic neighborhoods of $A \in \mathcal{A}$ are of the form $\{A\} \cup(A \backslash F)$ for some finite set F.

It follows immediately from the definition that $\Psi(\mathcal{A})$ is a first countable, locally compact space. It is hardly surprising that there is a close relationship between topological properties of the space $\Psi(\mathcal{A})$ and combinatorial properties of the almost disjoint family \mathcal{A}. If \mathcal{A} is infinite then $\Psi(\mathcal{A})$ is not countably compact and

[^0]$\Psi(\mathcal{A})$ is pseudocompact (contains no infinite discrete family of open subsets) if and only if \mathcal{A} is a MAD family.

The hyperspace of a space X (denoted by $\exp (X)$) consists of all closed nonempty subsets of X. There are many ways to define a topology on $\exp (X)$ the standard (and most useful) being the Vietoris topology generated by sets of the form:

$$
\left\langle U_{0}, \ldots, U_{n-1}\right\rangle=\left\{F \in \exp (X): F \subseteq \bigcup_{i<n} U_{i} \text { and } F \cap U_{i} \neq \emptyset \text { for every } i<n\right\}
$$

where U_{0}, \ldots, U_{n-1} are nonempty open subsets of X. Let $[X]^{2}$ denote the set of (unordered) pairs of elements of X. If X is a T_{1}-space then we consider $[X]^{2}$ as a subspace of $\exp (X)$ equipped with the Vietoris topology.
Definition 0.2. A space X admits a selection if there exists a continuous ϕ : $\exp (X) \longrightarrow X$ such that $\phi(F) \in F$ for every $F \in \exp (X)$. Similarly, X has a weak selection if there exists a continuous $\phi:[X]^{2} \longrightarrow X$ such that $\phi(\{x, y\}) \in\{x, y\}$ for every pair $\{x, y\}$ of elements of X.

Note that the existence of a weak selection is equivalent to the existence of a continuous function $\varphi: X^{2} \longrightarrow X$ such that $\varphi((x, y))=\varphi((y, x)) \in\{x, y\}$, where X^{2} is given the product topology.
T. Nogura has asked the natural question whether $\Psi(\mathcal{A})$ admits a selection for some (any) MAD family \mathcal{A}. We answer this question in the negative by proving:
Theorem 0.3. The space $\Psi(\mathcal{A})$ does not have a weak selection for any maximal almost disjoint family \mathcal{A}.

It should be mentioned here that this theorem was proved independently by G. Artico, U. Marconi, J. Pelant, L. Rotter and M. Tkachenko in [A\&al]. In fact, it follows directly from a much stronger theorem proved in [A\&al].

Here we also show that
Theorem 0.4. If X is regular, separable and contains an uncountable closed discrete set, then X does not admit a continuous selection.
from which it directly follows that $\Psi(\mathcal{A})$ does not admit a continuous selection for any uncountable almost disjoint family \mathcal{A}.

We offer our thanks to Salvador Garcia-Ferreira for communicating the question to us and to Jan Pelant for detecting and filling a gap in a preliminary draft of this note.

I. Proofs of the main theorems

Our proof of Theorem 0.3 is based on a Ramsey theoretic property of the coideal $\mathcal{I}^{+}(\mathcal{A})$. Recall that if $f:[\omega]^{2} \longrightarrow 2$ is a coloring of pairs into two colors,
then a set $A \subseteq \omega$ is f-homogeneous if $\left|f\left([A]^{2}\right)\right|=1$, in other words, if all pairs of elements of A are colored by the same color. The famous Ramsey Theorem states that for any coloring f there is an infinite f-homogeneous set. The following crucial lemma is well known in set-theoretic circles (see also [BDS]):
Lemma I. 1 ([Ma]). For every MAD family \mathcal{A} and every decreasing sequence $\left\{X_{i}: i \in \omega\right\} \subseteq \mathcal{I}^{+}(\mathcal{A})$ there is an $X \in \mathcal{I}^{+}(\mathcal{A})$ such that $X \backslash i \subseteq \bigcap_{j<i} X_{j}$ for every $i \in X$.

