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Abstract. We introduce some guessing principles sufficient for the ex-
istence of non-special coherent Aronszajn trees and show how they relate
to some of the standard principles in Set Theory (like MAω1 and ♦).

A variant of a question of I. Juhasz asks whether the principle ♣ implies
the existence of a non-special Aronszajn tree. Motivated by this question, we
investigate when a coherent Aronszajn tree associated with the ρ1 function
of Todorčević (see [5]) is not special. To do this, we define principles F0 and
F1, and their corresponding weak versions wF0 and wF1. The principles
F0 and F1 are strong enough to construct non-special coherent Aronszajn
trees. All these principles are weak in the sense that are all consistent with
MAσ−centered and some of them are strong in the sense that they do not
follow from ♦.

Our notation is mostly standard (see Kunen[4] and Jech[2] ). We will use
Λ to denote the collection of all countable limit ordinals. A v B will be
used to denote that A is an initial segment of B, whenever A,B are subsets
of ω1. If A is a subset of ω1, we will use ot(A) to denote the order-type of
A. The symbol _ denotes concatenation.

By a C-sequence (see [5]) we mean a sequence 〈Cα : α ∈ ω1〉 with the
following properties: Cα+1 = {α}, Cα is a cofinal subset of α of order-type
ω, whenever α is a countable limit ordinal > 0.

Definition 1. The principles F1, wF1,F0, wF0 are defined as follows:

F0 There is a C-sequence 〈Sα : α ∈ ω1〉 such that for every ϕ : Λ → ω
there are α, β ∈ Λ such that ϕ(α) = ϕ(β), Sβ ∩ α v Sα and α ∈ Sβ.

wF0 There is a C-sequence 〈Sα : α ∈ ω1〉 such that for every ϕ : Λ → ω
there are α, β ∈ Λ such that ϕ(α) = ϕ(β) and α ∈ Sβ.

F1 There is a C-sequence 〈Sα : α ∈ ω1〉 such that for every stationary
set S there are α, β ∈ S such that Sβ ∩ α v Sα and α ∈ Sβ.

wF1 There is a C-sequence 〈Sα : α ∈ ω1〉 such that for every stationary
set S there are α, β ∈ S such that α ∈ Sβ.
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Following [5], to every C-sequence 〈Cα : α < ω1〉 we associate two func-
tions ρ0, ρ1. The function ρ0 = ρ0(Cα : α < ω1) : [ω1]2 → ω<ω is defined
recursively as follows

ρ0(α, β) =

{
〈|Cβ ∩ α)|〉 _ ρ0(α, min(Cβ \ α)) if α < β

∅ if α = β
.

Even though, ρ0 is an important function on its own, we use it only as an
auxiliar tool in some proofs of the theorems in this article.

The function ρ1 = ρ1(Cα : α < ω1) : [ω1]2 → ω is defined recursively by

ρ1(α, β) =

{
max{|Cβ ∩ α|, ρ1(α, min(Cβ \ α))} if α < β

0 if α = β
,

Thus, ρ1(α, β) is simply the maximal integer appearing in the sequence
ρ0(α, β). We will focus on the function ρ1. Basic properties of the ρ1 function
are mentioned in the next lemma.

Lemma 2 (Todorčević [5]). For all α < β < ω1 and n < ω,
(a) {ξ 6 α : ρ1(ξ, α) 6 n} is finite,
(b) {ξ 6 α : ρ1(ξ, α) 6= ρ1(ξ, β)} is finite.

Let ρ1α : α → ω be defined by ρ1α(ξ) = ρ1(ξ, α) for every ξ < α. Then it
follows from the previous lemma that the sequence

ρ1α : α → ω (α < ω1)

of finite-to-one functions is coherent in the sense that ρ1α =∗ ρ1β ¹ α when-
ever α 6 β. (Here =∗ means the fact that the functions agree on all but
finitely many arguments). The corresponding tree

T (ρ1) = {ρ1β ¹ α : α < β 6 ω1}
is a coherent Aronszajn tree.

