
SELECTIVITY OF ALMOST DISJOINT FAMILIES

Michael Hrušák

Abstract. Selective properties of almost disjoint families of subsets of a countable
set are studied here. In particular, sufficient conditions for the existence of a +-
Ramsey MAD family are presented. As an application it is shown that the existence

of a +-Ramsey MAD family implies that two similar versions of a topological game
on Fréchet spaces, due to G. Gruenhage, are not equivalent in terms of existence of

winning strategies.

I. Introduction

In the current note we investigate selective properties of MAD (maximal almost
disjoint) families of subsets of ω. Recall that an infinite family A ⊆ [ω]ω is almost
disjoint (AD) if every two distinct elements of A have only finite intersection. A
family A is MAD if it is almost disjoint and maximal with this property. Given an
almost disjoint family A, I(A) denotes the ideal of those subsets of ω which can be
almost covered by finitely many elements of A, I∗(A) denotes the dual filter and
I+(A) = P(ω) \ I(A) the coideal of large sets. We denote by I++(A) = {A ⊆ ω :
|{B ∈ A : |B ∩ A| = ℵ0}| ≥ ℵ0} the family of “really” large sets. Note that for a
MAD family I+(A) = I++(A).

The notion of selectivity (Ramseyness) of filters, ideals and coideals has been
studied extensively in recent decades. The notation connected with this concept is,
however, quite far from being unified. Some authors talk about selective or Ramsey
filters, ideals or coideals, some about Happy families, some about ideals having weak
or strong tree properties. We choose to refer to selective coideals as Happy families
as it allows for the following pun: If we rid P(ω) of a MAD family and its relatives
(I(A)) the rest (I+(A)) is Happy. This fact has been known for quite some time
(see [BDS] or [Ma]). We will be studying the following strengthening of the notion
of selectivity (see [Gr] or [La]), the name +-Ramsey is probably due to C. Laflamme.

Definition I.1. A filter F (an ideal I) is +-Ramsey if for every F+-branching
tree (for every I+-branching tree) T ⊆ ω<ω there is a branch b ∈ [T ] such that
rng(b) ∈ F+ (rng(b) ∈ I+).

In particular, an almost disjoint family A will be called +-Ramsey if the ideal
I(A) is +-Ramsey.

Key words and phrases: almost disjoint family, selective ideal, cardinal invariants, topological
games, Fréchet spaces.
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Recall that a T ⊆ ω<ω is a tree if for every s ∈ T and every t ⊆ s, s ∈ T . If S is a
family of subsets of ω, a tree T is S-branching if succT (t) = {n ∈ ω : tan ∈ T} ∈ S
for every t ∈ T . Finally, [T ] = {f ∈ ωω : ∀n ∈ ω f � n ∈ T}.

In the second section we introduce related cardinal invariants of the continuum
and show that (at least consistently) +-Ramsey MAD families exist. It should be
mentioned here that not all MAD families are +-Ramsey. In the third section we
present an application to the theory of Fréchet spaces. In particular, it will be
shown there that two similar versions of a game due to G. Gruenhage (see [G]) are
not equivalent in terms of the existence of winning strategies.

II. Combinatorics and cardinal invariants

Define the following cardinal invariant
ra = min{|A| : A is an AD family which is not +-Ramsey}

and recall the definitions of the following standard cardinal invariants of the con-
tinuum:

cov(M) = min{|B| : B is a family of closed nowhere dense subsets of ωω such
that ωω =

⋃
B},

d = min{|D| : D is a dominating subset of ωω},
t = min{|T | : T is a maximal decreasing chain (tower) of infinite subsets of ω},
a = min{|A| : A is a maximal AD family },
aT = min{|C| : C is a maximal AD family of finitely branching subtrees of ω<ω}.

It is well-known an not hard to prove that t ≤ cov(M) ≤ d ≤ aT . To see this note
that aT is the minimal cardinality of a partition of the irrationals ωω into compact
sets and d is the minimal size of a family of compact sets covering ωω.

Proposition II.1. cov(M) is equal to the minimal character of a filter on ω which
is not +-Ramsey.

Proof. Let F be a filter on ω and B be its base of size less then cov(M). Let T be
an F+-branching tree. For B ∈ B put AB = {b ∈ [T ] : rng(b) ∩B =∗ ∅}. Each AB

is a meager subset of [T ]. As |B| < cov(M) there is a b ∈ [T ] r
⋃
{AB : B ∈ B}.