Lemma I.2. Let \mathcal{A} be a $M A D$ family and let $f:[\omega]^{2} \longrightarrow 2$. Then there exists an f-homogeneous set B such that $B \in \mathcal{I}^{+}(\mathcal{A})$.

Proof: Extend the filter $\mathcal{I}^{*}(\mathcal{A})=\langle\{\omega \backslash A: A \in \mathcal{A}\}\rangle$ to an ultrafilter \mathcal{U}. We will construct an f-homogeneous set using this ultrafilter. Let $g: \omega \longrightarrow 2$ be such that $X_{n}=\{m \in \omega: f(\{n, m\})=g(n)\} \in \mathcal{U}$. Note that $X_{n} \in \mathcal{I}^{+}(\mathcal{A})$. By previous lemma, there is an $X \in \mathcal{I}^{+}(\mathcal{A})$ such that $X \backslash n \subseteq \bigcap_{i<n} X_{i}$, for every $n \in X$. Let $B(i)=\{n \in X: g(n)=i\}$ for $i \in 2$. As $X=B(0) \cup B(1)$, there exists $i \in 2$ such that $B(i) \in \mathcal{I}^{+}(\mathcal{A})$. The set $B=B(i)$ is the desired f-homogeneous subset.

Proof of Theorem 0.3: The proof proceeds by contradiction. Assume that ϕ : $[\Psi(\mathcal{A})]^{2} \longrightarrow \Psi(\mathcal{A})$ is a weak selection. Consider $\phi \upharpoonright[\omega]^{2}$ and define $f:[\omega]^{2} \longrightarrow 2$ by:

$$
f(\{n, m\})=0 \text { if and only if } \phi(\{n, m\})=\min \{n, m\} .
$$

By Lemma I. 2 there is a $B \in \mathcal{I}^{+}(\mathcal{A})$ which is f-homogeneous. Let A_{0}, A_{1} be distinct elements of \mathcal{A} such that $B \cap A_{i}$ is infinite for both $i<2$. We will show that ϕ is not continuous at $\left\{A_{0}, A_{1}\right\}$. Assume that $\phi\left(\left\{A_{0}, A_{1}\right\}\right)=A_{0}$. It suffices to show that the image of any open neighborhood of $\left\{A_{0}, A_{1}\right\}$ is not contained in $\left\{A_{0}\right\} \cup A_{0}$, a neighborhood of A_{0}.

Suppose U is a neighborhood of $\left\{A_{0}, A_{1}\right\}$. Then U contains $V=\left\langle\left\{A_{0}\right\} \cup\left(A_{0} \backslash\right.\right.$ $\left.k),\left\{A_{1}\right\} \cup\left(A_{1} \backslash k\right)\right\rangle$ for some $k \in \omega$.

Suppose that $f\left([B]^{2}\right)=0$. Let $n>k$ be such that $n \in\left(A_{1} \cap B\right) \backslash A_{0}$ and $m>n$ such that $m \in\left(A_{0} \cap B\right) \backslash A_{1}$. Then $\{n, m\} \in V$ and $\phi(\{n, m\})=n \notin A_{0}$. On the other hand, if $f\left([B]^{2}\right)=1$, let $n>k$ be such that $n \in\left(A_{0} \cap B\right) \backslash A_{1}$ and $m>n$ such that $m \in\left(A_{1} \cap B\right) \backslash A_{0}$. Then $\{n, m\} \in V$ and $\phi(\{n, m\})=m \notin A_{0}$.

