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Abstract. In this article we, given a free ultrafilter p on ω, consider the following classes
of ultrafilters:

(1) T (p) - the set of ultrafilters Rudin-Keisler equivalent to p,
(2) S(p) = {q ∈ ω∗ : ∃ f ∈ ωω, strictly increasing, such that q = f β(p)},
(3) I (p) - the set of strong Rudin-Blass predecessors of p,
(4) R(p) - the set of ultrafilters equivalent to p in the strong Rudin-Blass order,
(5) PRB(p) - the set of Rudin-Blass predecessors of p, and
(6) PRK(p) - the set of Rudin-Keisler predecessors of p,

and analyze relationships between them. We introduce the semi-P -points as those ultrafilters
p ∈ ω∗ for which PRB(p) = PRK(p), and investigate their relations with P -points, weak-
P -points and Q-points. In particular, we prove that for every semi-P -point p its α-th left
power αp is a semi-P -point, and we prove that non-semi-P -points exist in ZFC. Further,
we define an order � in T (p) by r � q if and only if r ∈ S(q). We prove that (S(p),�)
is always downwards directed, (R(p),�) is always downwards and upwards directed, and
(T (p),�) is linear if and only if p is selective.

We also characterize rapid ultrafilters as those ultrafilters p ∈ ω∗ for which R(p)\S(p)
is a dense subset of ω∗.

A space X is M-pseudocompact (for M ⊂ ω∗) if for every sequence (Un)n<ω of dis-
joint open subsets of X, there are q ∈ M and x ∈ X such that x = q-lim(Un); that is,
{n < ω : V ∩ Un �= ∅} ∈ q for every neighborhood V of x. The PRK(p)-pseudocompact
spaces were studied in [ST].

In this article we analyze M-pseudocompactness when M is one of the classes S(p),
R(p), T (p), I (p), PRB(p) and PRK(p). We prove that every Frolı́k space is S(p)-pseudo-
compact for every p ∈ ω∗, and determine when a subspace X ⊂ βω with ω ⊂ X is
M-pseudocompact.
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58089 Morelia Michoacan, México. e-mail: michael@matmor.unam.mx
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0. Introduction, basic definitions and preliminaries

As usual,ω represents the set of finite ordinals with the discrete topology. Its Stone-
Čech compactification, βω, is considered as the set of ultrafilters on ω equipped
with the Stone topology. The remainder ω∗ = βω \ ω consists of the free ultra-
filters on ω. For a function f : ω → ω, f β : βω → βω denotes the continuous
extension of f . Note that f β(p) ∈ ω∗ as long as f is not constant on a set in p.
The Rudin-Keisler (pre)-order on ultrafilters is defined by p ≤RK q if there is an
f ∈ ωω such that p = f β(q).

Two ultrafilters p, q are of the same type (p ≈ q) if there is a permutation of
ω sending one ultrafilter to the other. For a subset B of ω, a function f : B → ω

is strictly increasing (resp., non-decreasing) on A ⊂ B if f (n) < f (m) (resp.,
f (n) ≤ f (m)) for each n < m ∈ A; and f : B → ω is finite-to-one on A ⊂ B if
|f−1(k) ∩ A| < ω for each k ∈ ω. A function f is strictly increasing (resp., non-
decreasing, finite-to-one) if it is strictly increasing (resp., non-decreasing, finite-
to-one) on its domain. As usual, if f : X → Y is a function andA ⊂ X, then f � A
denotes the restriction of f to A. By Sym(ω) we denote the set of permutations
on ω and by ω↗ω the set of strictly increasing functions. Nd(ω) denotes the set
of non-decreasing functions from ω to ω, and Fo(ω) consists of the finite-to-one
functions fromω toω. IfA is a subset ofω, A↗ω = {f ∈ ωω : f is strictly increas-
ing on A}. Finally, P(ω↗ω) consists of functions defined on an infinite subset of
ω which are strictly increasing in their domains.

The Rudin-Blass order, ≤RB , is the variant of the Rudin-Keisler order where
the witnessing function is required to be finite-to-one and strong Rudin-Blass order,
≤RB+ requires the witnessing function to be non-decreasing. For more information
on these orderings consult [vM] and [LZ].

Definition 0.1. Let p ∈ ω∗. Let:

(1) T (p) = {q ∈ ω∗ : ∃ σ ∈ Sym(ω) q = σβ(p)},
(2) S(p) = {q ∈ ω∗ : ∃ f ∈ ω↗ω q = f β(p)},
(3) R(p) = {q ∈ ω∗ : ∃ A ∈ p, f ∈ A↗ω q = f β(p)},
(4) I (p) = {q ∈ ω∗ : ∃ f ∈ ωω non-decreasing q = f β(p)},
(5) PRB(p) = {q ∈ ω∗ : ∃ f ∈ ωω finite-to-one q = f β(p)},
(6) PRK(p) = {q ∈ ω∗ : ∃ f ∈ ωω q = f β(p)}.

In Section 1 we study the relationship between the aforementioned classes in
connection with special properties of ultrafilters. Note that the last two classes cor-
respond to Rudin-Blass and Rudin-Keisler predecessors of p, while the class I (p)
is (in the terminology of [LZ]) the class of strong Rudin-Blass predecessors of p.
In [LZ] it is shown, among other things, that PRB(p) = ⋃{T (q) : q ∈ I (p)}. The
set R(p) is the strong Rudin-Blass equivalence class of p, as we will verify later.

In Section 2, we introduce the notion and investigate the properties of semi-
P-points, ultrafilters for which the classes of Rudin-Keisler and Rudin-Blass pre-
decessors coincide. In particular we prove that for a semi-P -point p, its left α-th
power αp is still a semi-P -point, and we prove that non-semi-P -points exist in
ZFC.
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It will also be shown, that this finer classification of ultrafilters, produces (for
every p ∈ ω∗) an ordering � (not a pre-ordering!) on the type of p (i.e. the class of
ultrafilters indistinguishable fromp), defined by s � q ⇔ s ∈ S(q) (see Definition
3.1 below). Properties of this order will be studied in Section 3.

The structure of ultrafilters on a countable set has been extensively studied
during the past decades by both set-theorists and by topologists. They used purely
set-theoretic methods to get topological concepts and to study topological proper-
ties of βω and ω∗ on one hand and on the other hand, translating topological facts
about subspaces of βω to obtain information about the partial preorders defined on
βω or ω∗.

An example of this is the development of the study of covering and conver-
gence properties of spaces modulo ultrafilters. An instance of this is the study of
p-pseudocompactness and PRK(p)-pseudocompactness introduced and analyzed
in [GF] and [ST], respectively.

In this article we are going to refine the concept of PRK(p)-pseudocompact-
ness by considering a finer classification of ultrafilters based on the image via a
strictly increasing function: S(p)-pseudocompactness, R(p)-pseudocompactness,
etc. In Section 4 we will prove that every pseudocompact space belonging to the
Frolı́k class satisfies these new conditions, and in Section 5 we will analyze those
subspaces of βω which contain ω and possess these new properties.

The following are (with one exception) standard:

Definition 0.2. Let p ∈ ω∗. Then:

(1) p is a P-point if for every partition {In : n ∈ ω} of ω into sets not in p there is
an A ∈ p such that |A ∩ In| < ℵ0 for every n ∈ ω,

(2) p is a Q-point if for every partition {In : n ∈ ω} of ω into finite sets there is an
A ∈ p such that |A ∩ In| ≤ 1 for every n ∈ ω,

(3) p is a Q’-point if for every partition {In : n ∈ ω} of ω into intervals there is an
A ∈ p such that |A ∩ In| ≤ 1 for every n ∈ ω,

(4) p is selective if for every partition {In : n ∈ ω} of ω into sets not in p there is
an A ∈ p such that |A ∩ In| ≤ 1 for every n ∈ ω.

(5) p is rapid if for each function h ∈ ωω, there is A ∈ p with |A ∩ h(n)| ≤ n for
every n < ω.

It is obvious that every selective ultrafilter is both a P-point and a Q-point, and
that every Q-point is a Q’-point. Also, p is selective if and only if it is both a P-point
and a Q-point. Another property of selective ultrafilter p needed later on in the text
is its Ramsey property: For every coloring φ : [ω]2 −→ 2 there is an A ∈ p such
that |φ[[A]2]| = 1; in other words, all pairs in A are colored by the same color.
The notion of a Q’-point is merely a matter of convenience and it will be shown in
the text that p is a Q-point if and only if p is a Q’-point. Another way to say that
p is rapid is: For every sequence d0 < d1 < ... < dn < ... there is an A ∈ p such
that di < ai for every i, where A = {ai : i < ω} and ai < ai+1 for all i < ω. It is
easily seen that every Q-point is rapid.

The following well known facts will be used very often in the text.
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Lemma 0.3. Let f ∈ ωω and p ∈ ω∗. Then

(1) f β(p) = {A ⊂ ω : f−1(A) ∈ p}.
(2) f β(p) = p if and only if {n ∈ ω : f (n) = n} ∈ p.
(3) f β(p) ≈ p if and only if there is A ∈ p such that f � A is one-to-one.

Lemma 0.4. Let f, g ∈ ωω and p ∈ ω∗.

(1) If, for an A ∈ p, f � A = g � A, then f β(p) = gβ(p).
(2) (Z. Frolı́k) If f or g is one-to-one, then f β(p) = gβ(p) if and only if Ef,g =

{n ∈ ω : f (n) = g(n)} ∈ p.

Note that clause (2) of Lemma 0.4 does not necessarily hold for arbitraryf andg
(see Example 2.3).

A trivial fact we are also going to use frequently is:

Lemma 0.5. Let f ∈ ω↗ω. Then f (n + k) ≥ f (n) + k for every n, k ∈ ω. In
particular, f (n) ≥ n for every n ∈ ω.

Given a space X, a point p ∈ ω∗ and a sequence s = (Fn)n<ω of subsets of
X, we say that a point x ∈ X is a p-limit of s (in symbols, x = p-lim(Fn)) if
{n < ω : Fn ∩ V �= ∅} ∈ p for each neighborhood V of x (see [GS]).