The following two theorems show the relevance of the guessing principles
F0 and F1.

Theorem 3. F0 implies that there is a non special coherent Aronszajn tree.

Proof. Let T = T (ρ1) be the coherent Aronszajn tree constructed from a
F0-sequence 〈Sα : α < ω1〉 i.e. ρ1 = ρ1(Sα : α < ω1). To prove the theorem
it is enough to check that A = {ρ1α : α ∈ Λ} ⊆ T is not a countable union
of antichains. Given any partion ϕ : A → ω of A, we define a new function
ϕ̂ : Λ → ω by ϕ̂(α) = ϕ(ρ1α) for every α ∈ Λ. It follows, using F0, that
there are α, β ∈ Λ such that ϕ̂(α) = ϕ̂(β), Sβ ∩ α v Sα and α ∈ Sβ. Then
let us check that ρ1α ⊆ ρ1β. Let {ξk : k 6 n} be the increasing enumeration
of Sβ ∩ α. The proof proceeds by cases:

Case 1. If ξ ∈ [0, ξ0] then ρ0(ξ, β) = 〈0〉 _ ρ0(ξ, ξ0). Since Sβ ∩ α v Sα

the same holds for ρ0(ξ, α). Then by the definition of ρ1 we have that
ρ1(ξ, α) = ρ1(ξ, β).
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Case 2. If ξ ∈ (ξk, ξk+1] then ρ0(ξ, β) = 〈|Sβ ∩ ξ|〉 _ ρ0(ξ, min (Sβ \ ξ)).
However, Sβ ∩ α v Sα implies that ξk+1 = min (Sβ \ ξ) = min (Sα \ ξ) and
|Sβ ∩ ξ| = |Sα ∩ ξ| so ρ1(ξ, β) = ρ1(ξ, α).

Case 3.
If ξ ∈ (ξn, α) then ρ0(ξ, β) = 〈n〉 _ ρ0(ξ, α), and ρ0(ξ, α) = 〈|Sα ∩ ξ|〉 _

ρ0(ξ, min (Sα \ ξ)). However, since Sβ ∩ α v Sα, n 6 |Sα ∩ ξ| so we have
that ρ1(ξ, α) = ρ1(ξ, β).

Then ∀ξ < α (ρ1α(ξ) = ρ1β(ξ)). So we are done. ¤
Theorem 4. F1 implies that there is a coherent Aronszajn tree T which
does not have stationary antichains.

Proof. Let T = T (ρ1) be the coherent Aronszajn tree constructed from a
F1-sequence 〈Sα : α < ω1〉 i.e. ρ1 = ρ1(Sα : α < ω1). The result follows
using the same argument as in the previous theorem and the following claim.

Claim. T has a stationary antichain if and only if {ρ1α : α ∈ ω1} has one.
Let us prove the claim. Let A = {tα : α ∈ S} be a stationary antichain

of T , we may assume that |Tα ∩ A| = 1 and ht(tα) = α for every α ∈ S.
Note that S is a stationary set. For each tα ∈ A there is an Fα ∈ [α]<ω such
that tα(ξ) = ρ1α(ξ) for every ξ ∈ (α \Fα). By the pressing down lemma, we
can find a stationary set S′ ⊆ S such that Fα = F for every α ∈ S′. Using
again the pressing down lemma we can find a stationary set Ŝ ⊆ S′ such that
tα ¹ F = tβ ¹ F for every α < β ∈ Ŝ. Then ∀α < β ∈ Ŝ there is a ξ ∈ (α\F )
such that tα(ξ) 6= tβ(ξ). This implies that tα(ξ) = ρ1α(ξ) 6= ρ1β(ξ) = tβ(ξ).
So {ρ1α : α ∈ Ŝ} is a stationary antichain in {ρ1α : α < ω1}, and this finishes
the proof. ¤

As we have seen, the principles F0 and F1 are guessing principles which
imply the existence of non-special Aronszajn trees. In order to have a bet-
ter understanding of these principles we will compare them with some well
known principles in set theory, summed up in the following diagram.