Therefore, $\phi^{\prime \prime} U \nsubseteq\left\{A_{0}\right\} \cup A_{0}$.
Proof of Theorem 0.4: Let X be a separable regular space and let A be an uncountable closed discrete subset of X, without loss of generality without isolated points. By way of contradiction assume that $\phi: \exp (X) \rightarrow X$ is a continuous selection. Define an enumeration

$$
A=\left\{a_{\alpha}: \alpha<\lambda\right\}
$$

by letting $a_{0}=\phi(A)$ and $a_{\alpha}=\phi\left(A_{\alpha}\right)$ where

$$
A_{\alpha}=A \backslash\left\{a_{\beta}: \beta<\alpha\right\}
$$

Fix open neighborhoods O_{α} of each a_{α} such that

$$
\overline{O_{\alpha}} \cap A=\left\{a_{\alpha}\right\} .
$$

By continuity, for each $\alpha, \phi^{-1}\left(O_{\alpha}\right)$ is an open set in $\exp (X)$ containing A_{α}. So, by definition of the Vietoris topology on $\exp (X)$, there are $m_{\alpha} \in \omega$ and open sets $U_{\alpha}^{n}, n<m_{\alpha}$, such that

$$
A_{\alpha} \in\left\langle U_{\alpha}^{n}: n<m_{\alpha}\right\rangle \subseteq \phi^{-1}\left(O_{\alpha}\right)
$$

Therefore, $A_{\alpha} \subseteq \bigcup_{n<m_{\alpha}} U_{\alpha}^{n}$ and $A_{\alpha} \cap U_{\alpha}^{n} \neq \emptyset$ for each $n<m_{\alpha}$.
By shrinking the U_{α}^{n} 's we may assume that
(a) $U_{\alpha}^{0} \subseteq O_{\alpha}$ for each $\alpha<\lambda$.
(b) $\overline{O_{\alpha}} \cap \bigcup_{0<n<m_{\alpha}} U_{\alpha}^{n}=\emptyset$.

Therefore, as $\left\langle U_{\alpha}^{n}: n<m_{\alpha}\right\rangle \subseteq \phi^{-1}\left(O_{\alpha}\right)$, we have
(c) For each $F \in[X]^{<\aleph_{0}}$ if $F \in\left\langle U_{\alpha}^{n}: n<m_{\alpha}\right\rangle$ then $\phi(F) \in F \cap U_{\alpha}^{0}$.

Using that X is separable, fix D to be a countable dense subset of X.
Claim. There is $F \in[D]^{<\aleph_{0}}$, and $\alpha<\beta<\lambda$ such that
(d) $F \cap U_{\alpha}^{n} \neq \emptyset$ for each $n<m_{\alpha}$;
(e) $F \cap U_{\beta}^{n} \neq \emptyset$ for each $n<m_{\beta}$;
(f) $F \subseteq\left(\bigcup_{n<m_{\alpha}} U_{\alpha}^{n}\right) \cap\left(\bigcup_{n<m_{\beta}} U_{\beta}^{n}\right)$;
(g) $\left(F \cap U_{\alpha}^{0}\right) \cap\left(F \cap U_{\beta}^{0}\right)=\emptyset$.

First note that the Claim leads to a contradiction. Namely, by (b), $\phi(F) \in$ $U_{\alpha}^{0} \cap U_{\beta}^{0}$ but by (g) this is impossible. Thus, proving the Claim will complete the proof of the theorem.

To this end let, for each α,

$$
V_{\alpha}=\bigcup_{0<n<m_{\alpha}} U_{\alpha}^{n}
$$

Then $U_{\alpha}^{0} \cap V_{\alpha}=\emptyset$ by (a) and (b). As D is countable, there is an uncountable set $J \subset \omega_{1}$ and a finite set $G \subset D$ such that

$$
\forall \alpha \in J \forall n, 0<n<m_{\alpha}: G \cap U_{\alpha}^{n} \neq \emptyset \& G \subset V_{\alpha}
$$

Let $\left\{\delta_{\alpha}: \alpha \in \omega_{1}\right\}$ be an increasing enumeration of J.
For each $\alpha \in J$ let

$$
D_{\alpha+1}=D \cap U_{\delta_{\alpha+1}}^{0} \cap V_{\delta_{\alpha}}
$$

Note that each $D_{\alpha+1}$ is a nonempty subset of $D\left(a_{\delta_{\alpha+1}} \in U_{\delta_{\alpha+1}}^{0} \cap V_{\delta_{\alpha}}\right.$ and $a_{\delta_{\alpha+1}}$ is not isolated). Therefore $\left\{D_{\alpha+1}: \alpha<\omega_{1}\right\}$ is not pairwise disjoint. So we may fix successor ordinals $\alpha<\beta<\omega_{1}$ such that