Let C be a collection of subsets of a space X, and M be a subset of ω∗. We
say that X is MC-compact if for every sequence (Fn)n<ω of disjoint elements of
C, there are x ∈ X and p ∈ M such that x = p-lim(Fn). If C is the collection of
singletons of X, then MC-compactness coincides with M-compactness (see [B]),
and when C is the collection of open subsets of X, then MC-compactness is called
M-pseudocompactness.

Observe that every compact space X is MC-compact for every collection C of
subsets of X and everyM ⊂ ω∗. Moreover, ifM ⊂ N ⊂ ω∗ and D refines C, then
every MD-compact space is NC-compact. In particular, N -compactness implies
N -pseudocompactness. Also, if X is M-compact, then X is countably compact,
and if X is M-pseudocompact, then X is pseudocompact.

We will focus our attention on analyzing M-pseudocompactness, when M is
one of the sets considered in Definition 0.1. Recall the following standard fact.

Lemma 0.6. Let r, p ∈ ω∗ and f ∈ ωω. Then r = p-lim(f (n)) if and only if
f β(p) = r .

A slight generalization of Lemma 0.6 yields:

Proposition 0.7. Letp ∈ ω∗ andf : X → Y be a continuous function. Let (Fn)n<ω
be a sequence of subsets of X. If x = p-lim(Fn), then f (x) = p-lim(f (Fn)).

Corollary 0.8. For every M ⊂ ω∗, M-compactness and M-pseudocompactness
are preserved by continuous functions.

Moreover, for every M ⊂ ω∗, M-compactness is hereditary with respect to
closed subsets, and M-pseudocompactness is inherited by regular closed subsets.

Using Lemma 0.3, it is easy to prove the following (for a proof see [ST, Lemma
2.1.(1)]).
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Lemma 0.9. Let p ∈ ω∗, f : ω → ω and let (Fn)n<ω be a sequence of subsets of
X. Then, for an x ∈ X,

x = f β(p)- lim(Fn) ⇔ x = p- lim(Ff (n)).

Convention 0.10. Throughout the paper we will use the following convention: If
a capital letter, say A, denotes an infinite subset of ω, then the lower case letters
a0, a1, . . . , an, . . . denote its elements in an increasing way (ai < ai+1). More-
over, the lower case letter a denotes the strictly increasing function which lists the
elements of A; that is a(n) = an.

The proofs of the following assertions are standard.

Lemma 0.11. Let f ∈ ωω and A ⊂ ω.

(1) If f � A is a non-decreasing function, then there exists g ∈ Nd(ω) such that
g � A = f � A.

(2) If f � A is a finite-to-one function, then there exists g ∈ Fo(ω) such that
g � A = f � A.

(3) There is g ∈ ω↗ω such that g � A = f � A if and only if f � A is strictly
increasing, a0 ≤ f (a0) and an+1 − an ≤ f (an+1)− f (an) for every n < ω.

Lemma 0.4 and Lemma 0.11 produce:

Corollary 0.12. Let f ∈ ωω and p ∈ ω∗.

(1) If q = f β(p) and f � A is a non-decreasing function for an A ∈ p, then there
exists g ∈ Nd(ω) such that gβ(p) = q.

(2) If q = f β(p) and f � A is a finite-to-one function for an A ∈ p, then there
exists g ∈ Fo(ω) such that gβ(p) = q.

(3) There is g ∈ ω↗ω such that f β(p) = gβ(p) if and only if there is A ∈ p such
that f � A is strictly increasing, a0 ≤ f (a0) and an+1 − an ≤ f (an+1) −
f (an+1) for every n < ω.

(4) We can always find A ∈ p and a function g : ω → ω such that: (a) g � A =
f � A, (b) g(ω \ A) ⊂ ω \ g(A), and (c) gβ(p) = f β(p).

1. Relationships between the classes T (p), S(p), R(p), I (p), PRB (p)
and PRK (p)

As a consequence of Corollary 0.12, we obtain that I (p) = {q ∈ ω∗ : ∃ A ∈ p

and f ∈ ωω such that f is non-decreasing on A and q = f β(p)} and PRB(p) =
{q ∈ ω∗ : ∃ A ∈ p and f ∈ ωω such that f is finite-to-one on A and q = f β(p)}.

Of course, if f and g are strictly increasing (resp. non-decreasing, finite-to-one)
and the range of g is contained in the domain of f , then f ◦ g is strictly increasing
(resp., non-decreasing, finite-to-one). Moreover, every strictly increasing function
is a non-decreasing function, every non-decreasing function is finite-to-one, and if
f : ω → ω is strictly increasing, then f−1 : f [ω] → ω is strictly increasing too.



136 M. Hrušák et al.

Proposition 1.1. Let p ∈ ω∗. Then:

(1) p ∈ S(p) ⊂ R(p) ⊂ T (p) ⊂ PRB(p) ⊂ PRK(p),
(2) R(p) ⊂ I (p) ⊂ PRB(p),
(3) R(p) = T (p) ∩ I (p).
Proof. The only part not entirely trivial in (1) and (2) is R(p) ⊂ T (p). To see
this, let f ∈ ωω be strictly increasing on A ∈ p. We can assume, without loss of
generality, that |ω \ A| = ℵ0. Extend f � A to a permutation σ . Then by Lemma
0.4, σβ(p) = f β(p).

In order to prove (3), take r ∈ T (p) ∩ I (p). There exist f ∈ Sym(ω) and
g ∈ Nd(ω) such thatf β(p) = r = gβ(p). LetA be the set {n < ω : f (n) = g(n)}.
Then A ∈ p and f (and g) is strictly increasing on A. Therefore, r ∈ R(p). ��

We can summarize elementary relationships between the classes as follows:

Theorem 1.2. Let r, p ∈ ω∗. Then

(1) S(p) �= R(p); in particular, S(p) �= T (p) and S(p) �= I (p),
(2) r ∈ S(p) if and only if S(r) ⊂ S(p),
(3) S(r) = S(p) if and only if r = p,
(4) r ∈ I (p) if and only if I (r) ⊂ I (p),
(5) r ∈ R(p) if and only if R(r) ⊂ R(p),
(6) r ∈ R(p) if and only if R(r) = R(p),
(7) R(r) = R(p) or R(r) ∩ R(p) = ∅,
(8) S(r) ∩ S(p) �= ∅ if and only if R(r) = R(p).
(9) r �∈ I (p) if and only ifR(r) ⊂ ω∗ \ I (p), if and only ifR(r)∩ (ω∗ \ I (p)) �= ∅.

Proof. (1) Let A ∈ p such that 0 �∈ A and |ω \ A| = ℵ0. Define g : ω → ω by
g(n) = n− 1 if n ∈ A, and g(n) = 0 otherwise. Then, r = gβ(p) ∈ R(p). If for
somef ∈ ω↗ω,f β(p) = r , then {n < ω : f (n) = g(n)} ∈ p, hence there is ann ∈
ω for which f (n) < n, but this is not possible (Lemma 0.5). Therefore, r �∈ S(p).

(2) and (4) are easy to prove.
(3) The reverse implication is trivial. We prove the direct implication. Assuming

S(r) = S(p), we have functions f, g ∈ ω↗ω such that r = f β(p) and p = gβ(r).
Since (f ◦ g)β(r) = r , f ◦ g is the identity function on a set B ∈ r . On B, both f
and g must be the identity because of monotonicity. So p = gβ(r) = r .

(5) Since r ∈ R(p), there is a function f : ω → ω and there isA ∈ p such that
f � A is strictly increasing, and f β(p) = r . If s ∈ R(r), we can find g : ω → ω

such that gβ(r) = s and a B ∈ r on which g is strictly increasing. Since B ∈ r ,
f−1(B) ∈ p. Let C = A∩ f−1(B). Then (g ◦ f ) � C is strictly increasing, C ∈ p
and (g ◦ f )β(p) = s. So, s ∈ R(p).

(6) Let r ∈ R(p). By (5), R(r) ⊂ R(p). Moreover, there are f : ω → ω

and A ∈ p such that f � A is strictly increasing and f β(p) = r . We have then
that f [A] ∈ r and f−1 : f [A] → ω is strictly increasing. Let h : ω → ω

be defined by h(n) = f−1(n) if n ∈ f [A], and h(n) = 0 if n �∈ f [A]. Then
{n < ω : (h◦f )(n) = n} ∈ p. So,hβ(r) = hβ(f β(p)) = (h◦f )β(p) = p. Buth is
strictly increasing in an element of r , sop ∈ R(r), and this means thatR(p) ⊂ R(r).

(7) This is a consequence of (6).
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(8) If S(r)∩ S(p) �= ∅ then R(r)∩R(p) �= ∅. Using (6) we get R(r) = R(p).
Now, assume that R(r) = R(p). Let A ∈ p and h ∈ A↗ω be such that

hβ(p) = r . By Corollary 0.12.(4) we can assume that h(ω \ A) ⊂ ω \ h(A). Let
bn = h(an) andB = {bn : n < ω}. Note that bn < bm if n < m. Defineψ : B → ω

by ψ(bn) = b0 + ...+ bn+ a0 + ...+ an. By Lemma 0.11.(3) there are two strictly
increasing functions f, g ∈ ω↗ω which extendψ and h′ = ψ ◦h � A, respectively.

Claim. gβ(p) = f β(r).
In fact, by definition of f and g, and using that the domain of ψ is B = h[A],

we have that the composite f ◦ h agrees with g on the set A ∈ p. So, f β(r) =
f β(hβ(p)) = gβ(p).

(9) If R(r) ⊂ ω∗ \ I (p), then r �∈ I (p) because r ∈ R(r). Now, assume
that q ∈ R(r) ∩ I (p). Then, there exists f ∈ A↗ω with A ∈ q such that
f β(q) = r (because of (6)), and there is g ∈ Nd(ω) such that gβ(p) = q.
Then, (f ◦ g)β(p) = f β(gβ(p)) = f β(q) = r . Then A ∈ q, so g−1(A) ∈ p and
(f ◦ g) � g−1(A) is non-decreasing. So r ∈ I (p). ��

The well-known minimality of selective ultrafilters (Q-points) in the Rudin-
Keisler order (Rudin-Blass order) translates directly into:

Lemma 1.3. Let p ∈ ω∗. Then:

(1) p is a Q-point if and only if T (p) = PRB(p),
(2) p is selective if and only if T (p) = PRK(p).

