SOME REMARKS ON NON-SPECIAL COHERENT ARONSZAJN TREES

MICHAEL HRUŠÁK AND CARLOS MARTÍNEZ RANERO

Abstract

We introduce some guessing principles sufficient for the existence of non-special coherent Aronszajn trees and show how they relate to some of the standard principles in Set Theory (like $M A_{\omega_{1}}$ and \diamond).

A variant of a question of I. Juhasz asks whether the principle implies the existence of a non-special Aronszajn tree. Motivated by this question, we investigate when a coherent Aronszajn tree associated with the ρ_{1} function of Todorčević (see [5]) is not special. To do this, we define principles $\boldsymbol{\star}_{0}$ and \star_{1}, and their corresponding weak versions $w \star_{0}$ and $w \star_{1}$. The principles \star_{0} and \star_{1} are strong enough to construct non-special coherent Aronszajn trees. All these principles are weak in the sense that are all consistent with $M A_{\sigma-c e n t e r e d}$ and some of them are strong in the sense that they do not follow from \diamond.

Our notation is mostly standard (see Kunen[4] and Jech[2]). We will use Λ to denote the collection of all countable limit ordinals. $A \sqsubseteq B$ will be used to denote that A is an initial segment of B, whenever A, B are subsets of ω_{1}. If A is a subset of ω_{1}, we will use $o t(A)$ to denote the order-type of A. The symbol \frown denotes concatenation.

By a C-sequence (see [5]) we mean a sequence $\left\langle C_{\alpha}: \alpha \in \omega_{1}\right\rangle$ with the following properties: $C_{\alpha+1}=\{\alpha\}, C_{\alpha}$ is a cofinal subset of α of order-type ω, whenever α is a countable limit ordinal >0.

Definition 1. The principles $\star_{1}, w \star_{1}, \star_{0}, w \star_{0}$ are defined as follows:
\star_{0} There is a C-sequence $\left\langle S_{\alpha}: \alpha \in \omega_{1}\right\rangle$ such that for every $\varphi: \Lambda \rightarrow \omega$ there are $\alpha, \beta \in \Lambda$ such that $\varphi(\alpha)=\varphi(\beta), S_{\beta} \cap \alpha \sqsubseteq S_{\alpha}$ and $\alpha \in S_{\beta}$.
$w \star_{0}$ There is a C-sequence $\left\langle S_{\alpha}: \alpha \in \omega_{1}\right\rangle$ such that for every $\varphi: \Lambda \rightarrow \omega$ there are $\alpha, \beta \in \Lambda$ such that $\varphi(\alpha)=\varphi(\beta)$ and $\alpha \in S_{\beta}$.
\star_{1} There is a C-sequence $\left\langle S_{\alpha}: \alpha \in \omega_{1}\right\rangle$ such that for every stationary set S there are $\alpha, \beta \in S$ such that $S_{\beta} \cap \alpha \sqsubseteq S_{\alpha}$ and $\alpha \in S_{\beta}$.
$w \star_{1}$ There is a C-sequence $\left\langle S_{\alpha}: \alpha \in \omega_{1}\right\rangle$ such that for every stationary set S there are $\alpha, \beta \in S$ such that $\alpha \in S_{\beta}$.

[^0]Following [5], to every C-sequence $\left\langle C_{\alpha}: \alpha<\omega_{1}\right\rangle$ we associate two functions ρ_{0}, ρ_{1}. The function $\rho_{0}=\rho_{0}\left(C_{\alpha}: \alpha<\omega_{1}\right):\left[\omega_{1}\right]^{2} \rightarrow \omega^{<\omega}$ is defined recursively as follows

$$
\rho_{0}(\alpha, \beta)=\left\{\begin{array}{ll}
\left.\langle | C_{\beta} \cap \alpha\right)| \rangle \frown \rho_{0}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right) & \text { if } \alpha<\beta \\
\varnothing & \text { if } \alpha=\beta
\end{array} .\right.
$$

Even though, ρ_{0} is an important function on its own, we use it only as an auxiliar tool in some proofs of the theorems in this article.

The function $\rho_{1}=\rho_{1}\left(C_{\alpha}: \alpha<\omega_{1}\right):\left[\omega_{1}\right]^{2} \rightarrow \omega$ is defined recursively by

$$
\rho_{1}(\alpha, \beta)=\left\{\begin{array}{ll}
\max \left\{\left|C_{\beta} \cap \alpha\right|, \rho_{1}\left(\alpha, \min \left(C_{\beta} \backslash \alpha\right)\right)\right\} & \text { if } \alpha<\beta \\
0 & \text { if } \alpha=\beta
\end{array},\right.
$$

Thus, $\rho_{1}(\alpha, \beta)$ is simply the maximal integer appearing in the sequence $\rho_{0}(\alpha, \beta)$. We will focus on the function ρ_{1}. Basic properties of the ρ_{1} function are mentioned in the next lemma.