$$
U_{\delta_{\alpha}}^{0} \cap V_{\delta_{\beta}} \neq \emptyset
$$

Let $k_{0} \in D \cap U_{\delta_{\alpha}}^{0} \cap V_{\delta_{\beta}}$. As $D \cap U_{\delta_{\beta}}^{0} \cap V_{\delta_{\alpha}} \neq \emptyset$ (recall that $a_{\delta_{\beta}} \in V_{\delta_{\alpha}}$ as $V_{\delta_{\alpha}}$ is an open set containing $A_{\delta_{\alpha}+1}$ and $a_{\delta_{\beta}} \in A_{\delta_{\alpha}+1}$), we may choose $k_{1} \in D \cap U_{\delta_{\beta}}^{0} \cap V_{\delta_{\alpha}}$. Now define $F=G \cup\left\{k_{0}, k_{1}\right\}$.

Notice that $F \cap U_{\delta_{\alpha}}^{0}=\left\{k_{0}\right\}$ and $F \cap U_{\delta_{\beta}}^{0}=\left\{k_{1}\right\}$, thus F satisfies (g). It is clear that F satisfies the other conclusions of the Claim.

II. Concluding remarks

The proof of Theorem 0.3 is similar to the proof of the following proposition due to E. van Douwen ([vD1]).

Proposition II. 1 (van Douwen). If X is a countably compact, not sequentially compact space, then X does not have a weak selection. In particular, it does not admit a continuous selection.

A natural question arises as to for which almost disjoint families $\Psi(\mathcal{A})$ admits a weak selection. Obviously, if \mathcal{A} is a countable almost disjoint family, then $\Psi(\mathcal{A})$ is homeomorphic to an ordinal hence admits a continuous selection. For the proof of Theorem 0.3 we, in fact, only needed that \mathcal{A} is somewhere $M A D$, i.e. there is an $X \in \mathcal{I}^{+}(\mathcal{A})$ such that for every infinite $Y \subseteq X$ there is an $A \in \mathcal{A}$ intersecting Y in an infinite set. If an AD family \mathcal{A} is not somewhere MAD we say that \mathcal{A} is nowhere $M A D$. Note that the one-point compactification of the locally compact space $\Psi(\mathcal{A})$ is Fréchet if and only if \mathcal{A} is nowhere MAD (see e.g. [vD2]).

We will show that for some, but not all, uncountable nowhere MAD families $\mathcal{A}, \Psi(\mathcal{A})$ does admit a weak selection.

Example II.2. There is an uncountable almost disjoint family \mathcal{A} such that $\Psi(\mathcal{A})$ admits a weak selection.

Proof: Identify ω with $2^{<\omega}$ - the set of all finite sequences of 0 's and 1 's. For every $f \in 2^{\omega}$ let $A_{f}=\{f \upharpoonright n: n \in \omega\}$. Let $\mathcal{A}=\left\{A_{f}: f \in 2^{\omega}\right\}$. For $s, t \in 2^{<\omega} \cup 2^{\omega}$ let $\Delta_{s, t}=\min \{n \in \omega: s(n) \neq t(n)\}$. Of course, $\Delta_{s, t}$ is not well-defined if $s \subseteq t$
or $t \subseteq s$. Define an ordering on $\Psi(\mathcal{A})$ by:

$$
x \leq y \text { if }\left\{\begin{array}{l}
x, y \in 2^{<\omega} \text { and }\left(x \subseteq y \text { or } x\left(\Delta_{x, y}\right)<y\left(\Delta_{x, y}\right)\right) \\
x \in 2^{<\omega}, y=A_{f} \text { and }\left(x \subseteq f \text { or } x\left(\Delta_{x, f}\right)<f\left(\Delta_{x, f}\right)\right), \\
x=A_{f}, y \in 2^{<\omega} \text { and } f\left(\Delta_{y, f}\right)<y\left(\Delta_{y, f}\right) \\
x=A_{f}, y=A_{g} \text { and }\left(f=g \text { or } f\left(\Delta_{f, g}\right)<g\left(\Delta_{f, g}\right)\right)
\end{array}\right.
$$

