

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Spaces determined by selections $\stackrel{\star}{\approx}$

Michael Hrušák*, Iván Martínez-Ruiz

Instituto de Matemáticas, UNAM, Apartado Postal 61-3, Xangari, 58089, Morelia, Michoacán, Mexico

ARTICLE INFO

ABSTRACT

Article history: Received 2 December 2008 Received in revised form 13 June 2009 Accepted 18 June 2009

MSC: primary 54C65 secondary 54B20

Keywords: Weak selection Spaces determined by selections A function $\psi : [X]^2 \to X$ is a called a *weak selection* if $\psi (\{x, y\}) \in \{x, y\}$ for every $x, y \in X$. To each weak selection ψ , one associates a topology τ_{ψ} , generated by the sets $(\leftarrow, x) = \{y \neq x: \psi(x, y) = y\}$ and $(x, \to) = \{y \neq x: \psi(x, y) = x\}$. Answering a question of S. García-Ferreira and A.H. Tomita [S. García-Ferreira, A.H. Tomita, A non-normal topology generated by a two-point selection, Topology Appl. 155 (10) (2008) 1105–1110], we show that (X, τ_{ψ}) is completely regular for every weak selection ψ . We further investigate to what extent the existence of a continuous weak selection on a topological space determines the topology of X. In particular, we answer two questions of V. Gutev and T. Nogura [V. Gutev, T. Nogura, Selection problems for hyperspaces, in: E. Pearl (Ed.), Open Problems in Topology 2, Elsevier B.V., 2007, pp. 161–170].

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

E. Michael initiated the study of continuous selections in 1951 with his seminal paper [7]. He considered the hyperspace 2^{X} of all non-empty closed subsets of X, equipped with the *Vietoris topology*, i.e. the topology on 2^{X} generated by sets of the form

 $\langle U; V_0, \ldots, V_n \rangle = \{ F \in 2^X : F \subseteq U \text{ and } F \cap V_i \neq \emptyset \text{ for any } i \leq n \},\$

where U, V_0, \ldots, V_n are open subsets of X.

A function ψ defined on $[X]^2$, the collection of all subsets of X with exactly two points, such that $\psi(\{x, y\}) \in \{x, y\}$ for every $x, y \in X$ is called a *weak selection on X*. A weak selection is *continuous* if it is continuous with respect to the Vietoris topology on $[X]^2$, treating $[X]^2$ as a subspace of 2^X .

The general question studied in Michael's article, and many subsequent articles, is: *When does a space admit a continuous weak selection*? In his paper, E. Michael has proved that every space that admits a weaker topology generated by a linear order, i.e. that the space is *weakly orderable*, also admits a continuous weak selection. The natural question whether the converse is also true, implicit in Michael's paper, was stated explicitly by van Mill and Wattel in [8]: *Is every space that admits a continuous weak selection weakly orderable*?

We have recently answered this question in the negative by constructing a separable, first countable locally compact space *X* which admits a continuous weak selection but is not weakly orderable [6].

In this paper we investigate to what extent the existence of a continuous weak selection on a topological space determines the topology of *X*. We show that for every weak selection ψ on a set *X*, the topology τ_{ψ} induced by ψ is Tychonoff,

* Corresponding author. *E-mail addresses:* michael@matmor.unam.mx (M. Hrušák), ivan@matmor.unam.mx (I. Martínez-Ruiz).

^{*} Authors gratefully acknowledge support from PAPIIT grant IN101608 and CONACyT grant 46337. Second author is supported by the Consejo Nacional de Ciencia y Tecnología CONACyT, México. Scholarship 189295.

answering a question of S. García-Ferreira and A.H. Tomita [1]. We introduce the notion of a space *determined by selections* and its weak and strong form. We study these classes of spaces. In particular, we answer two questions of V. Gutev and T. Nogura [5]. We conclude with some open problems.

All spaces considered here are at least Hausdorff. The set-theoretic and topological notation used is standard, possibly with one exception, we denote by f''A the forward image of a set A via a function f.