Lemma 2 (Todorčević [5]). For all $\alpha<\beta<\omega_{1}$ and $n<\omega$,
(a) $\left\{\xi \leqslant \alpha: \rho_{1}(\xi, \alpha) \leqslant n\right\}$ is finite,
(b) $\left\{\xi \leqslant \alpha: \rho_{1}(\xi, \alpha) \neq \rho_{1}(\xi, \beta)\right\}$ is finite.

Let $\rho_{1 \alpha}: \alpha \rightarrow \omega$ be defined by $\rho_{1 \alpha}(\xi)=\rho_{1}(\xi, \alpha)$ for every $\xi<\alpha$. Then it follows from the previous lemma that the sequence

$$
\rho_{1 \alpha}: \alpha \rightarrow \omega \quad\left(\alpha<\omega_{1}\right)
$$

of finite-to-one functions is coherent in the sense that $\rho_{1 \alpha}=^{*} \rho_{1 \beta} \upharpoonright \alpha$ whenever $\alpha \leqslant \beta$. (Here $=^{*}$ means the fact that the functions agree on all but finitely many arguments). The corresponding tree

$$
T\left(\rho_{1}\right)=\left\{\rho_{1 \beta} \upharpoonright \alpha: \alpha<\beta \leqslant \omega_{1}\right\}
$$

is a coherent Aronszajn tree.
The following two theorems show the relevance of the guessing principles \star_{0} and \star_{1}.

Theorem 3. \star_{0} implies that there is a non special coherent Aronszajn tree.
Proof. Let $T=T\left(\rho_{1}\right)$ be the coherent Aronszajn tree constructed from a \star_{0}-sequence $\left\langle S_{\alpha}: \alpha<\omega_{1}\right\rangle$ i.e. $\rho_{1}=\rho_{1}\left(S_{\alpha}: \alpha<\omega_{1}\right)$. To prove the theorem it is enough to check that $A=\left\{\rho_{1 \alpha}: \alpha \in \Lambda\right\} \subseteq T$ is not a countable union of antichains. Given any partion $\varphi: A \rightarrow \omega$ of A, we define a new function $\hat{\varphi}: \Lambda \rightarrow \omega$ by $\hat{\varphi}(\alpha)=\varphi\left(\rho_{1 \alpha}\right)$ for every $\alpha \in \Lambda$. It follows, using \star_{0}, that there are $\alpha, \beta \in \Lambda$ such that $\hat{\varphi}(\alpha)=\hat{\varphi}(\beta), S_{\beta} \cap \alpha \sqsubseteq S_{\alpha}$ and $\alpha \in S_{\beta}$. Then let us check that $\rho_{1 \alpha} \subseteq \rho_{1 \beta}$. Let $\left\{\xi_{k}: k \leqslant n\right\}$ be the increasing enumeration of $S_{\beta} \cap \alpha$. The proof proceeds by cases:

Case 1. If $\xi \in\left[0, \xi_{0}\right]$ then $\rho_{0}(\xi, \beta)=\langle 0\rangle \frown \rho_{0}\left(\xi, \xi_{0}\right)$. Since $S_{\beta} \cap \alpha \sqsubseteq S_{\alpha}$ the same holds for $\rho_{0}(\xi, \alpha)$. Then by the definition of ρ_{1} we have that $\rho_{1}(\xi, \alpha)=\rho_{1}(\xi, \beta)$.

Case 2. If $\xi \in\left(\xi_{k}, \xi_{k+1}\right]$ then $\rho_{0}(\xi, \beta)=\langle | S_{\beta} \cap \xi| \rangle \frown \rho_{0}\left(\xi, \min \left(S_{\beta} \backslash \xi\right)\right)$. However, $S_{\beta} \cap \alpha \sqsubseteq S_{\alpha}$ implies that $\xi_{k+1}=\min \left(S_{\beta} \backslash \xi\right)=\min \left(S_{\alpha} \backslash \xi\right)$ and $\left|S_{\beta} \cap \xi\right|=\left|S_{\alpha} \cap \xi\right|$ so $\rho_{1}(\xi, \beta)=\rho_{1}(\xi, \alpha)$.

Case 3.
If $\xi \in\left(\xi_{n}, \alpha\right)$ then $\rho_{0}(\xi, \beta)=\langle n\rangle \frown \rho_{0}(\xi, \alpha)$, and $\rho_{0}(\xi, \alpha)=\langle | S_{\alpha} \cap \xi| \rangle \frown$ $\rho_{0}\left(\xi, \min \left(S_{\alpha} \backslash \xi\right)\right)$. However, since $S_{\beta} \cap \alpha \sqsubseteq S_{\alpha}, \quad n \leqslant\left|S_{\alpha} \cap \xi\right|$ so we have that $\rho_{1}(\xi, \alpha)=\rho_{1}(\xi, \beta)$.