Lemma 1.4. p ∈ ω∗ is a Q’-point if and only if I (p) ⊆ T (p).

Proof. For the direct implication assume that p is a Q’-point and let q ∈ I (p).
Then there is an h ∈ ωω non-decreasing such that q = hβ(p). Let In = h−1({n}).
The family {In : n ∈ ω} constitutes a partition of ω into intervals, so there is an
A ∈ p (|ω \ A| = ℵ0) such that |A ∩ In| ≤ 1 for every n ∈ ω. The function
h � A is then strictly increasing. Extend h � A to a permutation σ . By Lemma 0.4,
q = hβ(p) = σβ(p), and hence q ∈ T (p).

For the reverse implication let {In : n ∈ ω} be an increasing enumeration
of a partition of ω into intervals and let f (m) = n if and only if m ∈ In. As
I (p) ⊆ T (p), there is a permutation σ such that f β(p) = σβ(p) and by Lemma
0.4, Ef,σ ∈ p. As f is constant on each In, |Ef,σ ∩ In| ≤ 1. So, p is a Q’-point. ��

Lemma 1.5. p ∈ ω∗ is a Q-point ⇔ p is a Q’-point ⇔ T (p) ⊆ I (p).

Proof. Let p be a Q’-point, σ ∈ Sym(ω) and q = σβ(p).

Case 1. There is a strictly increasing sequence {ni : i ∈ ω} such that n0 = 0 and
σ [[ni, ni+1)] = [ni, ni+1) for every i ∈ ω.

Let Ii = [ni, ni+1). As p is a Q’-point there is an A ∈ p such that |A∩ Ii | ≤ 1
for every i ∈ ω.
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Case 2. The set {k ∈ ω : σ [[0, k)] = [0, k)} is bounded.

Construct two sequences {ni : i ∈ ω} and {mi : i ∈ ω} of integers by putting

(1) n0 = m0 = max{k ∈ ω : σ [[0, k)] = [0, k)}
(2) m1 = σ(n0),
(3) ni+1 = max σ−1[[mi,mi+1)] + 1 and
(4) mi+1 = max σ [[ni, ni+1)] + 1.

Note that σ [[ni, ni+1)] ⊆ [mi,mi+2) for every i ∈ ω. Let

I =
⋃

i∈ω
([ni, ni+1) ∩ σ−1[[mi+1,mi+2)])

and

J =
⋃

i∈ω
([ni, ni+1) ∩ σ−1[[mi,mi+1)]).

Then exactly one of I and J is in p, say I (the case for J is analogous). Let
Ii = [ni, ni+1). As p is a Q’-point there is a B ∈ p such that |B ∩ Ii | ≤ 1 for every
i ∈ ω. Let A = B ∩ I .

In both cases σ � A is an increasing function. Let f ∈ ωω be a non-decreasing
extension of σ � A. Again by Lemma 0.4, f β = σβ hence T (p) ⊆ I (p).

Now assume that T (p) ⊆ I (p) and let {In : n ∈ ω} be any partition of ω into
finite sets. Let σ be a permutation of ω such that σ � In is (strictly) decreasing for
every n ∈ ω. As T (p) ⊆ I (p), there is a non-decreasing f such that f β = σβ . By
Lemma 0.4, Ef,σ ∈ p. As f is decreasing on each In, |Ef,σ ∩ In| ≤ 1 and so p is
a Q-point.

To close the circle of implications it is enough to note that every Q-point is
trivially a Q’-point. ��

Note that an easy modification of the proof yields:

Lemma 1.6. p is a Q-point if and only if for every finite-to-one function f there is
an A ∈ p such that f � A is strictly increasing.

Now we can summarize the results in the following theorem:

Theorem 1.7. Let p ∈ ω∗. Then:

(1) The following are equivalent:
(a) p is a Q-point
(b) p is a Q’-point
(c) I (p) ⊆ T (p)

(d) T (p) ⊆ I (p)

(e) I (p) = T (p)

(f) T (p) = PRB(p)

(g) I (p) = PRB(p).
(h) R(p) = PRB(p).
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(2) The following are equivalent:
(a) p is selective
(b) T (p) = PRK(p)

(c) I (p) = PRK(p).
(d) R(p) = PRK(p).

(3) If p is a P-point then PRB(p) = PRK(p).

Proof. Clause (1) follows easily from Lemma 1.3, Lemma 1.4, Lemma 1.5 and
1.1.(3). Clause (2) follows from Lemma 1.3 and clause (1) using the fact that every
selective ultrafilter is a Q-point. So the only thing that requires argumentation is
clause (3). Let p be a P-point and let q ∈ PRK(p). Then there is an f ∈ ωω such
that q = f β(p). Let In = f−1({n}). Then {In : n ∈ ω} is a partition of ω and
each In �∈ p (as otherwise q �∈ ω∗). As p is a P-point there is an A ∈ p such that
A∩ In is finite for every n ∈ ω. Extend f � A to any finite-to-one function g. Then
q = f β(p) = gβ(p) and hence q ∈ PRB(p). ��

It is convenient to introduce the following definition:

Definition 1.8. Call an ultrafilter p ∈ ω∗ a semi-P-point if PRB(p) = PRK(p).

It is known that there are (in ZFC!) points which are not semi-P-points (see
[vM] or Section 4). On the other hand, the existence of P-points, Q-points and
selective ultrafilters is not provable in ZFC alone (see, for example, [BJ]). Note
that if p is a Q-point which is not selective, then PRB(p) �= PRK(p). For every
free ultrafilter p there are only four possible scenarios:

(1) All classes mentioned above are distinct.
(2) S(p) �= R(p) = T (p) = I (p) = PRB(p) �= PRK(p), which happens exactly

when p is a Q-point and not a (semi-)P-point,
(3) S(p) �= R(p) = T (p) = I (p) = PRB(p) = PRK(p), which happens exactly

when p is selective,
(4) PRB(p) = PRK(p) and the rest of the classes are mutually different, i.e. p is

a semi-P-point and not a Q-point.

An ultrafilter p ∈ ω∗ such that (1) occurs for p exists in ZFC alone, as essen-
tially proved in [vM]. In Section 4 we will show that the existence of a P-point
implies the existence of a semi-P-point which is not a Q-point, hence if there is a
p satisfying (3) then there is a q satisfying (4).

It is consistent (it follows from CH or MA) that all four scenarios actually
occur. The combination (1),(2),(4) but not (3) is also consistent; it holds in a
model obtained from a model of CH by adding ℵ1-many Cohen reals followed by
ℵ2-many Random reals, as there are both P-points and Q-points there but no selec-
tive ultrafilters (see [Ku]). Another consistent configuration is (1), (4), not (2), and
not (3). This happens in any model without Q-points and with P-points, say in the
Laver model or in any model of the principle of near coherence of filters (NCF)
(see, for example, [Mi]).

The question as to which other configurations are consistent boils down to the
following problems:
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Question 1.9. Is it consistent with ZFC that:

(1) There are no semi-P-points?
(2) There are Q-points, yet every Q-point is selective?
(3) There are neither Q-points nor semi-P-points?

Recall that it is a well-known open problem whether it is consistent with ZFC
that there are no P-points and no Q-points.

Next we prove that almost every non-empty difference M \ N , where M and
N are two of the classes S(p), R(p), T (p), I (p), PRB(p), PRK(p), is, in fact, a
dense subset of ω∗, the only exception being R(p) \ S(p) which is dense in ω∗ if
and only if p is a rapid ultrafilter.

Theorem 1.10. (1) For every p ∈ ω∗,
(a) S(p) is dense in ω∗.
(b) I (p) \ S(p) is dense in ω∗
(c) T (p) \ S(p) is dense in ω∗

(2) For every p ∈ ω∗ which is not a Q-point,
(a) I (p) \ T (p) and T (p) \ I (p) are dense subsets of ω∗.
(b) T (p) \ R(p) is a dense subset of ω∗.
(c) I (p) \ R(p) is a dense subset of ω∗.
(d) PRB(p) \ R(p), PRB(p) \ I (p) and PRB(p) \ T (p) are dense in ω∗.

(3) For every p ∈ ω∗ which is not selective, PRK(p) \ R(p), PRK(p) \ I (p) and
PRK(p) \ T (p) are dense subsets of ω∗.

(4) For every p ∈ ω∗ which is not a semi-P -point, PRK(p) \ PRB(p) is a dense
subset of ω∗.

Proof. (1.a) LetB be an infinite subset ofω. Then b ∈ ω↗ω andB ∈ bβ(p) ∈ S(p)
(recall 0.10).

(1.b) Let B be an infinite subset of ω. LetA be an element of p for which ω \A
is infinite and 0 �∈ A. Let g : ω → ω defined by g(n) = 0 if either n ∈ A and
{k ∈ B : k ≤ n} = ∅ or if n �∈ A, and g(n) = bk where k is the greatest l such
that bl < n. The function g is non-decreasing on A ∈ p, so q = gβ(p) ∈ I (p)

(Corollary 0.12). Moreover, g(A′) ⊂ B where A′ = {n ∈ A : n ≥ b0} ∈ p,
so B ∈ q. On the other hand, q �∈ S(p) for if there were f ∈ ω↗ω such that
f β(p) = q, then D = {n < ω : f (n) = g(n)} ∈ p (Lemma 0.4). Thus, if m ∈ D
then f (n) = g(n) < n. This, however, cannot happen for a strictly increasing
function f . So, q �∈ S(p).

(1.c) LetB ′ be an infinite subset of ω. LetB be an infinite subset ofB ′ such that
ω\B is infinite. LetA be an element ofp. Consider the function h : B → A defined
by h(b0) = min(A \ b0 + 1), and h(bn+1) = min(A \ max{h(bn), bn+1} + 1). Let
σ be a permutation of ω extending h−1. Then, σβ(p) ∈ B∗ ∩ T (p) \ S(p).

(2.a) By Theorem 1.7, ifp is not aQ-point, thenT (p)\I (p) �= ∅ �= I (p)\T (p).
By Theorem 1.2, if r ∈ T (p) \ I (p), then R(r) ⊂ T (r) \ I (p) = T (p) \ I (p).
Hence, T (p) \ I (p) is dense in ω∗. The proof that I (p) \ T (p) is dense in ω∗ is
almost identical.