♦+

↓
F1 → wF1 8 ♦
↓ ↓

F0 → wF0 → ¬MAω1

↓ ↑
There is a NSAT ♦

Here NSTA is an abbreviation for non-special Aronszajn tree. As the fol-
lowing theorem shows all the principles are relatively consistent with ZFC,
even with MAσ−centered.

Theorem 5. If V [G] is the generic extension obtained by adding a single
Cohen real then V [G] |= F1.
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Proof. From now on assume that c : ω → [ω]<ω is a Cohen-generic real and
eα : α → ω (α < ω1) is a coherent sequence of finite-to-one functions. Let
〈Cα : α < ω1〉 be an arbitrary C-sequence. We change this C-sequence to a
C-sequence 〈Sα : α < ω1〉 in the following way:

Sα = {ξ < α : Cα(n) 6 ξ < Cα(n + 1), eα(ξ) ∈ c(n)},
where Cα(0) = 0 and Cα(n) is the nth element of Cα for 0 < n < ω. Note
that since e′αs are finite-to-one ot(Sα) = ω. Let us check that 〈Sα : α < ω1〉
is a F1-sequence. Assume that A is a stationary subset of ω1. Note that
if A is stationary in V [G], then there is a stationary set A0 ∈ V such that
A0 ⊂ A. So without loss of generality we may assume that A is in the
ground model. Fix p ∈ Fn(ω, [ω]<ω) with dom(p) ∈ ω, use the pressing
down lemma to find a stationary set S ⊂ A such that Sα agree with Sβ in
all the places decided by p for every α, β ∈ S. Pick an accumulation point
β of S, now choose an α ∈ S in such a way that Cβ(n0) < α 6 Cβ(n0 + 1)
where dom(p) < n0. Let q be defined by

q(n) =





p(n) if n ∈ dom(p)
∅ if dom(p) < n < n0

{eβ(α)} if n = n0

then q ° “Ṡβ ∩ α v Ṡα & α ∈ Ṡβ”. ¤
Corollary 6. F1 (and hence also F0, wF0 and wF1) are relatively con-
sistent with MAσ−centered.

Proof. Let V be a model of MA and P a forcing which adds a single Cohen
real. By the previous theorem if G is a P-generic filter then M [G] |= F1 and
by the theorem of Roitman (see [1]) the extension M [G] |= MAσ−centered.

¤
The fact that after adding a single Cohen real there is a coherent Aron-

szajn tree without stationary antichains was first observed by B. König in
[3]. The following propositions give us some relationship beetwen ♦ and ♦+

with our guessing principles.

Proposition 7. ♦ implies wF0.

Proof. Let 〈ϕα : α ∈ ω1〉 be a ♦-sequence which guesses elements of ωω
1

(i.e. ϕα ∈ ωα). Define Xα = {n : ϕ−1
α (n) is cofinal in α} for every limit

α. For every α ∈ Λ choose Sα ⊆ α of order type ω such that Sα ∩ ϕ−1
α (n)

is a cofinal in α for every n ∈ Xα. This is very easy to do. Let us check
that the C-sequence 〈Sα : α < ω1〉 has the required properties. Now, let
ϕ : Λ → ω be given. Set X = {n ∈ ω : ϕ−1(n) is cofinal in ω1} and
C = {α : ∀n ∈ X (ϕ−1(n) is cofinal in α)}. It is easy to see that C is a club
in ω1. Let be ξ0 = max{ϕ−1(n) : n /∈ X} + 1 and S = {α : ϕα = ϕ ¹ α}.
Pick any β ∈ C ∩ S ∩ [ξ0, ω1) then ϕ(β) = n0 ∈ Xβ. It follows from the
properties of Sβ that there is an α ∈ Sβ such that ϕ(α) = n0. ¤
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Proposition 8. ♦+ implies wF1.