Then $\forall \xi<\alpha\left(\rho_{1 \alpha}(\xi)=\rho_{1 \beta}(\xi)\right)$. So we are done.
Theorem 4. \star_{1} implies that there is a coherent Aronszajn tree T which does not have stationary antichains.
Proof. Let $T=T\left(\rho_{1}\right)$ be the coherent Aronszajn tree constructed from a \star_{1}-sequence $\left\langle S_{\alpha}: \alpha<\omega_{1}\right\rangle$ i.e. $\rho_{1}=\rho_{1}\left(S_{\alpha}: \alpha<\omega_{1}\right)$. The result follows using the same argument as in the previous theorem and the following claim.

Claim. T has a stationary antichain if and only if $\left\{\rho_{1 \alpha}: \alpha \in \omega_{1}\right\}$ has one.
Let us prove the claim. Let $A=\left\{t_{\alpha}: \alpha \in S\right\}$ be a stationary antichain of T, we may assume that $\left|T_{\alpha} \cap A\right|=1$ and $h t\left(t_{\alpha}\right)=\alpha$ for every $\alpha \in S$. Note that S is a stationary set. For each $t_{\alpha} \in A$ there is an $F_{\alpha} \in[\alpha]^{<\omega}$ such that $t_{\alpha}(\xi)=\rho_{1 \alpha}(\xi)$ for every $\xi \in\left(\alpha \backslash F_{\alpha}\right)$. By the pressing down lemma, we can find a stationary set $S^{\prime} \subseteq S$ such that $F_{\alpha}=F$ for every $\alpha \in S^{\prime}$. Using again the pressing down lemma we can find a stationary set $\hat{S} \subseteq S^{\prime}$ such that $t_{\alpha} \upharpoonright F=t_{\beta} \upharpoonright F$ for every $\alpha<\beta \in \hat{S}$. Then $\forall \alpha<\beta \in \hat{S}$ there is a $\xi \in(\alpha \backslash F)$ such that $t_{\alpha}(\xi) \neq t_{\beta}(\xi)$. This implies that $t_{\alpha}(\xi)=\rho_{1 \alpha}(\xi) \neq \rho_{1 \beta}(\xi)=t_{\beta}(\xi)$. So $\left\{\rho_{1 \alpha}: \alpha \in \hat{S}\right\}$ is a stationary antichain in $\left\{\rho_{1 \alpha}: \alpha<\omega_{1}\right\}$, and this finishes the proof.

As we have seen, the principles $\boldsymbol{\star}_{0}$ and $\boldsymbol{\star}_{1}$ are guessing principles which imply the existence of non-special Aronszajn trees. In order to have a better understanding of these principles we will compare them with some well known principles in set theory, summed up in the following diagram.

Here NSTA is an abbreviation for non-special Aronszajn tree. As the following theorem shows all the principles are relatively consistent with ZFC, even with $M A_{\sigma-c e n t e r e d}$.
Theorem 5. If $V[G]$ is the generic extension obtained by adding a single Cohen real then $V[G] \models \star_{1}$.

Proof. From now on assume that $c: \omega \rightarrow[\omega]^{<\omega}$ is a Cohen-generic real and $e_{\alpha}: \alpha \rightarrow \omega\left(\alpha<\omega_{1}\right)$ is a coherent sequence of finite-to-one functions. Let $\left\langle C_{\alpha}: \alpha<\omega_{1}\right\rangle$ be an arbitrary C-sequence. We change this C-sequence to a C-sequence $\left\langle S_{\alpha}: \alpha<\omega_{1}\right\rangle$ in the following way:

$$
S_{\alpha}=\left\{\xi<\alpha: C_{\alpha}(n) \leqslant \xi<C_{\alpha}(n+1), e_{\alpha}(\xi) \in c(n)\right\}
$$

where $C_{\alpha}(0)=0$ and $C_{\alpha}(n)$ is the nth element of C_{α} for $0<n<\omega$. Note that since $e_{\alpha}^{\prime} s$ are finite-to-one $o t\left(S_{\alpha}\right)=\omega$. Let us check that $\left\langle S_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a \star_{1}-sequence. Assume that A is a stationary subset of ω_{1}. Note that if A is stationary in $V[G]$, then there is a stationary set $A_{0} \in V$ such that $A_{0} \subset A$. So without loss of generality we may assume that A is in the ground model. Fix $p \in F n\left(\omega,[\omega]^{<\omega}\right)$ with $\operatorname{dom}(p) \in \omega$, use the pressing down lemma to find a stationary set $S \subset A$ such that S_{α} agree with S_{β} in all the places decided by p for every $\alpha, \beta \in S$. Pick an accumulation point β of S, now choose an $\alpha \in S$ in such a way that $C_{\beta}\left(n_{0}\right)<\alpha \leqslant C_{\beta}\left(n_{0}+1\right)$ where $\operatorname{dom}(p)<n_{0}$. Let q be defined by