(2.b), (2.c) and (2.d) are consequences of (2.a).
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(3) Given the fact thatp is notRK-minimal, there is q ∈ ω∗ such that q <RK p.
Then T (q) ⊂ PRK(p) \ T (p). As T (q) is dense in ω∗, so is PRK(p) \ T (p).

On the other hand, since p is not selective, then PRK(p) \ I (p) is non-empty.
Take q ∈ PRK(p)\I (p). By Theorem 1.2.(5), Proposition 1.1 and Theorem 1.2.(8),
R(q) ⊂ PRK(p) \ I (p). As R(q) is dense in ω∗ the rest follows easily.

(4) If p is not a semi-P -point, there is a q ∈ PRK(p) \ PRB(p). Then T (q) ⊂
PRK(p) \ PRB(p). Thus, PRK(p) \ PRB(p) is dense in ω∗. ��

Now we are going to analyze when R(p) \ S(p) is dense in ω∗. First, we prove
that for every p ∈ ω∗, p ∈ Clω∗(R(p) \ S(p)).
Proposition 1.11. If A ∈ p, then there is q ∈ (R(p) ∩ A∗) \ S(p). That is, for
every p ∈ ω∗, p ∈ Clω∗(R(p) \ S(p)).
Proof. Let B ⊂ A such that B ∈ p, 0 �∈ B and |ω \ B| = ℵ0. Define f : ω → ω

by letting f (n) = 0 if n �∈ B, and f (bi+1) = bi for every i ∈ ω. As f is strictly
increasing on B ∈ p, f β(p) = q ∈ R(p). Moreover, f [B] ⊂ A, thus q ∈ A∗.

On the other hand, if there is g ∈ ω↗ω such that gβ(p) = f β(p), then {n <
ω : g(n) = f (n)} ∈ p. Thus, for some n < ω, g(n) < n, which is a contradiction.
Hence, q �∈ S(p). ��
Lemma 1.12. An element p ∈ ω∗ is rapid if and only if p satisfies R, where R is
the assertion: For every sequence d0 < d1 < ... < dn < ... of natural numbers,
there is a subsequence e0 < e1 < ... < en < ... of (dn)n<ω, and A ∈ p such that
for every B ∈ p with B ⊂ A, either b0 > et where b0 = at , or there is n0 < ω

satisfying bn0+1 − bn0 > et − es where bn0+1 = at and bn0 = as .

Proof. It is easy to prove that every rapid ultrafilter satisfies the conditions of the
theorem. For the converse, assume that an ultrafilter p ∈ ω∗ satisfies R. We are
going to prove that p is rapid. Assume the contrary and let (d ′

n)n<ω be a strictly
increasing sequence such that, for every A ∈ p (see Convention 0.10), a �≥∗ d ′.
Let d be a function satisfying

dn+1 − dn = �m≤n+1d
′
m +�m<ndn. #

Let (en)n<ω be a subsequence of (dn)n<ω. For eachm < n, if em = dl and en = dk ,
then l < k, l ≥ m, k ≥ n and n−m ≤ k − l. So, by (#)

en − em = dk − dl ≥ dn ≥ dn − dm.

Let A ∈ p. A = {an : an < d ′
n} ∪ {an : an ≥ d ′

n}. Note that C = {an :
an ≥ d ′

n} �∈ p, as for each n < ω, cn = am ≥ d ′
m and n ≤ m, so cn ≥ d ′

n;
hence C ∈ p contradicts our hypothesis on p. Thus, B = {an : an < d ′

n} ∈ p and
b0 = an < d ′

n ≤ dn ≤ en. Moreover, because of definition of B and (#),

bn+1 − bn = at − as ≤ at < d ′
t ≤ dt − dt−1 ≤ dt − ds ≤ et − es

for every n < ω. Therefore, p does not satisfy R. ��
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Theorem 1.13. R(p) \ S(p) is dense in ω∗ if and only if p is rapid.

Proof. Let D∗ be a standard open subset of ω∗. Let (en)n<ω and A ∈ p witness
that p is rapid (see Lemma 1.12). Let f : ω → ω be defined by f (x) = 0 if x �∈ A
and f (ai) = ei . Hence, f ∈ A↗ω and f β(p) ∈ R(p). We are going to show that
f β(p) �∈ S(p). We will get a contradiction by assuming the contrary: Let g ∈ ω↗ω
be such that gβ(p) = f β(p). Then there isB ∈ p such that f ∈ B↗ω, b0 ≤ f (b0),
and for every n,

bn+1 − bn ≤ f (bn+1)− f (bn) ∗
(Corollary 0.12). Moreover, by Lemma 0.5,

bn ≤ f (bn) ∀n. ∗∗
Let C = A ∩ B. Since p is rapid, either (1) c0 > et where c0 = at , or (2) there is
n0 < ω such that cn0+1−cn0 > et−es where cn0+1 = at , cn0 = as . In the first case,
c0 = bl > et = f (at ) = f (bl) for an l < ω, contradicting (**). In the second case,
cn0+1 = bl and cn0 = bm for some l > m. As et = f (at ) = f (cn0+1) = f (bl)

and es = f (as) = f (cn0) = f (bm),

bl − bm > f (bl)− f (bm). ∗ ∗ ∗
By (*), bl − bm = (bl − bl−1) + · · · + (bm+1 − bm) ≤ (f (bl) − f (bl−1)) +
· · · + (f (bm+1)− f (bm)) = f (bl)− f (bm), which contradicts (***). Therefore,
f β(p) �∈ S(p). Moreover, f [A] ⊂ D, so f β(p) ∈ (R(p) \ S(p)) ∩D∗.

Now, assume thatR(p)\S(p) is dense inω∗, and let d0 < d1 < · · · < dn < . . .

be a sequence of natural numbers. Fix q ∈ (R(p) \ S(p))∩D∗. There exist C ∈ p
and f ∈ C↗ω such that f β(p) = q. Since q ∈ D∗, D ∈ q. Moreover, f [C] ∈ q;
hence, D ∩ f [C] ∈ q, so f−1(D ∩ f [C]) ∈ p. Let A = f−1(D ∩ f [C]) ∩ C. Of
course, A ∈ p. Put ei = f (ai). The sequence (ei)i<ω is a subsequence of (di)i<ω.
Let B ⊆ A be an element of p and assume that (i) al = b0 ≤ el and for every n,

bn+1 − bn ≤ et − es, ii

where bn+1 = at and bn = as . Define h ∈ ωω by h(k) = 0 if k �∈ B and
h(bn) = et if bn = at . As h � B coincides with f � B and f ∈ A↗ω, the function
h is strictly increasing on B, and hβ(p) = f β(p) = q. By (i) and (ii), b0 ≤ h(b0)

and bn+1 − bn ≤ h(bn+1)− h(bn) for every n. This means that there is g ∈ ω↗ω
such that gβ(p) = hβ(p) = q (Corollary 0.12). This in turn implies that q ∈ S(p),
which is not possible. So, either al = b0 > el or there is an n0 ∈ ω such that
|bn0+1 − bn0 | > |et − es | where bn0+1 = at and bn0 = as . Using Lemma 1.12 we
conclude that p is rapid. ��

2. Semi-P-points and products of ultrafilters

Theorem 1.7 leaves an open question: Is every semi-P-point a P-point? We will
answer the question in the negative and study the notion of a semi-P-point using
products of ultrafilters as introduced by Frolı́k ([F1]) and Katětov ([Ka]).
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Definition 2.1. For p, pn ∈ ω∗ (n < ω) let

�ppn = {A ⊆ ω × ω : {n ∈ ω : {m ∈ ω : (n,m) ∈ A} ∈ pn} ∈ p}.

When pn = q for every n < ω, we write p ⊗ q instead of �ppn. That is,

p ⊗ q = {A ⊆ ω × ω : {n ∈ ω : {m ∈ ω : (n,m) ∈ A} ∈ q} ∈ p}.

Remark 2.2. It is easy to see that�ppn is a free ultrafilter on ω×ω, hence it can be
treated as an ultrafilter in ω∗ (via some fixed enumeration of ω × ω). What is also
immediate is that �ppn is never a P-point, and p ⊗ q is never a Q-point. More-
over, if qn ∈ T (pn) (resp., qn ≤RK pn) for each n < ω, then �pqn ∈ T (�ppn)

(resp., �pqn ≤RK �ppn), and p <RK �ppn always holds (see [Bo], [Bl], [vM]
and [GFT]). The operation ⊗ is associative, non-commutative and without idem-
potents.

Let us first return to the statement of Lemma 0.4. It required one of the two
functions involved to be one-to-one. This is necessary as exhibited by the following
example.

Example 2.3. Let p ∈ ω∗ and let π : ω × ω −→ ω be the projection on the first
coordinate and letπ2 be the projection on the second coordinate. Let ∇ = {(n,m) ∈
ω × ω : m > n}. Then (regardless of the choice of p) ∇ ∈ p ⊗ p and π2 � ∇ is
a finite-to-one function. Let σ be any finite-to-one extension of π2 � ∇. Trivially,
πβ(p⊗p) = σβ(p⊗p) = p, yet Eπ,σ �∈ p⊗p. So Lemma 0.4.(2) can fail even
if one of the functions is finite-to-one.

Throughout this section π will always denote the projection on the first coor-
dinate and σ a finite-to-one extension of π2 � ∇. For A ⊆ ω × ω let A(n) = {m ∈
ω : (n,m) ∈ A} and for f : ω×ω −→ ω and n ∈ ω let f(n) : ω −→ ω be defined
by f(n)(m) = f ((n,m)). We will also implicitly assume that, unless explicitly
stated otherwise, given p ∈ ω∗ and f ∈ ωω, f β(p) ∈ ω∗, in other words, f is not
constant on any set in p.

Observe that for q, p, pn ∈ ω∗ (n < ω), πβ(�ppn) = p and σβ(p ⊗ q) = q.

Proposition 2.4. Let p, pn, qn ∈ ω∗ (n < ω).

(1) If {n < ω : qn ≤RB pn} ∈ p, then �pqn ≤RB �ppn.
(2) If {n < ω : qn <RB pn} ∈ p, then �pqn <RB �ppn.
(3) If p ≤RB pn for all n, then p <RB �ppn.