Hence rng(b) ∈ F+, so F is +-Ramsey.
For the other direction let C be a family of closed nowhere dense subsets of ωω

covering the whole of ωω. Our aim is to define a filter on ω which is not +-Ramsey.
The working copy of ω will be ω<ω. For C ∈ C let FC = {σ ∈ ω<ω : ∀f ∈ C σ 6⊆
f}. The FC ’s obviously form a base for a filter F on ω<ω. To see that it is not
+-Ramsey define a tree T ⊆ (ω<ω)<ω as follows

(1) ∅ ∈ T ,
(2) ∀s ∈ T ∀σ ∈ ω<ω saσ ∈ Tn+1 if and only if s(n− 1) ⊂ σ,

Now, T is an F+-branching tree and ∀b ∈ [T ] ∃f ∈ ωω such that rng(b) ⊆ P (f). In
particular, there is a C ∈ C such that rng(b)∩FC =∗ ∅ so rng(b) is not in F+. �

It should be noted here that +-Ramsey filters of uncountable character exist in
ZFC. Recall that a pair of sequences {Aα : α < ω1}, {Bα : α < ω1} of subsets of ω
forms a Hausdorff gap provided that

(1) Bα ⊆∗ Bβ ⊆∗ Aβ ⊆∗ Aα for all α < β < ω1 and
(2) there is no C ⊆ ω such that Bα ⊆∗ C ⊆∗ Aα for every α.
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A Hausdorff gap is tight if for every C ∈ [ω]ω such that C ⊆∗ Aα for every α < ω1,
there is a β < ω1 such that C ∩Bβ 6=∗ ∅.

It is a remarkable result of Hausdorff that the existence of a Hausdorff gap can
be proved in ZFC alone. The existence of a tight Hausdorff gap is known to be
equivalent to t = ω1. Consider the following filter associated with a gap:

F = 〈{Aα : α < ω1} ∪ {ω r C : ∀α < ω1 C ∩Aα 6=∗ ∅ & C ∩Bα =∗ ∅}〉.

The following is essentially due to P. Nyikos (see [Ny]).

Proposition II.2. F is a +-Ramsey filter.

Proof. It is very easy to see that F is really a filter and that it is uncountably
generated. Note that

F+ = {A ⊆ ω : ∃α < ω1 |A ∩Bα| = ℵ0}

(if A ∩Bα =∗ ∅ for every α then ω \A is in the filter, so A is not in F+). In order
to prove that F is +-Ramsey let T be an F+-tree. Fix for every t ∈ T a βt < ω1

such that |succT (t) ∩ Bβt
| = ℵ0. Let β = sup{βt : t ∈ T}. Then Bβ intersects

succT (t) in an infinite set for every t ∈ T and constructing a branch b ∈ [T ] with
rng(b) ∈ F+ is now easy. �

Corollary II.3. There is a +-Ramsey filter of character ℵ1.

Proof. If cov(M) > ω1 then by Proposition II.1 any filter of character ℵ1 would
do. If cov(M) = ω1 then t = ω1 and by the aforementioned result there is a tight
gap and the filter F constructed from the gap has character ℵ1. �

Proposition II.4. cov(M) ≤ ra ≤ aT .

Proof. cov(M) ≤ ra follows immediately from the definition and Proposition II.1.
Let A = {Tα : α < aT } be a maximal almost disjoint family of finitely branching

subtrees of ω<ω. Define an infinitely branching tree T ⊆ (ω<ω)<ω by ∅ ∈ T and
succT (t) = {s ∈ ω<ω : t ⊆ s and |s| = |t| + 1}. Then T is an I+(A)-tree as
Tα ∩ succT (t) is finite for every t ∈ T and α < aT . However, every branch of T is
a subset of Tα for some α by maximality of A so A is not +-Ramsey. �

Corollary II.5. There is a MAD family A which is not +-Ramsey.

Proof. All we have to do is extend the almost disjoint family given in the construc-
tion to a maximal one preserving the fact that the branching sets of T will be in
I+(A), which is very easy to do. �

More interesting problem, of course, is to construct a +-Ramsey MAD family.
Unfortunately, we do not know whether such a family can be constructed in ZFC
alone, but the following propositions shows that in many models there is one.
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Proposition II.6. (a < ra or ra = c) There is a +-Ramsey MAD family.