$$
q(n)= \begin{cases}p(n) & \text { if } n \in \operatorname{dom}(p) \\ \varnothing & \text { if } \\ \text { dom }(p)<n<n_{0} \\ \left\{e_{\beta}(\alpha)\right\} & \text { if } n=n_{0}\end{cases}
$$

then $q \Vdash$ " $\dot{S}_{\beta} \cap \alpha \sqsubseteq \dot{S}_{\alpha} \& \alpha \in \dot{S}_{\beta}$ ".
Corollary 6. \star_{1} (and hence also \star_{0}, $w \star_{0}$ and $w \star_{1}$) are relatively consistent with $M A_{\sigma-c e n t e r e d}$.
Proof. Let V be a model of $M A$ and \mathbb{P} a forcing which adds a single Cohen real. By the previous theorem if G is a \mathbb{P}-generic filter then $M[G] \vDash \star_{1}$ and by the theorem of Roitman (see [1]) the extension $M[G] \models M A_{\sigma-c e n t e r e d}$.

The fact that after adding a single Cohen real there is a coherent Aronszajn tree without stationary antichains was first observed by B. König in [3]. The following propositions give us some relationship beetwen \diamond and \diamond^{+} with our guessing principles.
Proposition 7. \diamond implies $w \star_{0}$.
Proof. Let $\left\langle\varphi_{\alpha}: \alpha \in \omega_{1}\right\rangle$ be a \diamond-sequence which guesses elements of ω_{1}^{ω} (i.e. $\varphi_{\alpha} \in \omega^{\alpha}$). Define $X_{\alpha}=\left\{n: \varphi_{\alpha}^{-1}(n)\right.$ is cofinal in $\left.\alpha\right\}$ for every limit α. For every $\alpha \in \Lambda$ choose $S_{\alpha} \subseteq \alpha$ of order type ω such that $S_{\alpha} \cap \varphi_{\alpha}^{-1}(n)$ is a cofinal in α for every $n \in X_{\alpha}$. This is very easy to do. Let us check that the C-sequence $\left\langle S_{\alpha}: \alpha<\omega_{1}\right\rangle$ has the required properties. Now, let $\varphi: \Lambda \rightarrow \omega$ be given. Set $X=\left\{n \in \omega: \varphi^{-1}(n)\right.$ is cofinal in $\left.\omega_{1}\right\}$ and $C=\left\{\alpha: \forall n \in X\left(\varphi^{-1}(n)\right.\right.$ is cofinal in $\left.\left.\alpha\right)\right\}$. It is easy to see that C is a club in ω_{1}. Let be $\xi_{0}=\max \left\{\varphi^{-1}(n): n \notin X\right\}+1$ and $S=\left\{\alpha: \varphi_{\alpha}=\varphi \upharpoonright \alpha\right\}$. Pick any $\beta \in C \cap S \cap\left[\xi_{0}, \omega_{1}\right)$ then $\varphi(\beta)=n_{0} \in X_{\beta}$. It follows from the properties of S_{β} that there is an $\alpha \in S_{\beta}$ such that $\varphi(\alpha)=n_{0}$.

Proposition 8. \diamond^{+}implies $w \star_{1}$.
Proof. Let $\left\langle\mathcal{A}_{\alpha}: \alpha \in \omega_{1}\right\rangle$ be a \diamond^{+}-sequence. For each α, let $S_{\alpha} \subset \alpha$ be a sequence of order-type ω such that $S_{\alpha} \cap A \neq \varnothing$ for every $A \in \mathcal{A}_{\alpha}$ (this can be done by an easy induction). Let us verify that $\left\langle S_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a $w \star_{1}$-sequence. Given a stationary set S, there is a club C such that $\forall \alpha \in C\left(S \cap \alpha \in \mathcal{A}_{\alpha}\right)$. Pick any $\beta \in(C \cap S)$ then $S_{\beta} \cap(S \cap \beta) \neq \varnothing$, now choose $\alpha \in S_{\beta} \cap(S \cap \beta)$. Then $\alpha, \beta \in S$ and $\alpha \in S_{\beta}$. So we are done.

We do not know if in the previous propositions we can replace the weak versions for the stronger ones. However, we have some limitations as the following theorem shows.

Theorem 9. \diamond does not implies $w \star_{1}$.
To prove the theorem we need the following lemmas.
Lemma 10. For every C-sequence $\left\langle S_{\alpha}: \alpha \in \omega_{1}\right\rangle$ there is an α such that for every $\beta>\alpha$, $\left\{\gamma:\left(S_{\gamma} \backslash \alpha\right) \cap \beta=\varnothing\right\}$ is stationary.