Proof. (1) Let B = {n < ω : qn ≤RB pn}. For each n ∈ B, there is a finite-to-one
function σn : ω → ω satisfying σβn (pn) = qn. Let ψ : ω×ω → ω×ω be defined
by ψ(n,m) = (n, σn(m)) if n ∈ B, and ψ(n,m) = (n,m) if n �∈ B. Note that the
function ψ is finite-to-one.
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Claim. ψβ(�ppn) = �pqn.
In fact, A ∈ ψβ(�ppn) if and only if {n < ω : {m < ω : (n,m) ∈ ψ−1(A)} ∈

pn} ∈ p, if and only if {n ∈ B : A(n) ∈ qn} ∈ p, if and only if {n < ω : {m < ω :
(n,m) ∈ A} ∈ qn} ∈ p, if and only if A ∈ �pqn.

(2) Because of Clause (1), �pqn ≤RB �ppn holds. By hypothesis, {n < ω :
qn <RK pn} ⊃ {n < ω : qn <RB pn} ∈ p. This, however, implies that �pqn is
not equivalent to �ppn (see [Bl]), so �pqn <RB �ppn.

(3) By Clause (1), p ⊗ p ≤RB �ppn. Moreover, p <RB p ⊗ p because σ is
finite-to-one, σβ(p ⊗ p) = p and p <RK p ⊗ p (Remark 2.2). ��

We recall now the definitions of the right and left power of an ultrafilter p,
given in [Bo] and [GFT], respectively. For each 1 < ν < ω1, fix a strictly increas-
ing sequence (ν(n))n<ω of ordinals in ω1 such that

(1) if 1 < ν < ω, ν(n) = ν − 1;
(2) ω(n) = n for n < ω;
(3) if ν is a limit ordinal, then ν(n) ↗ ν;
(4) if ν = µ + m where µ is a limit ordinal and m < ω, then ν(n) = µ(n) + m

for each n < ω.
(5) if ν < µ, then ν(n) < µ(n) for each n < ω.

Let p ∈ ω∗. Define the ultrafilters pα and αp by induction on α < ω1, as
follows: Assume that pα and αp, α < ν have already been defined. If ν is a limit
ordinal, let pν = �pp

ν(n) and νp = �p(
ν(n)p); if ν = γ + 1, set pν = pγ ⊗ p

and νp = p ⊗ γ p.
It is well known that (1) for every γ < α < ω1, pγ <RK pα and γp <RK

αp,
(2) pn = np for every n ≤ ω, and (3) pω+1 <RK

ω+1p, and also:

Lemma 2.5 ([Bo]). If 1 < ν < ω1, then pν � �pp
ν(n).

Proposition 2.6. pγ <RB pα and γp <RB αp for all p ∈ ω∗ and 1≤γ < α < ω1.

Proof. Take 1 ≤ m < n < ω. Let s = n − m. In this case (by associativity of
⊗) pn = ps+m = ps ⊗ pm, and σβ(ps ⊗ pm) = pm. As σ is finite-to-one we
conclude that pm ≤RB p

n. The strict RB-inequality between pm and pn follows
from Remark 2.2. Similarly, mp <RB np.

Assume that pλ <RB pδ for every λ < γ < ω1 and every δ < α < ω1 with
0 < λ < δ, where γ < α. Because of γ (n) < α(n) for every n < ω, and by
Proposition 2.4 and Lemma 2.5 we obtain pγ <RB pα .

Now, assume that λp <RB δp for every λ < γ < ω1 and every δ < α < ω1
with 0 < λ < δ, and γ < α. We want to demonstrate that γp <RB

αp. If γ
and α are limit ordinals, then the inequality γp <RB

αp follows easily from the
definition of γp, αp and from Proposition 2.4. If γ = λ0 + 1 and α = δ0 + 1,
then γp = p ⊗ λ0p = �p(

λ0p) <RB �p(
δ0p) = p ⊗ δ0p = αp. If γ = λ0 + 1

and α is a limit ordinal, then, for some n0 < ω, λ0 < α(n) for all n ≥ n0.
Hence, λ0+1p = �p(

λ0p) <RB �p(
α(n)p) = αp (Proposition 2.4). Finally, if

γ is limit and α = δ0 + 1, then γ (n) < δ0. Thus, again by Proposition 2.4,
γp = �p(

γ (n)p) <RB �p(
γ0p) = αp. ��

The last result and Lemma 1.7.(7) in [GFT] produce:
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Corollary 2.7. Let p ∈ ω∗. For each 0 < µ < ω1 there are γ, α < ω1 such that
pµ ≤RB

αp and µp ≤RB p
γ .

Lemma 2.8. Let pn ∈ ω∗ be a semi-P -point for each n < ω, and let p ∈ ω∗. Let
f : ω×ω → ω be a function. If there exists A ∈ �ppn such that for all n ∈ π [A]

f
β

(n)(pn) ∈ ω∗, then there is a finite-to-one function g : ω × ω → ω such that

gβ(�ppn) = f β(�ppn).

Proof. Without loss of generality we can assume A = ω × ω. As pn is a semi-
P-point for every n ∈ ω, there is a finite-to-one gn such that f β(n)(pn) = g

β
n (pn).

Let

g((n,m)) = gn(m).

It is easy to see that gβ(�ppn) = f β(�ppn), however, g is in general not finite-
to-one. We will show, that there is a set B ∈ �ppn such that g � B is finite-to-one.
This obviously suffices.

To that end let for every n,m ∈ ω, hm(n) = min{k ∈ ω : g−1
n (m) ⊆ k} and

let h : ω −→ ω be a function which eventually dominates all hn, i.e. ∀n ∈ ω

|{m ∈ ω : hn(m) ≥ h(m)}| < ℵ0. Let

B = {(n,m) ∈ ω × ω : m ≥ h(n)}.

It is obvious that B ∈ �ppn and also that g � B is finite to one. ��
Theorem 2.9. Let p ∈ ω∗ be a semi-P -point. Then, for every 0 < α < ω1, αp and
pα are semi-P -points.

Proof. Take α > 1. Let f : ω × ω −→ ω be given. Assuming that γ p (resp.,
pγ ) is a semi-P -point for every γ < α, we will construct a finite-to-one g so that
f β(αp) = gβ(αp) (resp., f β(pα) = gβ(pα)).

There are three possibilities (resp., two possibilities):

Case 1. ∃A ∈ αp ∀n ∈ π [A] f(n) � A(n) is constant.

(resp.,

Case 1’. ∃A ∈ pα ∀n ∈ π [A] f(n) � A(n) is constant.)

Case 2. α=γ0+1 and ∃A ∈ αp ∀n ∈ π [A]f β(n)(
γ0p) ∈ ω∗ (resp.,f β(n)(p

γ0) ∈ ω∗).

Case 3. α is a limit ordinal and ∃A ∈ αp ∀n ∈ π [A] f β(n)(
α(n)p) ∈ ω∗.

(resp.,

Case 2’. ∃A ∈ αp ∀n ∈ π [A] f β(n)(p
α(n)) ∈ ω∗.)
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In Case 1 (resp., Case 1’) define h : ω −→ ω by: h(n) = m if n ∈ π [A] and
some (any) k∈A(n) f ((n, k))=m, andh(n)=0 otherwise. Thenf � A=h◦π � A.
Asp is a semi-P-point, there is a finite-to-one i : ω −→ ω such thathβ(p) = iβ(p).
Let sα ∈ Fo(ω) be such that sβα (αp) = p (resp., sβα (�ppα(n)) = p). Then let
g = i ◦ sα . As both i and sα are finite to one so is g. Also, π(αp) = p (resp.,
π(�pp

α(n)) = p). Hence, f β(αp) = hβ(πβ(αp)) = iβ(s
β
α (
αp)) = gβ(αp)

(resp., f β(�ppα(n)) = hβ(πβ(�pp
α(n))) = iβ(s

β
α (�pp

α(n))) = gβ(�pp
α(n)).

Therefore, �ppα(n) is a semi-P -point. Since �ppα(n) � pα , we conclude that pα

is a semi-P -point.)
If Case 2 or Case 3 holds (resp., Case 2’), the existence of the finite-to-one

function g for which f β(αp) = gβ(αp) is guaranteed by the inductive hypothesis
and by Lemma 2.8, because, in both cases (resp., in this case), αp (resp., pα) is of
the form (resp., is equivalent to an ultrafilter of the form) �ppn where each pn is
a semi-P -point. ��

Recall the following standard weakening of the notion of a P-point. Call a free
ultrafilter p ∈ ω∗ a weak P-point if it is not an accumulation point of any countable
subset of ω∗ or, equivalently, for every X ∈ [ω∗ \ {p}]ω there is an A ∈ p \⋃X.
It was proved by Kunen [Ku] that weak P-points do exist in ZFC alone. It should
be obvious that every P-point is a weak P-point.

Note that for every p ∈ ω∗, and every 1 < α < ω1, pα and αp are not weak
P -points.To see this consider two cases (the proof forpα is similar): (1) ifα = γ0+1
let pn be the ultrafilter (on ω × ω) generated by {{n} × A : A ∈ γ0p}; (2) if α is a
limit ordinal, let pn be the ultrafilter generated by {{n} × A : A ∈ α(n)p}. In both
cases, it is immediate from the definition that p ∈ Clω∗{pn : n ∈ ω}.

Corollary 2.10. If p is a P-point and 1 < α < ω1, then αp and pα are semi-
P-points which are not weak P-points.

Proof. αp and pα are semi-P-points by Theorem 1.7 and Theorem 2.9. That αp and
pα are not weak P -points has been justified before this Corollary. ��

Next we will show that non-semi-P-points exist in ZFC.

Lemma 2.11. Let p be a weak P-point and let q �≥RK p. Then p ⊗ q is not a
semi-P-point.

Proof. We will show that gβ(p ⊗ q) �= p = πβ(p ⊗ q) for every finite-to-one g.
To that end let g : ω × ω −→ ω be finite to one. Let gn(m) = g(n,m) and let
qn = g

β
n (q). As q �≥RK p, p �= qn for every n ∈ ω, and as p is a weak P-point,

there is an A ∈ p such that A �∈ qn for every n ∈ ω. Let B = g−1[A]. Then

B =
⋃

n∈ω
{n} × (g−1

n [A])

so B /∈ p ⊗ q. Hence, gβ(p ⊗ q) �= p. ��
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An entirely different proof of the fact that there are non-semi-P-points in ZFC
can be found in [vM].