Given a weak selection on a set *X* and *x*, $y \in X$, we write $y \to x$ (or equivalently $x \leftarrow y$) if $\psi(x, y) = x$. Some authors use the notation $x \leq_{\psi} y$ to denote $x \leftarrow y$ or x = y (see [7], for example). If $A \subseteq X$ and $B \subseteq X$, we write $A \rightrightarrows B$ whenever $a \to b$ for every $a \in A$ and $b \in B$, and we say that $A \parallel B$ if $A \rightrightarrows B$ or $B \rightrightarrows A$.

It is well known that the relation \leq_{ψ} is reflexive and antisymmetric but, in general, it is not transitive. However, as in the case of an order, it induces a topology on *X*. Indeed, for every $x \in X$, consider the following sets:

 $(\leftarrow, x)_{\psi} = \{z \in X \colon z \leftarrow x\},\$

 $(x, \to)_{\psi} = \{z \in X \colon x \leftarrow z\}.$

We denote by τ_{ψ} the topology generated by sets of the form $(\leftarrow, x)_{\psi}$ and $(x, \rightarrow)_{\psi}$, $x \in X$, and call it the *topology generated* by the weak selection ψ .

Analogously, we introduce the following notation:

$$(\leftarrow, x]_{\psi} = \{x\} \cup (\leftarrow, x)_{\psi},$$
$$[x, \rightarrow)_{\psi} = \{x\} \cup (x, \rightarrow)_{\psi},$$
$$(x, y)_{\psi} = (x \rightarrow)_{\psi} \cap (\leftarrow, y)_{\psi}, \text{ and }$$
$$[x, y]_{\psi} = [x \rightarrow)_{\psi} \cap (\leftarrow, y]_{\psi}.$$

2. Topological properties of τ_{ψ}

Topologies generated by weak selections were studied in [4]. In particular, the following result holds:

Proposition 2.1. ([4]) Let ψ be a weak selection defined on X. Then (X, τ_{ψ}) is a regular space.

In the same paper, the authors ask if (X, τ_{ψ}) is always normal. This question was recently answered in the negative:

Example 2.2. ([1]) There is a weak selection ψ defined on \mathbb{P} , the set of irrational numbers, such that $(\mathbb{P}, \tau_{\psi})$ is not normal.

This example is not normal but it is Tychonoff. Motivated by this observation, the original question was reformulated in [1] as follows:

Question 2.3. Are there a set X and a weak selection ψ on X such that the space (X, τ_{ψ}) is not Tychonoff?

In order to answer this question in the negative, let us first analyze an immediate consequence of the existence of special triples on *X* with respect to a given weak selection.

Given *x*, *y*, *z* in *X* and ψ a weak selection on *X*, we say that the triple {*x*, *y*, *z*} is a 3-*cycle* with respect to ψ if $x \rightarrow y \rightarrow z \rightarrow x$ (or $x \leftarrow y \leftarrow z \leftarrow x$).

Notice that if a set *X* does not admit 3-cycles with respect to a weak selection ψ , then the relation \leq_{ψ} induced by ψ is transitive and the space (X, τ_{ψ}) is orderable.

On the other hand, every 3-cycle naturally determines a clopen partition of X, as the following proposition shows. This observation appears in [6], we present the simple proof here for the sake of completeness.

Proposition 2.4. Let ψ be a weak selection on a set X and let $x, y, z \in X$ be such that $\{x, y, z\}$ is a 3-cycle with respect to ψ . Then there is a (canonical) partition \mathcal{P} of X so that $|\mathcal{P}| \leq 5$, P is τ_{ψ} -clopen and $|\{x, y, z\} \cap P| \leq 1$ for every $P \in \mathcal{P}$.