Proof. Suppose that this is not the case. Then for every α there is a $\beta(\alpha)$ and a club C_{α} such that $\left(S_{\gamma} \backslash \alpha\right) \cap \beta(\alpha) \neq \varnothing$, whenever $\gamma \in C_{\alpha}$. Pick $\alpha_{0} \in \omega_{1}$ and define $\alpha_{n+1}=\beta\left(\alpha_{n}\right)$. Let $\xi \in \bigcap_{n \in \omega} C_{\alpha_{n}}$ be greater than $\alpha=\sup \left\{\alpha_{n}: n \in \omega\right\}$. Since S_{ξ} intersects each interval $\left[\alpha_{n}, a_{n+1}\right), \alpha$ is an accumulation point of S_{ξ}, so the order-type of S_{ξ} is greater than ω, which is a contradiction.

The following lemma is a well known fact.
Lemma 11. (1) Countable support iteration of σ-closed forcings is σ closed,
(2) Every σ-closed forcing preserves \diamond.

Proof of theorem 9. For every C-sequence $\mathcal{C}=\left\langle C_{\alpha}: \alpha \in \omega_{1}\right\rangle$, define the notion of forcing $\mathbb{P}_{\mathcal{C}}$ where

$$
\mathbb{P}_{\mathcal{C}}=\left\{p \in 2^{<\omega_{1}}: \forall \alpha \in p^{-1}(1), \quad C_{\alpha} \cap p^{-1}(1)=\varnothing \text { and } p \upharpoonright \alpha_{\mathcal{C}} \equiv 0\right\}
$$

Here $\alpha_{\mathcal{C}}$ is the α in the previous lemma which correspond to the C-sequence \mathcal{C}, and the order is by extension.
Claim 1. $\mathbb{P}_{\mathcal{C}}$ is a σ-closed forcing.
Let p_{n} be a decreasing sequence of conditions in $\mathbb{P}_{\mathcal{C}}$ and set $p_{\omega}=\bigcup_{n \in \omega} p_{n}$. Obviously, $p_{\omega} \in 2^{<\omega_{1}}$ and $p_{\omega} \upharpoonright \alpha_{\mathcal{C}} \equiv 0$. Suppose that there are $\alpha, \beta \in p_{\omega}^{-1}(1)$ such that $\alpha \in C_{\beta}$ i.e. $C_{\beta} \cap p_{\omega}^{-1}(1) \neq \varnothing$, then there are $n, m \in \omega$ such that $\alpha \in \operatorname{dom}\left(p_{n}\right)$ and $\beta \in \operatorname{dom}\left(p_{m}\right)$ but this implies that $\alpha, \beta \in p_{m+n}^{-1}(1)$ and $C_{\beta} \cap p_{m+n}^{-1}(1) \neq \varnothing$ which is a contradiction.
Claim 2. $\mathbb{P}_{\mathcal{C}}$ forces that \mathcal{C} is not a $w \star_{1}$-sequence.
Let f_{G} be the $\mathbb{P}_{\mathcal{C}}$-generic function and $S=f_{G}^{-1}(1)$. To see that \mathcal{C} is not a witness for $w \star_{1}$ in $M[G]$ it suffices to prove that S is stationary
in $M[G]$. Let \dot{C} be a name for a club and $p \in \mathbb{P}_{\mathcal{C}}$ a condition such that $p \Vdash$ " \dot{C} is a club". By Lemma 10 , we can find a sequence $M_{0} \subseteq M_{1} \subseteq \ldots \subseteq$ $M_{n} \subseteq \ldots$ of countable elementary submodels of $H(\theta)$ for θ large enough, such that $p,\left\langle C_{\alpha}: \alpha \in \omega_{1}\right\rangle, \dot{C} \in M_{0}$ and moreover, $\left(C_{\delta_{n}} \backslash \alpha_{\mathcal{C}}\right) \cap \operatorname{dom}(p)=\varnothing$, where $\delta_{n}=M_{n} \cap \omega_{1}$ and we may assume that $\delta_{n} \in M_{n+1}$. Set $M_{\omega}=\bigcup_{n \in \omega} M_{n}$ and $\delta=M_{\omega} \cap \omega_{1}$. We will construct a sequence p_{n} of conditions such that $p_{n+1} \leqslant p_{n}, p_{n} \Vdash$ " $\delta_{n} \in \dot{C}$ ", $p_{n}^{-1}(1) \cap C_{\delta}=\varnothing$ and $p_{n} \in M_{n}$ by recursion as follows:

Let $\xi_{0}=\max \left(C_{\delta} \cap \delta_{0}\right)$, and extend p to a condition $q=p \cup\{(\alpha, 0): \alpha \in$ $\left.\left[\operatorname{dom}(p), \xi_{0}\right]\right\}$. Note that $q \in M_{0}$. Since $M_{0}[G] \vDash$ " C is a club" there is an $\eta_{0} \in \omega_{1} \cap M_{0}$ and a $p_{0} \in \mathbb{P}_{\mathcal{C}} \cap M_{0}, p_{0} \leqslant q$ such that $p_{0} \Vdash$ " $\dot{\eta}_{0} \in \dot{C}$ ".