Proof. Let 〈Aα : α ∈ ω1〉 be a ♦+-sequence. For each α, let Sα ⊂ α be
a sequence of order-type ω such that Sα ∩ A 6= ∅ for every A ∈ Aα (this
can be done by an easy induction). Let us verify that 〈Sα : α ∈ ω1〉 is
a wF1-sequence. Given a stationary set S, there is a club C such that
∀ α ∈ C (S ∩ α ∈ Aα). Pick any β ∈ (C ∩ S) then Sβ ∩ (S ∩ β) 6= ∅, now
choose α ∈ Sβ ∩ (S ∩ β). Then α, β ∈ S and α ∈ Sβ. So we are done. ¤

We do not know if in the previous propositions we can replace the weak
versions for the stronger ones. However, we have some limitations as the
following theorem shows.

Theorem 9. ♦ does not implies wF1.

To prove the theorem we need the following lemmas.

Lemma 10. For every C-sequence 〈Sα : α ∈ ω1〉 there is an α such that for
every β > α, {γ : (Sγ \ α) ∩ β = ∅} is stationary.

Proof. Suppose that this is not the case. Then for every α there is a β(α)
and a club Cα such that (Sγ \ α) ∩ β(α) 6= ∅, whenever γ ∈ Cα. Pick
α0 ∈ ω1 and define αn+1 = β(αn). Let ξ ∈ ⋂

n∈ω Cαn be greater than
α = sup{αn : n ∈ ω} . Since Sξ intersects each interval [αn, an+1), α is an
accumulation point of Sξ, so the order-type of Sξ is greater than ω, which
is a contradiction. ¤

The following lemma is a well known fact.

Lemma 11. (1) Countable support iteration of σ-closed forcings is σ-
closed,

(2) Every σ-closed forcing preserves ♦.

Proof of theorem 9. For every C-sequence C = 〈Cα : α ∈ ω1〉, define the
notion of forcing PC where

PC = {p ∈ 2<ω1 : ∀α ∈ p−1(1), Cα ∩ p−1(1) = ∅ and p ¹ αC ≡ 0}
Here αC is the α in the previous lemma which correspond to the C-sequence
C, and the order is by extension.
Claim 1. PC is a σ-closed forcing.

Let pn be a decreasing sequence of conditions in PC and set pω =
⋃

n∈ω pn.
Obviously, pω ∈ 2<ω1 and pω ¹ αC ≡ 0. Suppose that there are α, β ∈ p−1

ω (1)
such that α ∈ Cβ i.e. Cβ ∩ p−1

ω (1) 6= ∅, then there are n,m ∈ ω such that
α ∈ dom(pn) and β ∈ dom(pm) but this implies that α, β ∈ p−1

m+n(1) and
Cβ ∩ p−1

m+n(1) 6= ∅ which is a contradiction.
Claim 2. PC forces that C is not a wF1-sequence.

Let fG be the PC-generic function and S = f−1
G (1). To see that C is

not a witness for wF1 in M [G] it suffices to prove that S is stationary
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in M [G]. Let Ċ be a name for a club and p ∈ PC a condition such that
p ° “Ċ is a club”. By Lemma 10, we can find a sequence M0 ⊆ M1 ⊆ ... ⊆
Mn ⊆ ... of countable elementary submodels of H(θ) for θ large enough, such
that p, 〈Cα : α ∈ ω1〉, Ċ ∈ M0 and moreover, (Cδn \αC)∩dom(p) = ∅, where
δn = Mn ∩ ω1 and we may assume that δn ∈ Mn+1. Set Mω =

⋃
n∈ω Mn

and δ = Mω ∩ ω1. We will construct a sequence pn of conditions such that
pn+1 6 pn, pn ° “δn ∈ Ċ”, p−1

n (1) ∩ Cδ = ∅ and pn ∈ Mn by recursion as
follows:

Let ξ0 = max(Cδ ∩ δ0), and extend p to a condition q = p ∪ {(α, 0) : α ∈
[dom(p), ξ0]}. Note that q ∈ M0. Since M0[G] |= “C is a club” there is an
η0 ∈ ω1 ∩M0 and a p0 ∈ PC ∩M0, p0 6 q such that p0 ° “η̇0 ∈ Ċ”.