Proof. Assume that $x \to y \to z \to x$. Consider the following sets:

 $P_{0} = (y, z)_{\psi},$ $P_{1} = (z, x)_{\psi},$ $P_{2} = (x, y)_{\psi},$ $P_{3} = (\leftarrow, x)_{\psi} \cap (\leftarrow, y)_{\psi} \cap (\leftarrow, z)_{\psi}, \text{ and }$ $P_{4} = (x, \rightarrow)_{\psi} \cap (y, \rightarrow)_{\psi} \cap (z, \rightarrow)_{\psi}.$

It is easy to see that $\mathcal{P} = \{P_i: i < 5\}$ is a partition of *X* and, clearly, P_i is open (hence clopen) for every i < 5. Also, $x \in P_0, y \in P_1$ and $z \in P_2$. \Box

Given a space X, we denote by C_x the *quasicomponent* of x on X and by C_x^* the *component* of x:

 $C_x = \bigcap \{C \subseteq X : C \text{ is clopen and } x \in C\},\$ $C_x^* = \bigcup \{C \subseteq X : C \text{ is connected and } x \in C\}.$

The following result is due to Gutev and Nogura.

Lemma 2.5. ([2]) Let ψ be a weak selection on a set X. If $x \in X$ and $y, z \in C_x$, where C_x is the τ_{ψ} -quasicomponent of x, then $[y, z]_{\psi} \subseteq C_x$.

Proof. Suppose that $y, z \in C_x$ are such that $y \leftarrow z$. If there is a $w \in [y, z]_{\psi} \setminus C_x$ then, since $w \notin C_x$, we can find a clopen subset $V \subseteq X$ with $x \in V$ (and so $C_x \subseteq V$) and $w \notin V$. Then the clopen set $W = V \cap (\leftarrow, w]_{\psi} = V \cap (\leftarrow, w)_{\psi}$ is such that $y \in W$ and $z \notin W$, which is a contradiction. \Box

In a similar way, it is also proved in [2] that $[y, z]_{\psi}$ must be connected, and so $C_x = C_x^*$, i.e. C_x is connected.

Lemma 2.6. Let $x \neq y \in X$ and let ψ be a weak selection on X such that $x \leftarrow y$. Then there are τ_{ψ} -continuous functions $f : X \rightarrow [0, 1]$ and $g : X \rightarrow [0, 1]$ such that:

(1) f(x) = 1 and $f''[y, \to)_{\psi} = \{0\},$ (2) g(y) = 1 and $g''(\leftarrow, x]_{\psi} = \{0\}.$

Proof. We will prove (1), the proof of (2) is completely analogous. There are two possible cases:

Case 1: There is a clopen $C \subseteq X$ such that $x \in C$ and $y \notin C$.

In this case, let $U = C \cap (\leftarrow, y)_{\psi}$. Notice that also $U = C \cap (\leftarrow, y]_{\psi}$ and so U is a clopen subset containing x. Define $f: X \to [0, 1]$ by f(z) = 1 if $z \in U$ and f(z) = 0 otherwise.

Case 2: For every $C \subseteq X$ clopen, $x \in C$ if and only if $y \in C$.

Notice first that, by Lemma 2.5, the point *x* determines a finite partition \mathcal{P} of *X*, which consists of the closed connected subset C_x and two open subsets: $U_0 = \{z \in X \setminus C_x : C_x \rightrightarrows \{z\}\}$ and $U_1 = \{z \in X \setminus C_x : \{z\} \rightrightarrows C_x\}$. The idea of the proof will be to first define the desired continuous function on a particular closed subset of C_x containing *x* and *y* and to finally extend it to the whole space.

Consider the quasicomponent C_x . By Proposition 2.4, $\leq_{\psi} \upharpoonright (C_x \times C_x)$ is a transitive relation since, as otherwise, there would be a $z \in C_x$ and $C \subseteq C_x$ clopen such that $x \in C$ and $z \notin C$, which is not possible. Therefore C_x , as a subspace of (X, τ_{ψ}) , is a connected orderable space. In particular, C_x is normal and $[x, y]_{\psi}$, being a closed subset of C_x , is normal also.

Let $h:[x, y]_{\psi} \to [0, 1]$ be a continuous function such that h(x) = 1 and h(y) = 0.