Proof. If a < ra than any MAD family of size a is +-Ramsey by Proposition II.1
and Proposition II.5.

So, assume that a = ra = c. Enumerate all subtrees of ω<ω as {Tα : 0 < α < c}
and let [ω]ω = {Xα : 0 < α < c}. By induction on α < c construct an increasing
sequence of almost disjoint families {Aα : α < c} so that

(1) A0 is an infinite partition of ω into infinite sets,
(2) Aα \

⋃
{Aβ : β < α} is countable

(3) |Xα ∩A| = ℵ0 for some A ∈ Aα and
(4) if Tα is an I+(

⋃
{Aβ : β < α})-tree then there is a b ∈ [Tα] such that

rng(b) ∈ I++(Aα).
If we can fulfill the promises (1)-(4) it is obvious that A =

⋃
{Aα : α < c} is a

MAD family. To see that it is +-Ramsey note that if A ∈ I++(Aα) for some α < c
then A ∈ I++(A).

So assume that the Aβ has been defined for every β < α. If Tα is not an
I+(

⋃
{Aβ : β < α})-tree, or if Tα is an I+(

⋃
{Aβ : β < α})-tree and there is a

b ∈ [Tα] such that rng(b) ∈ I++(
⋃
{Aβ : β < α}), extend

⋃
{Aβ : β < α} to Aα so

that (3) is satisfied.
If Tα is an I+(

⋃
{Aβ : β < α})-tree and no branch of Tα is in I++(

⋃
{Aβ :

β < α}), let b ∈ [Tα] be such that rng(b) contains an infinite subset A of ω
almost disjoint from every element of

⋃
{Aβ : β < α}. Split A into infinitely

many infinite sets {Ai : i ∈ ω} and if Xα is almost disjoint from every element of⋃
{Aβ : β < α} ∪ {Ai : i ∈ ω} let Aα =

⋃
{Aβ : β < α} ∪ {Ai : i ∈ ω} ∪ {Xα}

otherwise let Aα =
⋃
{Aβ : β < α}∪{Ai : i ∈ ω}. It is obvious that this works. �

III. Games people play

Let X be a regular topological space, x ∈ X. We will consider the following two
variations on a game introduced by G. Gruenhage in [G].

Two players, the hero and the villain take turns, at the n-th inning the hero
playing Un a neighborhood of x and the villain responding with xn ∈ Un \ {x}.
After ω-many steps we declare a winner. The hero wins a round of the game if the
set {xn : n ∈ ω} of points chosen by the villain contains x in the closure. Otherwise
the villain wins. This game will be denoted by G(x, X).

A slight modification of the above game is the game Ḡ(x,X) in which the hero
and the villain play as before but the hero wins if the sequence 〈xn〉 converges to
x, the villain winning otherwise.

As usual a strategy for the hero is a map ρ : X<ω −→ Ux (where Ux denotes the
set of open neighborhoods of x) and a strategy for the villain is a map σ : U<ω

x −→ X
such that ∀n ∈ ω ∀s ∈ (Ux)n σ(s) ∈ s(n − 1). A strategy ρ for the hero is a
winning strategy if for every f ∈ Xω such that f(n) ∈ ρ(f � n) for every n ∈ ω

x ∈ rng(f) (in case of G(x,X)) or f(n) → x (in case of Ḡ(x,X)). Similarly, σ is a
winning strategy for the villain if for every f ∈ (Ux)ω x 6∈ {σ(f � n) : n ∈ ω} (resp.
σ(f � n) 6→ x).

As the topology outside the given point x is completely irrelevant to the outcome
of the game we may assume that every point other than x is isolated. The most
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interesting cases seem to occur when X is a countable space, so we restrict ourselves
to spaces of the form ω ∪ {F}, where F is a free filter on ω and is treated both as
the distinguished point x and the filter of its neighborhoods. In this case we refer
to the games as G(F) and Ḡ(F).

The following lemma can be found in [La]. We include the proof for the sake of
completeness.

Lemma III.1. (Laflamme) Let F be a filter on ω. Then the following are equiva-
lent:

(1) The hero has a winning strategy in the game G(F)
(2) The hero has a winning strategy in the game Ḡ(F)
(3) χ(x) = ω.

and the villain has a winning strategy in the game G(F) if and only if the filter F
is not +-Ramsey.