The ordering \leq is a linear order on $\Psi(\mathcal{A})$ and the usual topology on $\Psi(\mathcal{A})$ is finer than the interval topology induced by \leq. It is easy to verify that putting

$$
\phi(\{x, y\})=x \text { if and only if } x \leq y
$$

defines a continuous weak selection for $\Psi(\mathcal{A})$.
On the other hand:
Proposition II.3. There are nowhere MAD families whose Ψ-spaces do not have a weak selection.

Proof: Let \mathcal{A} be the almost disjoint family \mathcal{A} from Example II.2. Note that \mathcal{A} is a nowhere MAD family of size c.

Enumerate all $f:[\omega]^{2} \longrightarrow 2$ as $\left\{f_{\alpha}: \alpha<\mathfrak{c}\right\}$ and enumerate \mathcal{A} as $\left\{A_{\alpha}: \alpha \in \mathfrak{c}\right\}$.
For every $\alpha<\mathfrak{c}$, find an infinite f_{α}-homogeneous subset C_{α} of A_{α} and split it into two infinite pieces C_{α}^{0} and C_{α}^{1}. Let $A_{\alpha}^{0}=C_{\alpha}^{0}$ and $A_{\alpha}^{1}=A_{\alpha} \backslash C_{\alpha}^{0}$. Let $\mathcal{B}=\left\{A_{\alpha}^{0}, A_{\alpha}^{1}: \alpha<\mathfrak{c}\right\}$. Now, the proof of Theorem 0.3 goes through, so $\Psi(\mathcal{B})$ does not have a weak selection, and $\mathcal{I}(\mathcal{B})=\mathcal{I}(\mathcal{A})$, so \mathcal{B} is nowhere MAD.

Corollary II.4. There is a separable scattered compact Fréchet space without a weak selection.

Proof: Let X be a one-point compactification of $\Psi(\mathcal{A})$ without a weak selection, where \mathcal{A} is nowhere MAD. Then X is compact, Fréchet and scattered, and does not have a weak selection since $\Psi(\mathcal{A})$ does not admit one.

As pointed out by the referee this follows directly from a result of J. van Mill and E. Wattel (see [vMW]) where they proved that a compact space admits a weak selection if and only if it is orderable.

References

[A\&al] G. Artico, U. Marconi, J. Pelant, L. Rotter and M. Tkachenko, Selections and suborderability, preprint.
[BDS] Balcar B., Dočkálková J., Simon P., Almost disjoint families of countable sets, Colloq. Math. Soc. János Bolyai, Finite and Infinite Sets 37 (1984), 59-88.
[vD1] van Douwen E.K., Mappings from hyperspaces and convergent sequences, Topology Appl. 34 (1990), 35-45.
[vD2] van Douwen E., The integers and topology, in K. Kunen, J. Vaughn, editors, Handbook of Set Theoretic Topology (1984), North-Holland, 111-167.
[Ku] Kunen K., Set Theory: An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
[Ma] Mathias A.R.D., Happy families, Ann. Math. Logic 12 (1977), 59-111.
[vMW] van Mill J., Wattel E., Selections and orderability, Proc. Amer. Math. Soc. 83 (1981), 601-605.
[Mi] Michael E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152182.
[Mr] Mrówka S., Some set-theoretic constructions in topology, Fund. Math. 94 (1977), 8392.
[Si] Simon P., A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolinae 21 (1980), 749-753.

Department of Math. and Computer Science, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
E-mail: michael@cs.vu.nl

Department of Mathematics, Atkinson, York University, 4700 Keele Street, M3J 1P3 Toronto, Canada
E-mail: szeptyck@yorku.ca
Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, CEP 05389-970, São Paulo, Brasil
E-mail: tomita@ime.usp.br

[^0]: The first author's research was partially supported by a grant GAČR 201/00/1466.