For the inductive step assume that we have constructed p_{k} for $k \leqslant n$ with the required properties. Pick $\xi_{n+1}<\delta_{n+1}$ such that $\xi_{n+1}>\max \left(C_{\delta} \cap\right.$ $\left.\delta_{n+1}\right)$. Then $q=p_{n} \cup\left\{(\alpha, 0): \alpha \in\left[\operatorname{dom}\left(p_{n}\right), \xi_{n+1}\right] \in M_{n+1}\right.$ is a condition. As $q \Vdash$ " \dot{C} is a club" there is a $\eta_{n+1}<\delta_{n+1}$ and a condition $q \geq p_{n+1} \in M_{n+1}$ such that $p_{n+1} \Vdash$ " $\eta_{n+1} \in \dot{C}$ ".

Finally, let

$$
p_{\omega}=\bigcup_{n \in \omega} p_{n} \cup\{(\delta, 1)\} .
$$

Note that p_{ω} is a condition as $p_{\omega}^{-1}(1) \cap C_{\delta}=\varnothing$. As $p_{\omega} \leqslant p_{n}$ for all $n \in \omega$, $p_{\omega} \Vdash$ " $\left\{\eta_{n}: n \in \omega\right\} \subseteq \dot{C}$ ". As $\delta=\sup _{n \in \omega} \eta_{n}$ and since \dot{C} is a name for a club $p_{\omega} \Vdash$ " $\delta \in \dot{S} \cap \dot{C}$. So S is stationary and Claim 2 holds.

Let $V=L$ and construct a countable support iteration $\mathbb{P}=\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}: \alpha<\right.$ $\left.\omega_{2}\right\rangle$ so that $\Vdash_{\mathbb{P}_{\alpha}}$ " $\dot{\mathbb{Q}}_{\alpha}=\mathbb{P}_{\mathcal{C}}$ for some C - sequence $\dot{\mathcal{C}}$ ". By a standard bookkeeping argument one can make sure that all C-sequences in the intermediate models are listed. Let G be a \mathbb{P}-generic. Since every C-sequence \mathcal{C} in $M[G]$ has a \mathbb{P}_{α}-name for some $\alpha<\omega_{2}$, and at some stage $\beta<\omega_{2}$ we have that $\dot{\mathbb{Q}}_{\beta}=\mathbb{P}_{\dot{\mathcal{C}}}$ then \mathcal{C} is not a $w \star_{1}$-sequence. So $M[G] \models \neg w \star_{1}$ and by the Lemma 11. $M[G] \models \diamond$.

Finally we show that none of the principles is consistent with Martin's Axiom.

Theorem 12. $M A\left(\omega_{1}\right)$ implies $\neg w \star_{0}$.
Proof. Let $\left\langle C_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a C-sequence. Define

$$
\mathbb{P}=\left\{p: A \rightarrow \omega: A \in[\Lambda]^{<\omega},(\forall \alpha<\beta)\left(p(\alpha)=p(\beta) \rightarrow \alpha \notin C_{\beta}\right)\right\}
$$

ordered by inverse inclusion. It is easy to see that, if f_{G} is the generic function, then f_{G} is defined on Λ and forces that $\left\langle C_{\alpha}: \alpha<\omega_{1}\right\rangle$ is not a $w \star_{0}$-sequence, to assure both we need to meet only ω_{1} many dense sets. To finish the proof it suffices to check that:
Claim \mathbb{P} is a c.c.c. forcing.
Suppose that $\left\{p_{\alpha}: \alpha \in \omega_{1}\right\}$ is an antichain. By a standard Δ-system type argument, we can assume that their domains form a Δ-system with root r,
such that there is a $N \in \omega$ with $\left|\operatorname{dom}\left(p_{\alpha}\right)\right|=N$ for each $\alpha \in \omega_{1}$ and all the functions agree on r. Moreover, we can assume that $\operatorname{dom}\left(p_{\alpha}\right) \cap \operatorname{dom}\left(p_{b}\right)=\varnothing$ for every $\alpha, \beta \in \omega_{1}$, and $\max \left(\operatorname{dom}\left(p_{\alpha}\right)\right)<\min \left(\operatorname{dom}\left(p_{\beta}\right)\right)$ if $\alpha<\beta$. Now, set $\operatorname{dom}\left(p_{\omega \cdot N+1}\right)=\left\{\xi_{1}, \ldots, \xi_{N}\right\}$. Since $p_{\omega \cdot N+1}$ is incompatible with p_{α} for every $\alpha<\omega \cdot N+1,\left(\bigcup_{i=1}^{N} C_{\xi_{i}}\right) \cap \operatorname{dom}\left(p_{\alpha}\right) \neq \varnothing$ for every $\alpha<\omega \cdot N+1$. Then by the pigeon hole principle there is a i such that $\operatorname{ot}\left(C_{\xi_{i}}\right) \geq \omega+1$. However, this contradicts the fact that $\left\langle C_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a C-sequence, so we are done.