Finally, define $f: X \to [0, 1]$ by

$$f(u) = \begin{cases} 1, & \text{if } u \in (\leftarrow, x]_{\psi}, \\ h(u), & \text{if } u \in [x, y]_{\psi}, \\ 0, & \text{if } u \in [y, \rightarrow)_{\psi}. \end{cases}$$

The function f is well defined because $(\leftarrow, x]_{\psi} \cap [x, y]_{\psi} = \{x\}, [x, y]_{\psi} \cap [y, \rightarrow)_{\psi} = \{y\}$ and $(\leftarrow, x]_{\psi} \cap [y, \rightarrow)_{\psi} = \emptyset$. Moreover, since f is continuous on each of these τ_{ψ} -closed sets, it is continuous on X. \Box

Theorem 2.7. Let ψ be a weak selection on a set X. Then (X, τ_{ψ}) is Tychonoff.

Proof. Let $x \in X$ and let U be a basic neighbourhood of x. Then there are $z_0, \ldots, z_n \in X \setminus \{x\}$, for some $n \in \omega$, such that $U = \bigcap \{U_i: i \leq n\}$, where $U_i = (z_i, \rightarrow)_{\psi}$ if $z_i \leftarrow x$ and $U_i = (\leftarrow, z_i)$ otherwise. By Lemma 2.6, for every $i \leq n$ we can find a continuous function $f_i: X \rightarrow [0, 1]$ such that $f_i(x) = 1$ and $f''_i[X \setminus U_i] = \{0\}$. Let $f: X \rightarrow [0, 1]$ be defined by $f = \prod \{f_i: i \leq n\}$. Clearly, f is continuous and f(x) = 1. If $z \notin U$ then $z \notin U_i$ for some $i \leq n$ and so $f_i(z) = 0$, which implies that f(z) = 0. Therefore, $f''(X \setminus U) = \{0\}$. We conclude that (X, τ_{ψ}) is Tychonoff. \Box

3. Topologies generated by selections

The first result that establishes a relationship between a (continuous) weak selection defined on a space and the topology this selection generates is the following:

Proposition 3.1 ([3]). Let ψ be a continuous weak selection on a Hausdorff space (X, τ) . Then $\tau_{\psi} \subseteq \tau$.

As mentioned above, the answer to van Mill and Wattel's question is negative, i.e. there is a space X which admits a continuous weak selection but which is not weakly orderable. One might ask, whether this question has a positive answer assuming that there is a closer relationship between the original topology on X and the topology generated by the weak selection on X. Motivated by this, we introduce the following definitions.

Definition 3.2. Let (X, τ) be a topological space. We say that:

- (1) X is weakly determined by selections (**wDS**) if there is a weak selection ψ on X so that $\tau = \tau_{\psi}$.
- (2) X is determined by selections (**DS**) if there is a continuous weak selection ψ on X so that $\tau = \tau_{\psi}$.
- (3) X is strongly determined by selections (**sDS**) if X is **DS** and $\tau = \tau_{\psi}$ for every continuous weak selection ψ on X.

Given a weak selection ψ on a space (X, τ) , it is not always true that ψ is τ_{ψ} -continuous, even when ψ is τ -continuous [3]. On the other hand, the next result states that if there is a coarser topology on a given set so that a weak selection defined on it is continuous, this topology must be precisely the topology determined by the weak selection itself. This answers Question 7 of Gutev and Nogura [5] in the negative.

Proposition 3.3. Let ψ be a weak selection on a set X. Then τ_{ψ} is the intersection of all Hausdorff topologies τ on X such that ψ is τ -continuous.

In particular, there exists the coarsest topology τ^* on X such that ψ is τ^* -continuous if and only if ψ is τ_{ψ} -continuous, and then $\tau^* = \tau_{\psi}$.

Proof. Since τ_{ψ} is contained in any Hausdorff topology on *X* for which the weak selection ψ is continuous, if we consider the topology:

 $\tau^* = \bigcap \{\tau : \tau \text{ is a Hausdorff topology on } X \text{ and } \psi \text{ is } \tau \text{-continuous} \},$

we have that $\tau_{\psi} \subseteq \tau^*$. We only need to prove that $\tau^* \subseteq \tau_{\psi}$.