For the inductive step assume that we have constructed pk for k 6 n
with the required properties. Pick ξn+1 < δn+1 such that ξn+1 > max(Cδ ∩
δn+1).Then q = pn∪{(α, 0) : α ∈ [dom(pn), ξn+1] ∈ Mn+1 is a condition. As
q ° “Ċ is a club” there is a ηn+1 < δn+1 and a condition q ≥ pn+1 ∈ Mn+1

such that pn+1 ° “ηn+1 ∈ Ċ”.
Finally, let

pω =
⋃
n∈ω

pn ∪ {(δ, 1)}.

Note that pω is a condition as p−1
ω (1) ∩ Cδ = ∅. As pω 6 pn for all n ∈ ω,

pω ° “{ηn : n ∈ ω} ⊆ Ċ”. As δ = supn∈ωηn and since Ċ is a name for a
club pω ° “δ ∈ Ṡ ∩ Ċ. So S is stationary and Claim 2 holds.

Let V = L and construct a countable support iteration P = 〈Pα, Q̇α : α <

ω2〉 so that °Pα “Q̇α = PĊ for some C− sequence Ċ”. By a standard book-
keeping argument one can make sure that all C-sequences in the intermediate
models are listed. Let G be a P-generic. Since every C-sequence C in M [G]
has a Pα-name for some α < ω2, and at some stage β < ω2 we have that
Q̇β = PĊ then C is not a wF1-sequence. So M [G] |= ¬wF1 and by the
Lemma 11. M [G] |= ♦.

Finally we show that none of the principles is consistent with Martin’s
Axiom.

Theorem 12. MA(ω1) implies ¬wF0.

Proof. Let 〈Cα : α < ω1〉 be a C-sequence. Define

P = {p : A → ω : A ∈ [Λ]<ω, (∀α < β)(p(α) = p(β) → α /∈ Cβ)}
ordered by inverse inclusion. It is easy to see that, if fG is the generic
function, then fG is defined on Λ and forces that 〈Cα : α < ω1〉 is not a
wF0-sequence, to assure both we need to meet only ω1 many dense sets. To
finish the proof it suffices to check that:
Claim P is a c.c.c. forcing.

Suppose that {pα : α ∈ ω1} is an antichain. By a standard ∆-system type
argument, we can assume that their domains form a ∆-system with root r,
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such that there is a N ∈ ω with |dom(pα)| = N for each α ∈ ω1 and all the
functions agree on r. Moreover, we can assume that dom(pα)∩dom(pb) = ∅
for every α, β ∈ ω1, and max(dom(pα)) < min(dom(pβ)) if α < β. Now, set
dom(pω·N+1) = {ξ1, ..., ξN}. Since pω·N+1 is incompatible with pα for every
α < ω ·N +1, (

⋃N
i=1 Cξi

)∩dom(pα) 6= ∅ for every α < ω ·N +1. Then by the
pigeon hole principle there is a i such that ot(Cξi) ≥ ω + 1. However, this
contradicts the fact that 〈Cα : α < ω1〉 is a C-sequence, so we are done. ¤

We conclude with some open problems.

Questions 13. (1) Does wF1 imply F1?
(2) Does wF0 imply F0?
(3) Does ♣ imply F0?

An early version of this paper contained also the following questions: (4)
Does ♦+ imply F1? and (5) Does ♦ imply F0?.

These questions were answered by Paul Larson. we present the proof with
his kind permission.

Theorem 14 (Larson). (i) ♦ implies F0.
(ii) ♦+ implies F1.

Proof. Fix for every limit ordinal α < ω1 a strictly increasing sequence
{αn : n ∈ ω} such that supn∈ωαn = α and let θ be a sufficiently large
regular cardinal.