As the set of all P-points is downwards closed in the Rudin-Keisler (Rudin-
Blass) ordering, it is natural to ask whether the same is true of the class of semi-P-
points. As it turns out it is (at least consistently) not true.

Corollary 2.12. It is consistent that the class of semi-P-points is not downwards
closed in the Rudin-Keisler order.

Proof. Let p <RK q be P-points. By Theorem 2.9, q⊗ q is a semi-P-point but (by
Lemma 2.11) q ⊗ p is not a semi-P-point. It is easy to see that q ⊗ p ≤RK q ⊗ q.

��
Note the curious nature of Lemma 2.11. In order to show that q ⊗ p is NOT a

semi-P-point we needed p to be a weak P-point. In fact some requirement of this
kind is necessary as, for instance, (p⊗p)⊗p is a semi-P-point provided that p is
a semi-P-point, yet p ⊗ p �≤RK p.

3. Distinguishing indistinguishable ultrafilters

By Theorem 1.2.(1), the set S(p) is always a proper subset of the type T (p). This
fact suggests the following natural definition:

Definition 3.1. For p, q ∈ ω∗ let p � q if ∃f ∈ ω↗ω p = f β(q).

It is easy to see that � is an ordering (not a pre-ordering) on T (p). Reflexivity
was pointed out in Proposition 1.1.(1) and follows from the fact that id is a strictly
increasing function; transitivity also holds since a composition of strictly increas-
ing functions is strictly increasing (this was mentioned in Theorem 1.2.(2)) and for
antisymmetry it is enough to note that if f ∈ ω↗ω and f−1 extends to a strictly
increasing function, then we must have f = id (see Theorem 1.2.(3)).

Note that in this new notation S(p) = {q ∈ T (p) : q � p}. As |S(p)| = c for
every p it follows that there are not �-minimal ultrafilters. The proof that there are
no �-maximal ultrafilters is an easy exercise. As in the previous section, Q-points
and selective ultrafilters play a prominent role in our investigations.

For f ∈ ω↗ω let f ′ denote the derivative of f defined by f ′(n) = f (n+ 1)−
f (n). For f, g ∈ ωω let f,g(n) = |f (n)− g(n)|. Now, for f, g ∈ ω↗ω let

f � g if ∃h ∈ ω↗ω g = h ◦ f.

It is easy to verify that � is a partial order on ω↗ω with the least element id. Let
≤ denote the standard (pointwise) ordering on ωω.

Lemma 3.2. Let f, g ∈ ω↗ω. Then the following are equivalent:

(1) f � g,
(2) f ≤ g and f ′ ≤ g′,
(3) f ≤ g and f,g is non-decreasing.
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Proof. (1)⇒(2): f ≤ g as g(n) = h(f (n)) ≥ f (n) for some h ∈ ω↗ω and every
n ∈ ω. Now (for the sameh), g′(n) = h(f (n+1))−h(f (n)) = h(f (n)+(f (n+1)
− f (n)))− h(f (n)) ≥ h(f (n))+ f (n+ 1)− f (n)− h(f (n)) = f ′(n).

(2)⇒(3): This is completely trivial.
(3)⇒(1): Assuming (3) let

h(i) =
{
i if i < f (0)

g(k)+ i − f (k) if i ∈ [f (k), f (k + 1))

Then h ∈ ω↗ω and g(k) = h(f (k)) for every k ∈ ω as required. ��
Definition 3.3. For p ∈ ω∗ and f, g ∈ ω↗ω define:

(1) f �p g if ∃h ∈ ω↗ω {n ∈ ω : g(n) = h(f (n))} ∈ p,
(2) f ≈p g if {n ∈ ω : g(n) = f (n)} ∈ p.

The reason for introducing the pre-ordering �p (the routine verification that it
is indeed a pre-ordering is omitted) is the following:

Proposition 3.4. Let p ∈ ω∗. Then (S(p),�) is anti-isomorphic to the (quotient)
order (ω↗ω,�p).

Proof. Define � : ω↗ω −→ S(p) by �(f ) = f β(p). Then:

(1) �(f ) = �(g) if and only if f ≈p g,
(2) S(p) = rng(�),
(3) �(f ) � �(g) if and only if g �p f .

We will only check (3) as the rest is even easier. �(f ) � �(g) if and only if
∃h ∈ ω↗ω hβ(�(g)) = �(f ) if and only if hβ(gβ(p)) = f β(p) if and only if
{n ∈ ω : f (n) = h(g(n))} ∈ p if and only if g �p f . ��

So studying the order � is (at least locally) equivalent to studying �p for the
appropriate p ∈ ω∗. Note the subtle difference between the ordering �p and the
standard ≤p. While ≤p is a linear order for every p ∈ ω∗ it is not necessarily true
for �p. However, the following is true for �p:

Proposition 3.5. (ω↗ω,�p) is upwards directed for every p ∈ ω∗.

Proof. Note that to prove this it is enough to show that � is upwards directed.
Given f, g ∈ ω↗ω find an h ∈ ω↗ω such that f ≤ h and f ′ ≤ h′, g ≤ h and
g′ ≤ h′ (let for instance h = f +g). Then by Lemma 3.2, f � h and g � h, hence
f �p h and g �p h for every p ∈ ω∗ ��
Corollary 3.6. (S(p),�) is downwards directed for every p ∈ ω∗.

Proof. This statement follows directly from the previous two propositions. ��
Next we want to show that in some cases �p is a linear order. To that end we

need an analog of Lemma 3.2 for �p.
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Lemma 3.7. Let p ∈ ω∗ and f, g ∈ ω↗ω. Then f �p g if and only if ∃A ∈ p

f � A ≤ g � A and f,g � A is non-decreasing.

Proof. For the direct implication assume that f �p g and let h ∈ ω↗ω be such
that A = {n ∈ ω : g(n) = h(f (n))} ∈ p. Then:

g(n) = h(f (n)) ≥ f (n) for every n ∈ A, hence f � A ≤ g � A.
Now, for m < n ∈ A, f,g(n) = g(n) − f (n) = h(f (n)) − f (n) =

h(f (m) + (f (n) − f (m))) − f (n) ≥ h(f (m)) + (f (n) − f (m)) − f (n) =
h(f (m))− f (m) = f,g(m).

For the reverse implication let f, g,A be given. Enumerate A = {ai : i ∈ ω}
in an increasing manner and let:

h(i) =
{
i if i < f (a0)

g(ak)+ i − f (ak) if i ∈ [f (ak), f (ak+1))

Obviously, g(ak) = h(f (ak)) and h ∈ ω↗ω follows easily as g(ak+1) ≥ g(ak)+
f (ak+1)− f (ak). ��
Proposition 3.8. p ∈ ω∗ is selective if and only if �p is linear.

Proof. For the direct implication assume that p is selective. By Lemma 3.7, it is
enough to show that ∀f, g ∈ ω↗ω ∃A ∈ p such that f � A ≤ g � A and f,g � A
is non-decreasing, or vice versa.

As ω = {n ∈ ω : f (n) ≤ g(n)} ∪ {n ∈ ω : g(n) ≤ f (n)} we can assume that
A0 = {n ∈ ω : f (n) ≤ g(n)} ∈ p (the other case is completely analogous). Now,
consider f,g and let for m < n ∈ ω

φ({m, n}) =
{

0 if f,g(m) ≤ f,g(n)

1 if f,g(m) > f,g(n)

As every selective ultrafilter is Ramsey, there is anA1 ∈ p such that |φ′′([A1]2)| =
1, i.e. A1 is homogeneous. As homogeneity in color 1 would produce a strictly
decreasing sequence of non-negative integers (which is absurd), A1 is homoge-
neous in color 0, hence f,g � A1 is non-decreasing. Then A = A0 ∩ A1 is as
required.

We will prove the reverse implication in two steps. First we will show that if
�p is linear then p is a Q-point. To that end let {In : n ∈ ω} be a partition of ω
into finite sets. Let f, g ∈ ω↗ω be such that: f ≤ g andf,g is strictly decreasing
on In for every n ∈ ω. To construct such f and g is easy. Now, as �p is linear
f �p g, and by the previous lemma,f,g is non-decreasing on a setA ∈ p. Then,
of course, |A ∩ In| ≤ 1 for every n ∈ ω, hence p is a Q-point.

To show that p is in fact selective it is sufficient to show that p is ≤RK -minimal;
in other words, for every f ∈ ωω there is an A ∈ p such that f � A is constant or
one-to-one. Let an f ∈ ωω be given. Construct g, h ∈ ω↗ω such that g ≤ h and
f = g,h. Again this task is easy to fulfill. By linearity of �p there is a set B ∈ p
such that f � B = g,h � B is non-decreasing. Then, either f � B is eventually
constant in which case let A = B \ n, where ∀i, j ≥ n f (i) = f (j), or f � B is



150 M. Hrušák et al.

finite-to-one in which case an application of the fact that p is a Q-point produces
A ∈ p such that f � A is strictly increasing, hence one-to-one. ��

Now we are ready to return to the study of �.

Proposition 3.9. For every p ∈ ω (R(p),�) is upwards directed and downwards
directed.

Proof. Theorem 1.2.(6) and Theorem 1.2.(8) imply that (R(p),�) is downwards
directed. Now, let q = f β(p) and q ′ = gβ(p), and let A ∈ p be such that both
f � A and g � A are strictly increasing. Let a be the increasing enumeration of A.
Let h be an extension of a−1 to ω, and let r = hβ(p). Then both f ◦a and g ◦a are
strictly increasing and q = f β(aβ(r)) and q ′ = gβ(aβ(r)); hence r is a common
upper bound for q and q ′. ��

Corollary 3.10. Let p ∈ ω∗. Then the following are equivalent:

(1) p is a Q-point,
(2) (T (p),�) is upwards directed,
(3) (T (p),�) is downwards directed.

Proof. If p is aQ-point, then T (p) = R(p), so, by Proposition 3.9, (1) implies (2)
and (3).

If (T (p),�) is upwards directed then it is downwards directed by Corollary
3.6.