For $x \in X$, define the set:

 $\mathfrak{N}_x = \{ U \subseteq X \colon x \in U \text{ and } U \text{ is } \tau_{\psi} \text{-open} \}.$

For every $x \in X$, let τ_x be the topology on X generated by $\mathfrak{N}_x \cup \{\{y\}: y \in X \setminus \{x\}\}$. Let $y \in X \setminus \{x\}$ and, without loss of generality, suppose that $x \leftarrow y$. Then $U_x = (\leftarrow, y)_{\psi}$ and $U_y = \{y\}$ are disjoint τ_x -open neighbourhoods of x and y respectively, and so τ_x is Hausdorff. Moreover, since $\{y\} \rightrightarrows U_x$, the weak selection ψ is τ_x -continuous.

Therefore, $\tau^* \subseteq \bigcap \{\tau_x : x \in X\}$. However, this implies that $\tau^* \subseteq \tau_{\psi}$. \Box

Now we turn our attention to **DS** spaces. Any orderable space is a **DS** space: The selection min determines the order topology. The next example shows that orderability is not a necessary condition.

Denote by \mathbb{R}_l the *Sorgenfrey line*, i.e. the real numbers \mathbb{R} equipped with the topology τ_l given by the basis

 $\mathcal{B} = \big\{ [a, b) \colon a, b \in \mathbb{R}, \ a < b \big\},\$

and by \mathbb{R}^*_l the topological space on the real line having as basis the collection:

 $\mathcal{B}^* = \{(a, b]: a, b \in \mathbb{R}, a < b\},\$

which is, of course, homeomorphic to \mathbb{R}_l .

It is well known that \mathbb{R}_l is a suborderable space which is not orderable.

The next result states that the topology on the Sorgenfrey line can be determined by a continuous weak selection defined on it.

Example 3.4. \mathbb{R}_l is a suborderable **DS** space which is not orderable.

Proof. Let $X = \bigcup \{X_n \times \{n\}: n \in \omega\}$, where $X_n = \mathbb{R}_l$ if *n* is odd and $X_n = \mathbb{R}_l^*$ if *n* is even. Notice that $(\mathbb{R}_l, \tau_l) \cong (X, \tau)$, where τ is the topology of disjoint sum. Define $\psi : [X]^2 \to X$ as follows:

 $\psi(\{(x, n), (y, m)\}) = (x, n)$ if and only if one of the following occurs:

- (1) x < y and $|n m| \leq 1$,
- (2) x = y, n = 2k + 1 for some $k \in \omega$ and |n m| = 1, (3) m - n > 2, or
- (4) n m = 2.

Let us first prove that $\tau \subseteq \tau_{\psi}$. Fix $n \in \omega$ and let $x, y \in \mathbb{R}$ be such that x < y. Let

 $U = \left((x, n+1), \rightarrow \right)_{\psi} \cap \left(\leftarrow, (y, n+1) \right)_{\psi} \cap \left(\leftarrow, (x, n+3) \right)_{\psi}.$

Then $U = (x, y] \times \{n\}$ if *n* is odd and $U = [x, y) \times \{n\}$ if *n* is even. This proves that $\tau \subseteq \tau_{\psi}$ and, in particular, $X_n \times \{n\}$ is τ_{ψ} -clopen for every $n \in \omega$.

To prove that $\tau_{\psi} \subseteq \tau$, it is enough to verify that ψ is τ -continuous. For this, let $(x, n), (y, m) \in X$ be such that $(x, n) \neq (y, m)$ and $\psi((x, n), (y, m)) = (x, n)$. There are three possible cases:

Case 1: n = m.

Let $z \in \mathbb{R}$ be such that x < z < y. Then $U = (x - 1, z) \times \{n\}$ and $V = (z, y + 1) \times \{n\}$ are disjoint τ -open neighbourhoods of (x, n) and (y, n) respectively such that $V \rightrightarrows U$. Therefore, ψ is continuous at $\{(x, n), (y, n)\}$.