Proof. If the character of F is countable then hero has a obvious winning strategy
in Ḡ(F). He simply plays all sets from a countable local base.

A winning strategy for the hero in Ḡ(F) is obviously also a winning strategy in
G(F) and if σ : ω<ω −→ F is a winning strategy for the hero in the game G(F)
then it is easy to see that σ[ω<ω] is a base of F .

If there is a tree witnessing that F is not +-Ramsey the villain can just play
along the tree. That is his winning strategy.

If σ : F<ω −→ ω is a winning strategy for the villain, construct a tree T by
induction by ∅ ∈ T and if s ∈ T then there is a sequence s̄ ∈ F<ω such that
dom(s) = dom(s̄) and for every n in dom(s) s(n) = σ(s̄ � n). Then say ∈ T if
and only if there is a U ∈ F such that σ(s̄aU) = y. Obviously T is an F+-tree
as σ was a strategy and it does not contain a branch in F+ since σ was a winning
strategy. �

We further restrict our attention to Fréchet spaces. A space X is Fréchet if
whenever x ∈ Ā, there is a sequence 〈xn〉 ⊆ A such that xn −→ x. Consequently,
a filter F is Fréchet if the space ω ∪ {F} is Fréchet, in other words, if for every
A ∈ F+ there is a B ⊆ A such that for every F ∈ F : B⊆∗F . Let CF = {B :
∀F ∈ F B ⊆∗ F} denote the set of all convergent sequences in ω ∪ {F}. We show
that (perhaps not in a very natural way) the notion of +-Ramseyness fits into the
hierarchy of αi-spaces introduced by Archangelskii in [Ar].

Definition III.2. Let X be a regular space and let x ∈ X. The point x is said
to be a +-Ramsey point if the villain does not have a winning strategy in the game
G(x,X).

Definition III.3. (Archangelskii) Let X be a Fréchet space, x ∈ X. We say that
x is an αi-point (for i ∈ {1, 2, 3, 4} if for every countable collection of sequences
converging to X there is a sequence converging to x intersecting:
α1 : each of them in a cofinite set
α2 : each of them in an infinite set
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α3 : infinitely many of them in an infinite set
α4 : infinitely many of them.

The αi-properties have proved to be very useful in determining when the product
of Fréchet spaces is Fréchet. They have been studied by many mathematicians, most
notably by Archangelskii, Nogura, Nyikos, Dow and Steprāns, and Simon. It is well
known and not hard to see that:

Proposition III.4. Let X be Fréchet space and let x ∈ X. Then x is an α2-point
if and only if the villain does not have a winning strategy in the game Ḡ(x, X).

It follows from the definition that if x is an αi-point it is also αj-point for every
j ≥ i. It is not hard to see that the filter F used in the proposition II.2 is a Fréchet
uncountably generated α2-filter. It is even consistent that F is α1. In fact, it has
been shown by A. Dow and J. Steprāns that there are no honest (ZFC) examples
of countable α1-spaces which are not first countable, nor there are ZFC examples
of α2-spaces which are not α1.

Proposition III.5. Let X be a Fréchet space and let x ∈ X. Then:

(1) If x is a +-Ramsey point then x is a α4-point.
(2) If x is an α2-point then x is a +-Ramsey point.

Proof. For (1) suppose that the villain does not have a winning strategy in the
game G(x, X). That means that for every U+

x -tree there is a branch in U+
x . Given

a set of sequences {σn : n ∈ ω} construct a tree branching everywhere on a level
n to rng(σn). By the assumption there is a branch in U+

x and since the space is
Fréchet there is a subsequence of this branch converging to x.

For (2) consider the contrapositive and recall that a winning strategy for the
villain in game the G(x, X) is also winning in the game Ḡ(x, X). �

We conclude by showing that the property of being +-Ramsey is incomparable
with α3, assuming the existence of a +-Ramsey MAD family. In particular, this
shows that under the assumption there is a countable Fréchet space X and a point
x ∈ X such that the villain has a winning strategy in the game Ḡ(x,X) but not in
the game G(x, X).