To finish the proof assume that (T (p),�) is downwards directed and let {In :
n ∈ ω} be a partition of ω into finite sets. Let σ be a permutation on ω strictly
decreasing on each In. Let q = σβ(p). As (T (p),�) is downwards directed there
are h, g ∈ ω↗ω such that hβ(p) = gβ(q) = gβ(σβ(p)). By Lemma 0.4.(2),
Eh,g◦σ ∈ p, and σ � Eh,g◦σ is strictly increasing, hence |In ∩ Eh,g◦σ | ≤ 1 for
every n ∈ ω, and therefore p is a Q-point. ��

Corollary 3.11. (T (p),�) is linear if and only if p is selective.

Proof. Follows immediately from Proposition 3.8 and Corollary 3.10. ��

Note that if p is not a Q-point then (T (p),�) decomposes into downwards
directed components R(q), p ∈ T (p). The natural questions one would ask are:

(1) What are the possibilities for the number of components of (T (p),�)?
(2) What are the possible cofinalities (coinitialities) of (T (p),�)?
(3) What are the possible lengths of decreasing (increasing) chains in (T (p),�)?

It is not difficult to see that (T (p),�) always contains a chain of length b,
where b is the minimal length of an unbounded chain in ωω ordered by eventual
dominance. Similarly, the coinitiality of (T (p),�) lies between b and cof (d) for
any selective ultrafilter p. Here d denotes the dominating number of ωω.
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4. S(p)-pseudocompact spaces and the class of Frolı́k

Recall that, given a topological spaceX, a sequence (Un)n<ω of open subsets ofX
is a Frolı́k sequence if for each filter G of infinite subsets of ω,

⋂

F∈G
clX(

⋃

n∈F
Un) �= ∅.

The Frolı́k class F is the class of productively pseudocompact spaces (i.e, the
class of pseudocompact spaces whose product with every pseudocompact space is
also pseudocompact). Theorem 3.6 of [F1] shows that a pseudocompact space X
belongs to F if and only if each infinite family of pairwise disjoint open subsets
of X contains a subfamily (Un)n<ω which is a Frolı́k sequence. It is known that a
Frolı́k space is not necessarily p-pseudocompact for some p ∈ ω∗. On the other
hand, in [ST] it was proved that if X is Frolı́k, then it is PRK(p)-pseudocompact
for every p ∈ ω∗. We are going to strengthen this result by proving that every space
in F is S(p)-pseudocompact for every p ∈ ω∗. First we need a lemma, the proof
of which is left to the reader.

Lemma 4.1. Let g : ω → ω be a function. Then:

(1) The following assertions are equivalent.
(a) There exists f ∈ ωω such that g ◦ f ∈ ω↗ω.
(b) There exists an infinite subset N of ω such that g ∈ N↗ω.
(c) |g[ω]| = ℵ0.

(2) There is h : ω → ω such that h ◦ g is strictly increasing if and only if g is
one-to-one.

(3) If (Un)n<ω is a Frolı́k sequence, and g : ω → ω is a one-to-one function, then
(Ug(n))n<ω is a Frolı́k sequence.

Theorem 4.2. Each space X in the class of Frolı́k F is S(p)-pseudocompact for
every p ∈ ω∗.

Proof. Let p ∈ ω∗ and let (Un)n<ω be a sequence of pairwise disjoint open sets
of X. Since X ∈ F , there exists g : ω → ω, an injective function, such that
(Ug(n))n<ω is a Frolı́k sequence. In view of the definition of a Frolı́k sequence, any
rearrangement of (Ug(n))n<ω is again a Frolı́k sequence; so, g can be taken as a
strictly increasing function (Lemma 4.1). Take x ∈ X such that

x ∈
⋂

F∈p
clX

(
⋃

k∈F
Ug(n)

)

�= ∅.

This means that for each neighborhood V of x and for each F ∈ p, there is
k = kF ∈ F such that Vk ∩ V �= ∅ where Vk = Ug(k). If H = {kF : F ∈ p} �∈ p,
thenω\H ∈ p, thus kω\H is an element of bothH andω\H , which is not possible;
soH ∈ p, and this implies that x = p-lim(Ug(n)) = gβ(p)-lim(Un) (Lemma 0.9).
Since g is strictly increasing, we have proved what we wanted. ��
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Letting X = ∏
p∈ω∗(β(ω) \ {p}) produces a Frolı́k space, hence S(p)-pseu-

docompact for every p ∈ ω∗, which is not q-pseudocompact for any q ∈ ω∗ (see
Example 2.9 in [ST1]).

The subclass F∗ of F is defined as the class of spaces X with the property
that each sequence of disjoint open sets in X has a subsequence such that each of
its elements meets some fixed compact set. This class was introduced and studied
by N. Noble in [N]. In particular, Noble showed that X ∈ F∗ whenever the set X
endowed with the weak topology induced by the real-valued functions onX which
are continuous on all compact subsets ofX, kRX, is pseudocompact. Thus, pseudo-
compact spaces which are locally compact or sequential are S(p)-pseudocompact
for every p ∈ ω∗. A space X is a kR-space if X = kRX. Noble also proved in
[N] that every completely regular space can be embedded as a closed subspace of
a pseudocompact kR-space. Hence:

Theorem 4.3. Every pseudocompact space can be embedded as a closed subspace
of a space which is S(p)-pseudocompact for every p ∈ ω∗. So, if M ⊃ S(p),
M-pseudocompactness is not inherited by closed subsets.

Problem 4.4. Give an example of a space which is S(p)-pseudocompact for every
p ∈ ω∗ and does not belong to F .

In the same vein we can characterize the S(p)-pseudocompact spaces having
all of their closed subsets sharing this property. We omit the proof because it is
similar to that given for Theorem 2.8 in [ST1].

Theorem 4.5. LetX be a topological space and letM be one of the sets S(p),R(p),
T (p), PRB(p), PRK(p). Then, every closed subset of X is M-pseudocompact if
and only if X is M-compact.

Using a similar demonstration to that given for Theorem 2.10 in [ST1] we
obtain:

Theorem 4.6. Let p ∈ ω∗ and M be one of the sets S(p), R(p), T (p), PRB(p) or
PRK(p). Then, a pseudocompact space X is M-pseudocompact if and only if it is
locally M-pseudocompact.

Corollary 4.7. Let p ∈ ω∗ and M one of the sets S(p), R(p), T (p), PRB(p) or
PRK(p). Then, each open pseudocompact subset of anM-pseudocompact space is
M-pseudocompact.

Corollary 4.8. Let p ∈ ω∗ and M one of the sets S(p), R(p), T (p), PRB(p) or
PRK(p). Then, a free topological sum X = ⊕

α∈A Xα , where Xα �= ∅, isM-pseu-
docompact if and only if each Xα is M-pseudocompact and |A| < ℵ0.

5. R(p)-pseudocompactness of subspaces of β(ω)

Given a collection M of elements of ωω and p ∈ ω∗, we will denote by M(p) the
set {f β(p) : f ∈ M}. A subcollection M of ωω is a p-si-ideal, for a p ∈ ω∗,
if id ∈ M and for each g ∈ M and each f ∈ ω↗ω, (f ◦ g)β(p) ∈ M(p).
We will say that M is a strong-p-si-ideal if id ∈ M and for every (ψ,A, f )
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∈ M × p × P(ω↗ω) with ψ[A] ⊂ dom(f ), there exist g ∈ M and B ∈ p such
that g � B = f ◦ (ψ � B).

Each strong-p-si-ideal is a p-si-ideal. The collections
⋃{A↗ω : A ∈ p},

Sym(ω), Fo(ω), Nd(ω) and ωω are strong-p-si-ideals for each p ∈ ω∗, and ω↗ω
is a p-si-ideal which is not a strong-p-si-ideal for every p ∈ ω∗ (see Lemma 0.11
and Corollary 0.12).

In [GF] it was proved that for p ∈ ω∗ and ω ⊂ X ⊂ β(ω), X is p-pseudo-
compact if and only if PRK(p) ⊂ X. Moreover, in [ST] the proposition: a subset
X of β(ω) containing ω is PRK(p)-pseudocompact if and only if X ∩ PRK(p) is
dense in ω∗, was proved. We provide an analogous result for R(p), I (p), T (p)
and PRB(p). The proof of this assertion will be given by demonstrating several
lemmas.

Lemma 5.1. LetM be a subset ofω∗. A subsetX of βω containingω isM-pseudo-
compact if and only if for every one-to-one function f ∈ ωω, there is p ∈ M such
that f β(p) ∈ X.

Proof. Assume that X is M-pseudocompact and let f ∈ ωω be a one-to-one func-
tion. ({f (n)})n<ω is a sequence of disjoint open subsets of X. So, there are x ∈ X
and p ∈ M such that x = p-lim(f (n)). This means f β(p) = x ∈ X (Lemma 0.6).

The converse implication is also true because if (An)n<ω is a sequence of dis-
joint open subsets of X, we can choose a point an ∈ An ∩ ω for each n < ω. The
function f defined by f (n) = an is a one-to-one function; so, there is p ∈ M such
that x = f β(p) ∈ X. Thus, x is a p-limit point of (An)n<ω. ��
Lemma 5.2. LetX ⊂ β(ω) with ω ⊂ X, p ∈ ω∗ and let M ⊂ ωω be a p-si-ideal.
If X is M(p)-pseudocompact, then X ∩ (M(p) ∪ ω) is M(p)-pseudocompact.

Proof. Let g : ω → ω be a one-to-one function. There is an infinite set T ⊆ ω such
that g � T is a strictly increasing function. Consider the sequence ((g ◦ t)(n))n<ω
(see Convention 0.10) and note that g ◦ t is a strictly increasing function from ω

to ω. As X is M(p)-pseudocompact, there exist x ∈ X and r ∈ M(p) such that
(g ◦ t)β(r) = x. As r ∈ M(p), there is a function h ∈ M such that hβ(p) = r . So:

(g ◦ t ◦ h)β(p) = (g ◦ t)β(hβ(p)) = (g ◦ t)β(r) = x.