We conclude with some open problems.
Questions 13. (1) Does $w \star_{1}$ imply \star_{1} ?
(2) Does $w \star_{0}$ imply \star_{0} ?
(3) Does imply \star_{0} ?

An early version of this paper contained also the following questions: (4) Does \diamond^{+}imply \star_{1} ? and (5) Does \diamond imply \star_{0} ?

These questions were answered by Paul Larson. we present the proof with his kind permission.

Theorem 14 (Larson).
(i) \diamond implies \star_{0}.
(ii) \diamond^{+}implies \star_{1}.

Proof. Fix for every limit ordinal $\alpha<\omega_{1}$ a strictly increasing sequence $\left\{\alpha_{n}: n \in \omega\right\}$ such that $\sup _{n \in \omega} \alpha_{n}=\alpha$ and let θ be a sufficiently large regular cardinal.

To prove (i) let $\left\langle\varphi_{\alpha}: \alpha<\omega_{1}\right\}$ be a \diamond-sequence which guesses elements of $\omega^{\omega_{1}}$ (i.e. $\varphi_{\alpha} \in \omega^{\alpha}$). Construct recursively a C-sequence $\left\langle S_{\alpha}: \alpha \in \Lambda\right\rangle$ and a sequence $\left\langle e_{n}^{\alpha}: \alpha \in \Lambda, n \in \omega\right\rangle$ of finite subsets of α with the following properties:
(i) $S_{\alpha}=\bigcup_{n \in \omega} e_{n}^{\alpha}$,
(ii) $e_{n}^{\alpha} \sqsubseteq e_{n+1}^{\alpha}, \max \left(e_{n+1}^{\alpha}\right)>\alpha_{n}$,
(iii) $e_{n+1}^{\alpha}=e_{n}^{\alpha} \cup\{\xi\}$, where
$\xi=\min \left\{\eta: \eta>\max \left(e_{n}^{\alpha} \cup\left\{a_{n}\right\}\right) \wedge e_{n}^{\alpha} \sqsubseteq S_{\eta} \wedge \varphi_{\alpha}(\xi)=n\right\}$ if such ξ exists, otherwise $\xi=\alpha_{N}$, where $N=\min \left\{k: \alpha_{k}>\left(e_{n}^{\alpha} \cup\left\{\alpha_{n}\right\}\right)\right\}$.

Now let us check that $\left\langle S_{\alpha}: \alpha \in \Lambda\right\rangle$ is a \star_{0}-sequence. It follows from (ii) that S_{α} is cofinal in α with order type ω. Let $\varphi: \omega_{1} \rightarrow \omega$ be given. Set $S=\left\{\alpha<\Lambda: \varphi_{\alpha}=\varphi \upharpoonright \alpha\right\}$, since $\left\langle\varphi_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a \diamond-sequence S is a stationary set. Since $C=\left\{\omega_{1} \cap M: M \prec H(\theta)\right.$ such that $\varphi,\left\langle S_{\alpha}\right.$: $\left.\alpha<\Lambda\rangle,\left\langle\varphi_{\alpha}: \alpha<\omega_{1}\right\rangle \in M\right\}$ is a club there is an $M \in C$ such that $M \cap \omega_{1}=\delta \in S$. Suppose that $\varphi(\delta)=n$ and let $e_{n-1}^{\delta}=S_{\delta} \upharpoonright n-1$ (here $\left.e_{-1}^{\delta}=\varnothing\right)$ then for every $\alpha \in M$

$$
H(\theta) \models \exists \beta>\alpha\left(\varphi(\beta)=n \wedge e_{n-1}^{\delta} \sqsubseteq S_{\beta} .\right.
$$

So, there is an $\alpha \in \delta, \alpha>\left(e_{n}^{\delta} \cup\left\{\alpha_{n}\right\}\right)$ such that $n=\varphi(\alpha)=\varphi_{\delta}(\alpha)$ and $e_{n-1}^{\delta} \sqsubseteq S_{\alpha}$. It follows for the construction of e_{n+1}^{δ} that $e_{n+1}^{\delta}=e_{n}^{\delta} \cup\{\xi\}$ for some ξ with the same properties of α Then we have that $\varphi(\xi)=\varphi(\delta), \xi \in S_{\delta}$ and $S_{\delta} \cap \alpha=e_{n-1}^{\delta} \sqsubseteq S_{\xi}$.