Case 2: |n - m| = 1.

If x < y then continuity is verified as in Case 1. If x = y then *n* is odd and *m* is even. In this case, $U = (x - 1, x] \times \{n\}$ and $V = [x, x + 1) \times \{m\}$ are τ -neighbourhoods of (x, n) and (y, m) respectively, with $V \rightrightarrows U$, which implies continuity of ψ on $\{(x, n), (y, n)\}$.

Case 3: |n - m| > 1.

 $U = X_n \times \{n\}$ and $V = X_m \times \{m\}$ are neighbourhoods of (x, n) and (y, m) with $V \rightrightarrows U$. \Box

It is also easy to see that suborderable spaces do not have to be DS.

Example 3.5. $X = (0, 1) \cup \{2\}$, as subspace of \mathbb{R} , is suborderable but not a **DS** space.

Proof. If ψ is a continuous weak selection on *X* then note that $\psi \upharpoonright [(0, 1)]^2$ must be either the weak selection min or the weak selection max. Without loss of generality, let us suppose that $\tau \upharpoonright [(0, 1)]^2 = \min$. If there is a point $z \in (0, 1)$ so that $\psi(z, 2) = z$ then $\psi(z, 2) = z$ for all $x \in (0, 1)$ and so $(X, \tau_{\psi}) \cong (0, 1]$.

On the other hand, if (z, 2) = 2 for some $z \in (0, 1)$ then $\{2\} \Rightarrow (0, 1)$, which implies that $(X, \tau_{\psi}) \cong [0, 1)$. In any case, $(X, \tau_{\psi}) \neq (X, \tau)$. \Box

In an earlier version of this article, we asked if every **wDS** space must be weakly orderable and if every normal **wDS** space is **DS**. As pointed out by the referee, the following example answers both questions in the negative.

Example 3.6. Let $X = \{(x, 0) \in \mathbb{R}^2 : x \in [-1, 1]\} \cup \{(0, \frac{1}{n}) \in \mathbb{R}^2 : n \in \omega \setminus \{0\}\}$ with the subspace topology. Define $\psi : [X]^2 \to X$ by

(1) $\psi(\{(x, 0), (y, 0)\}) = (\min(x, y), 0),$ (2) $\psi(\{(0, \frac{1}{n}), (0, \frac{1}{m})\}) = (0, \max\{n, m\}), \text{ and}$ (3) $\psi(\{(x, 0), (0, \frac{1}{n})\}) = (x, 0) \text{ if and only if } x \le 0.$

Then τ_{ψ} is the usual topology on X, as a subspace of \mathbb{R}^2 , but X does not admit a continuous weak selection.

As far as **sDS** spaces are concerned, every weakly orderable **sDS** space is, in fact, orderable. On the other hand, every compact **DS** space is **sDS**. It is also true that every connected locally connected **DS** space is **sDS** (see [9]). The following question was asked in [5].

Question 3.7. Is there a non-compact sDS that is neither connected nor locally connected?

The following example answers this question in the affirmative.

Example 3.8. There is a sDS space which is neither compact nor locally compact nor connected nor locally connected.

1452

Proof. Let $X = \bigcup \{U_n : n \in \omega\}$, where $U_0 = (-1, 0]$ and $U_n = (\frac{1}{n+1}, \frac{1}{n})$ for every n > 0, with the subspace topology. The space *X* is obviously not compact or connected and it is neither locally compact or locally connected at the point 0.

The space *X* is obviously not compact or connected and it is neither locally compact or locally connected at the point 0. Clearly *X* is a **DS** space (the weak selection min induces the topology on *X*). To prove that *X* is **sDS**, let ψ be a continuous weak selection on *X*.