First recall the standard construction of an AD family of size c. Consider the
Cantor tree 2<ω and let A = {Af : f ∈ 2ω}, where Af = {f � n : n ∈ ω}.
We will show that I∗(A) is Fréchet, α3 and not +-Ramsey. For s ∈ 2<ω let
u(s) = {t ∈ 2<ω : s ⊆ t}.

Proposition III.6. The filter I∗(A) is a Fréchet α3-point which is not +-Ramsey.

Proof. To see that I∗(A) is Fréchet note that every set in F+ contains an infinite
antichain and that every infinite antichain is in CF .

In order to show that I∗(A) is α3 let {An : n ∈ ω} be a set of infinite antichains
in 2<ω. The aim is to find an antichain A in 2<ω having infinite intersection with
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infinitely many An’s. To do this find a b ∈ 2ω such that |u(b � n) ∩ Ai| = ℵ0 for
every n ∈ ω and infinitely many i ∈ ω. Then either

∃I ∈ [ω]ω ∀n ∈ ω ∀i ∈ I |u(b � n) ∩Ai| = ℵ0

or
∃I ∈ [ω]ω ∀i ∈ I ∃n ∈ ω |u(b � n) ∩Ai| < ℵ0.

In the first case fix a bijection φ : ω −→ ω×I and by induction following the branch
b choose sn ∈ 2<ω so that for every n, sn 6⊂ b, sn ∩ b ( sn+1 ∩ b and if φ(n) = (i, j)
then sn ∈ Aj . Then A = {sn : n ∈ ω} is as required.

In the latter case go along the branch and choose whole infinite blocks of Ai’s in
a similar manner.

The filter I∗(A) is not +-Ramsey as the villain has an obvious winning strategy
in G(F) by playing an increasing chain. �

Next it will be shown how to use +-Ramsey MAD families to construct Fréchet
filters which are +-Ramsey and not α3. The construction depends heavily on ideas
of P. Simon. Recall that an AD family A is nowhere MAD if for every X ∈ I+(A)
there is a Y ⊂ X almost disjoint from every A ∈ A.

Theorem III.7. (Simon) For every MAD family A there is an X ∈ I+(A) such
that A � X = {A ∩ X : A ∈ A and |A ∩ X| = ℵ0} can be partitioned into two
nowhere MAD subfamilies A1 and A2.

Proposition III.8. Let A be a +-Ramsey MAD family. Then there is a +-Ramsey
Fréchet filter F which is not α3.

Proof. Let A be a +-Ramsey MAD family. Find X, and A1 and A2 as in the above
theorem. Note that A � X is a +-Ramsey MAD family (of subsets of X) and let
F = I∗(A1) ⊆ P(X).

Then F+ = {B ⊆ X : ∃A ∈ I(A2) |B ∩A| = ℵ0} and CF = I(A2) ∩ [X]ω. So
F is Fréchet and not α3. To see that F is +-Ramsey let T be an F+-tree. WLOG
succT (t) ∩ succT (s) = ∅ for every t 6= s ∈ T . Hence for every n ∈

⋃
t∈T succT (t)

there is a unique sn ∈ T such that n ∈ succT (t). Define a new tree T ′ by letting
∅ ∈ T ′, succT ′(∅) =

⋃
t∈T succT (t), and for t ∈ T ′ succT ′(t) =

⋃
{succT (s) :

st(|t|−1) ⊆ s}. Note that succT ′(t) ⊆ succT ′(s) whenever s ⊆ t.
If T ′ is not an I+(A � X)- tree then there is a t ∈ T such that

⋃
t⊆s succT (s) ∈

I(A2). Then rng(b) ∈ I(A2) for every b ∈ [T ] such that t ⊆ b and it is easy to find
one with infinite range.

If T ′ is a I+(A � X)-tree then let b ∈ [T ′] be such that rng(b) ∈ I+(A � X) and
note that there is a branch b′ ∈ [T ] such that rng(b) ⊆ rng(b′). This finishes the
proof. �
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Open problems. The following is a list of questions the author does not know the
answer to:

(1) Is there a +-Ramsey MAD family in ZFC?
(2) Is there (in ZFC) a Fréchet filter on ω which is +-Ramsey and not α2? In

other words, is there a Fréchet filter on ω such that the villain has a winning
strategy in the game Ḡ(F) but not in the game G(F)?

(3) Is cov(M) < ra consistent?
(4) Is d < aT consistent?

Acknowledgment. The author would like to thank to Jianping Zhu for many
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