To prove (i) let 〈ϕα : α < ω1} be a ♦-sequence which guesses elements
of ωω1 (i.e. ϕα ∈ ωα). Construct recursively a C-sequence 〈Sα : α ∈ Λ〉
and a sequence 〈eα

n : α ∈ Λ, n ∈ ω〉 of finite subsets of α with the following
properties:

(i) Sα =
⋃

n∈ω eα
n,

(ii) eα
n v eα

n+1, max(eα
n+1) > αn,

(iii) eα
n+1 = eα

n ∪ {ξ}, where
ξ = min{η : η > max(eα

n ∪ {an}) ∧ eα
n v Sη ∧ ϕα(ξ) = n} if such ξ exists,

otherwise ξ = αN , where N = min{k : αk > (eα
n ∪ {αn})}.

Now let us check that 〈Sα : α ∈ Λ〉 is a F0-sequence. It follows from
(ii) that Sα is cofinal in α with order type ω. Let ϕ : ω1 → ω be given.
Set S = {α < Λ : ϕα = ϕ ¹ α}, since 〈ϕα : α < ω1〉 is a ♦-sequence S
is a stationary set. Since C = {ω1 ∩ M : M ≺ H(θ) such that ϕ, 〈Sα :
α < Λ〉, 〈ϕα : α < ω1〉 ∈ M} is a club there is an M ∈ C such that
M ∩ ω1 = δ ∈ S. Suppose that ϕ(δ) = n and let eδ

n−1 = Sδ ¹ n− 1 (here
eδ
−1 = ∅) then for every α ∈ M

H(θ) |= ∃β > α(ϕ(β) = n ∧ eδ
n−1 v Sβ.

So, there is an α ∈ δ, α > (eδ
n ∪ {αn}) such that n = ϕ(α) = ϕδ(α) and

eδ
n−1 v Sα. It follows for the construction of eδ

n+1 that eδ
n+1 = eδ

n ∪ {ξ} for
some ξ with the same properties of α Then we have that ϕ(ξ) = ϕ(δ), ξ ∈ Sδ

and Sδ ∩ α = eδ
n−1 v Sξ.
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To prove (ii) let 〈Aα : α < ω1} be a ♦+-sequence. Enumerate Aα as
{Aα

n : n ∈ ω}. Construct recursively a C-sequence 〈Sα : α ∈ Λ〉 and
a sequence 〈eα

n : α ∈ Λ, n ∈ ω〉 of finite subsets of α with the following
properties:

(i) Sα =
⋃

n∈ω eα
n,

(ii) eα
n v eα

n+1, max(eα
n+1) > αn,

(iii) eα
n+1 = eα

n ∪ {ξ}, where
ξ = min{η : η > max(eα

n ∪ {an}) ∧ eα
n v Sη ∧ (ξ) ∈ Aα

n+1} if such ξ exists,
otherwise ξ = αN , where N = min{k : αk > (eα

n ∪ {αn})}.
Now let us check that 〈Sα : α ∈ Λ〉 is a F1-sequence. It follows from (ii)

that Sα is cofinal in α with order type ω. Let S a stationary. Set D = {α <
Λ : S ∩ α ∈ Aα}, since 〈Aα : α < ω1〉 is a ♦+-sequence D is a club. Since
C = {ω1 ∩M : M ≺ H(θ) such thatS, 〈Sα : α < Λ〉, 〈Aα : α < ω1〉 ∈ M}
is a club there is an M ∈ C such that M ∩ ω1 = δ ∈ S ∩D. Suppose that
S ∩ δ = Aδ

n and let eδ
n−1 = Sδ ¹ n− 1 then for every α ∈ M

H(θ) |= ∃β > α(β ∈ S ∧ eδ
n−1 v Sβ.

So, there is an α ∈ δ, α > (eδ
n ∪ {αn}) such that α ∈ Aδ

n+1 and eδ
n v Sα.

It follows for the construction of eδ
n+1 that eδ

n+1 = eδ
n ∪ {ξ} for some ξ

with the same properties of α. Then we have that ξ ∈ S, ξ ∈ Sδ and
Sδ ∩ ξ = eδ

n−1 v Sξ. ¤
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