For any $n, m \in \omega$, $U_n \parallel U_m$ and either $\psi \upharpoonright [U_n]^2 = \min$ or $\psi \upharpoonright [U_n]^2 = \max$. Notice that if $x \in X \setminus \{0\}$ and U is an open neighbourhood of x, then there are $a, b \in X$ such that $x \in (\langle -, b \rangle_{\psi} \cap (a, \rightarrow)_{\psi} \subseteq U$. Therefore, we only need to prove that any basic open neighbourhood of 0 in X contains an open τ_{ψ} -neighbourhood of it.

Let $U = (a, b) \cap X$ be an open neighbourhood of 0 and suppose that $\psi(a, 0) = a$ (the case when $\psi(a, 0) = 0$ is completely analogous). We can also suppose that $b = \frac{1}{n}$ for some $n \in \omega$ and, by continuity of ψ , that $(U \setminus U_0) \Rightarrow U_0$. Let $F = \{0 < k < n: U_k \Rightarrow U_0\}$. If F is empty then, for every k < n, $\{a\} \Rightarrow U_k$, which guarantees that $(a, \rightarrow)_{\psi} \cap (\leftarrow, b)_{\psi} \subseteq (a, b)$ and, in this case, $W = (a, \rightarrow)_{\psi} \cap (\leftarrow, b)_{\psi}$ is as desired. We can suppose then that F is non-empty.

Notice that $U_k \rightrightarrows \{0\}$ for every $k \in F$ and so, by continuity of ψ , we can find an m > n such that $\bigcup \{U_k: k \in F\} \rightrightarrows \bigcup \{U_s: s > m\}$. Let $z \in U_{m+1}$ and consider the neighbourhood $W = (a, \rightarrow)_{\psi} \cap (\leftarrow, z)_{\psi}$.

As $z \in U \setminus U_0$, W is an open τ_{ψ} -neighbourhood of 0. If $x \in X \setminus U$ then either $x \in (0, a]$ or $x \in U_k$ for some k < n. In the first case, $\psi(x, a) = x$ and then $x \notin W$. Otherwise, if $x \in U_k$ for some $k \notin F$ then, since $U_0 \rightrightarrows U_k$, $\psi(x, a) = x$ and again $x \notin W$. Finally, if $x \in U_k$ for some $k \in F$ then $\psi(x, z) = z$ and then $x \notin W$. We conclude that $W \subseteq U$ and so $\tau_{\psi} = \tau$. \Box

We conclude with some open problems.

Question 3.9. Is every DS space weakly orderable?

Question 3.10. Is every DS space normal?

Question 3.11. Is there a characterization of DS spaces in terms of an orderability property?

Question 3.12. Is every sDS space orderable?

Question 3.13. Let X be a non-compact **sDS** space. Is then the set $\{x: X \text{ is locally connected at } x\}$ dense in X?

Acknowledgement

The authors would like to thank the anonymous referee for careful reading of the manuscript and for providing Example 3.6.

References

- [1] S. García-Ferreira, A.H. Tomita, A non-normal topology generated by a two-point selection, Topology Appl. 155 (10) (2008) 1105–1110.
- [2] V. Gutev, T. Nogura, Vietoris continuous selections and disconnectedness-like properties, Proc. Amer. Math. Soc. 129 (9) (2001) 2809–2815.
- [3] V. Gutev, T. Nogura, Selections and order-like relations, Appl. Gen. Topol. 2 (2001) 205–218.
- [4] V. Gutev, T. Nogura, A topology generated by selections, Topology Appl. 153 (2005) 900-911.
- [5] V. Gutev, T. Nogura, Selection problems for hyperspaces, in: E. Pearl (Ed.), Open Problems in Topology 2, Elsevier B.V., 2007, pp. 161–170.
- [6] M. Hrušák, I. Martínez-Ruiz, Selections and weak orderability, Fund. Math. 203 (2009) 1-20.
- [7] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951) 152-182.
- [8] J. van Mill, E. Wattel, Selections and orderability, Proc. Amer. Math. Soc. 83 (1981) 601-605.
- [9] T. Nogura, D. Shakhmatov, Characterizations of intervals via continuous selections, Rend. Circ. Mat. Palermo (2) 46 (2) (1997) 317-328.