To prove (ii) let $\left\langle\mathcal{A}_{\alpha}: \alpha<\omega_{1}\right\}$ be a \diamond^{+}-sequence. Enumerate \mathcal{A}_{α} as $\left\{A_{n}^{\alpha}: n \in \omega\right\}$. Construct recursively a C-sequence $\left\langle S_{\alpha}: \alpha \in \Lambda\right\rangle$ and a sequence $\left\langle e_{n}^{\alpha}: \alpha \in \Lambda, n \in \omega\right\rangle$ of finite subsets of α with the following properties:
(i) $S_{\alpha}=\bigcup_{n \in \omega} e_{n}^{\alpha}$,
(ii) $e_{n}^{\alpha} \sqsubseteq e_{n+1}^{\alpha}, \max \left(e_{n+1}^{\alpha}\right)>\alpha_{n}$,
(iii) $e_{n+1}^{\alpha}=e_{n}^{\alpha} \cup\{\xi\}$, where
$\xi=\min \left\{\eta: \eta>\max \left(e_{n}^{\alpha} \cup\left\{a_{n}\right\}\right) \wedge e_{n}^{\alpha} \sqsubseteq S_{\eta} \wedge(\xi) \in A_{n+1}^{\alpha}\right\}$ if such ξ exists, otherwise $\xi=\alpha_{N}$, where $N=\min \left\{k: \alpha_{k}>\left(e_{n}^{\alpha} \cup\left\{\alpha_{n}\right\}\right)\right\}$.

Now let us check that $\left\langle S_{\alpha}: \alpha \in \Lambda\right\rangle$ is a \star_{1}-sequence. It follows from (ii) that S_{α} is cofinal in α with order type ω. Let S a stationary. Set $D=\{\alpha<$ $\left.\Lambda: S \cap \alpha \in \mathcal{A}_{\alpha}\right\}$, since $\left\langle\mathcal{A}_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a \diamond^{+}-sequence D is a club. Since $C=\left\{\omega_{1} \cap M: M \prec H(\theta)\right.$ such that $\left.S,\left\langle S_{\alpha}: \alpha<\Lambda\right\rangle,\left\langle\mathcal{A}_{\alpha}: \alpha<\omega_{1}\right\rangle \in M\right\}$ is a club there is an $M \in C$ such that $M \cap \omega_{1}=\delta \in S \cap D$. Suppose that $S \cap \delta=A_{n}^{\delta}$ and let $e_{n-1}^{\delta}=S_{\delta} \upharpoonright n-1$ then for every $\alpha \in M$

$$
H(\theta) \models \exists \beta>\alpha\left(\beta \in S \wedge e_{n-1}^{\delta} \sqsubseteq S_{\beta}\right.
$$

So, there is an $\alpha \in \delta, \alpha>\left(e_{n}^{\delta} \cup\left\{\alpha_{n}\right\}\right)$ such that $\alpha \in A_{n+1}^{\delta}$ and $e_{n}^{\delta} \sqsubseteq S_{\alpha}$. It follows for the construction of e_{n+1}^{δ} that $e_{n+1}^{\delta}=e_{n}^{\delta} \cup\{\xi\}$ for some ξ with the same properties of α. Then we have that $\xi \in S, \xi \in S_{\delta}$ and $S_{\delta} \cap \xi=e_{n-1}^{\delta} \sqsubseteq S_{\xi}$.
Acknowledgments. The work contained in this paper is part of the second author's Master's thesis at Universidad Nacional Autónoma de México, written under the supervision of the first author.

References

[1] T. Bartoszyński and H. Judah, "Set Theory on the Structure of the Real Line", A K Peters, 1995.
[2] T. Jech, "Set Theory", Springer Monographs in Mathematics, 2003.
[3] B. König, "A non-special tree", Unpublished Notes.
[4] K. Kunen, "Set Theory: An Introduction to Independence Proofs", North-Holland, Amsterdam, 1980.
[5] S. Todorčević, "Partitioning pairs of countable ordinals", Acta Math., 159 (3-4): 261-294, 2000.
[6] S. Todorčević, "Coherent sequences", In Handbook of Set Theory, North-Holland, (in preparation).

Instituto de Matemáticas, UnAM (Morelia), Apartado postal 61-3 (Xangari), Morelia Michoacán, México, 58089.
E-mail address: michael@matmor.unam.mx
Instituto de Matemáticas, UnAM (Morelia), Apartado postal 61-3 (Xangari), Morelia Michoacán, México, 58089.
E-mail address: azarel@matmor.unam.mx

[^0]: 2000 Mathematics Subject Classification. Primary 03E05, 03E35.
 Key words and phrases. Aronszajn tree, guessing principle.
 The research was supported PAPIIT grant IN106705 and the first author's research was also partially supported by CONACYT grant 40057-F.