Let s = (t ◦ h)β(p). As t and g ◦ t are strictly increasing, h ∈ M and M is a
p-si-ideal, then s and x are elements of M(p). Moreover, gβ(s) = x. That is,
x = s-lim(g(n)). ��
Lemma 5.3. LetX ⊂ β(ω) with ω ⊂ X, p ∈ ω∗ andM a subset of β(ω) be given.
If X ∩ (M ∪ ω) is M-pseudocompact, then (X ∩M) \ ω is dense in ω∗.

Proof. Assume thatX∩ (M ∪ω) isM-pseudocompact. LetA be an infinite subset
of ω. We are going to check that A∗ ∩ X ∩ M �= ∅. By the hypothesis there are
q ∈ M and x ∈ X ∩ (M ∪ ω) such that x = q-lim(a(n)). So, aβ(q) = x. (Note
that x must belong to ω∗ as a is one-to-one.)

To see that x is also an element of A∗ let B ∈ x. Since aβ(q) = x, then
a−1(B) ∈ q. Thus a−1(B) �= ∅, then B ∩ A �= ∅. But this is true for all B ∈ x, so
A ∈ x. So, x ∈ A∗. ��



154 M. Hrušák et al.

Lemma 5.4. Let X ⊂ β(ω) with ω ⊂ X, p ∈ ω∗ and a strong-p-si-ideal M be
given. If (X ∩M(p)) \ ω is dense in ω∗, then X is M(p)-pseudocompact.

Proof. Let g ∈ ωω be a one-to-one function. Say g(n) = xn. We will find rg ∈
M(p) such that gβ(rg) ∈ X. There is an infinite subset T of ω on which g is
strictly increasing. Denote by f the composition g ◦ t ; that is, f (n) = xt(n). Of
course, f and t are elements of ω↗ω. Consider the set A = {f (n) : n < ω}. By
the hypothesis there is xg ∈ X ∩ M(p) ∩ A∗. Let ψ be an element of M such
that ψβ(p) = xg . Now, take the set ψ−1(A), which is infinite as A ∈ xg and
ψβ(p) = xg , so ψ−1(A) ∈ p ∈ ω∗. Let φ : ω → ω be defined by φ(n) = m if
ψ(n) = f (m), and φ(n) = 0 if n �∈ ψ−1(A). The function φ � ψ−1(A) is equal
to f−1 ◦ (ψ � ψ−1(A)). As ψ ∈ M, f−1 ∈ P(ω↗ω), ψ−1(A) ∈ p, and M is a
strong-p-si-ideal, there exists χ ∈ M such that rg = φβ(p) = χβ(p) ∈ M(p)

(see Lemma 0.4.(1)).

Claim 1. xg = rg-lim(f (n)) = rg-lim(xt(n)).
LetB ∈ xg . We have to show that f−1(B) ∈ rg . Since φβ(p) = rg , it is enough

to prove that φ−1f−1(B) ∈ p. In order to do this we prove:

Claim 2. φ−1f−1(B ∩ A) ⊃ ψ−1(B ∩ A).
Let n ∈ ψ−1(B ∩ A). So, ψ(n) = f (m) for some m ∈ ω. This means that

φ(n) = m. Then f (φ(n)) = f (m) ∈ B ∩ A. So, φ(n) ∈ f−1(B ∩ A). Therefore,
n ∈ φ−1f−1(B ∩ A) and Claim 2 follows.

SinceB∩A ∈ xg = ψβ(p),ψ−1(B∩A) ∈ p. So, φ−1f−1(B) ∈ p. Therefore
xg = rg-lim(f (n)) and the proof of Claim 1 is finished.

By Lemma 0.9 this last equality means that xg = q-lim(xn) where q = tβ(rg).
So, q = tβ(χβ(p)). However, t ∈ ω↗ω, χ ∈ M and M is a strong-p-si-ideal, so
q ∈ M(p). ��

This sequence of lemmas produces the following four theorems.

Theorem 5.5. Let p ∈ ω∗ and X ⊂ β(ω) with ω ⊂ X. Let M be a strong-
p-si-ideal. Then, the following are equivalent.

(1) X is M(p)-pseudocompact.
(2) X ∩ (M(p) ∪ ω) is M(p)-pseudocompact.
(3) X ∩M(p) \ ω is dense in ω∗.

As
⋃{A↗ω : A ∈ p}, Sym(ω), Fo(ω), Nd(ω) and ωω are strong-p-si-ideals

(p ∈ ω∗), we obtain:

Theorem 5.6. Let p ∈ ω∗. Let M be one of the sets R(p), I (p), T (p), PRB(p) or
PRK(p) and let X ⊂ β(ω) with ω ⊂ X. Then, the following are equivalent.

(1) X is M-pseudocompact.
(2) X ∩ (M ∪ ω) is M-pseudocompact.
(3) X ∩M \ ω is dense in ω∗.

In particular, R(p) ∪ ω (resp., I (p), T (p) ∪ ω, PRB(p), PRK(p)) is an exam-
ple of an R(p)-pseudocompact (resp., I (p)-pseudocompact, T (p)-pseudocom-
pact, PRB(p)-pseudocompact, PRK(p)-pseudocompact) space.
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Theorem 5.7. Let p ∈ ω∗, X ⊂ β(ω) with ω ⊂ X, and let M ⊂ ωω be a
p-si-ideal. Then, if X is M(p)-pseudocompact, then X ∩ (M(p) ∪ ω) is M(p)-
pseudocompact. In particular, X ∩M(p) is dense in ω∗.

Theorem 5.8. Let p ∈ ω∗. Let ω ⊂ X ⊂ β(ω). If X is S(p)-pseudocompact, then
X ∩ (S(p) ∪ ω) is S(p)-pseudocompact and X ∩ S(p) is dense in ω∗.

Proposition 5.9. Let X be a subset of β(ω) containing ω. If X ⊃ S(p), then X is
an S(p)-pseudocompact space.

Proof. Let f ∈ ωω be one-to-one. There is an infinite T ⊆ ω such that f � T is
strictly increasing. So, r = tβ(p) ∈ S(p). Moreover, f ◦ t is strictly increasing, so
q = (f β ◦ tβ)(p) ∈ S(p). By Lemma 0.6 q = r-lim(f (n)). ��

Problems 5.10. (1) Are the propositions in Theorem 5.7 equivalent?
(2) Is the converse in Proposition 5.9 true?

In the following examples, Q1, Q2, Q3, Q4 denote the set of non-rapid ultra-
filters, Q-points, selective ultrafilters and semi-P -points in ω∗, respectively.

Examples 5.11. (1) There is a space X1 which is R(p)-pseudocompact for every
p ∈ ω∗ \Q1 and it is not S(p)-pseudocompact for any p ∈ ω∗ \Q1.

(2) There is a space X2 which is T (p)-pseudocompact for every p ∈ ω∗ \Q2 and
it is not I (p)-pseudocompact for any p ∈ ω∗ \Q2.

(3) There is a space X3 which is I (p)-pseudocompact for every p ∈ ω∗ \Q2 and
it is not T (p)-pseudocompact for any p ∈ ω∗ \Q2.

(4) There is a space X4 which is PRK(p)-pseudocompact for every p ∈ ω∗ \Q3
and it is not T (p)-pseudocompact for any p ∈ ω∗ \Q3.

(5) There is a space X5 which is PRK(p)-pseudocompact for every p ∈ ω∗ \Q3
and it is not I (p)-pseudocompact for any p ∈ ω∗ \Q3.

(6) There is a space X6 which is PRK(p)-pseudocompact for every p ∈ ω∗ \Q4
and it is not PRB(p)-pseudocompact for any p ∈ ω∗ \Q4.

(7) There is a space X7 which is S(p)-pseudocompact for every p ∈ ω∗ and it is
not p-pseudocompact for any p ∈ ω∗.

Proof. For i ∈ {1, 2, 3, 4}, let Ki be the one-point compactification of the space⊕
p∈ω∗\Qi βωp whereβωp is a copy ofβω for everyp ∈ ω∗\Qi , and denote by ∞i

the point which compactifies
⊕

p∈ω∗\Qi βωp inKi . SinceM-pseudocompactness is
inherited by regular closed sets, and using Theorem 5.6, we easily get that subspace
X1 = {∞1}∪

⊕
p∈ω∗\Q1

(βωp \I (p)), subspacesX2 = {∞2}∪
⊕

p∈ω∗\Q2
(βωp \

I (p)) and X3 = {∞2} ∪⊕p∈ω∗\Q2
(βωp \ T (p)) ofK2, subspaces X4 = {∞3} ∪⊕

p∈ω∗\Q3
(βωp \ T (p)) and X5 = {∞3} ∪⊕p∈ω∗\Q3

(βωp \ I (p)) of K3, and
subspaceX6 = {∞4}∪

⊕
p∈ω∗\Q4

(βωp \PRB(p)) ofK4, satisfy the requirements.

SpaceX7 = ∏
p∈ω∗(βω \ {p}) is S(p)-pseudocompact space for every p ∈ ω∗

but it is not q-pseudocompact for any q ∈ ω∗ (see Example 2.9 in [ST]). ��
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On the other hand, there are some wide classes of spaces where all properties
considered in our discussion in this article coincide: A space X is ultracompact
(resp., ultrapseudocompact) if every sequence of points (resp., every sequence of
non empty open sets) in X has a q-limit for every q ∈ ω∗. We denote by Cπ(X)
the set of continuous function from X to the real numbers with the pointwise con-
vergence topology, and Cπ(X, [0, 1]) is the subspace of elements in Cπ(X) with
values in the unit interval [0, 1]. It was proved in [ST1] that: (1) A generalized
linearly ordered topological space (GLOTS) X is ultracompact if and only if X
is pseudocompact; (2) Cπ(X, [0, 1]) is ultrapseudocompact if and only if it is σ -
pseudocompact; and (3) Cπ(X) is σ -ultrapseudocompact if and only if Cπ(X) is
σ -pseudocompact. So, ifM,N ⊂ ω∗ we have: (i) For a GLOTSX,X isM-compact
if and only ifX is anN -pseudocompact space; (ii)Cπ(X, [0, 1]) isM-pseudocom-
pact if and only if it isσ -N -pseudocompact; and (iii)Cπ(X) isσ -M-pseudocompact
if and only if Cπ(X) is σ -N -pseudocompact.

As it was pointed out in [ST1], there are spaces X for which Cπ(X, [0, 1])
is ultrapseudocompact but not p-compact for any p ∈ ω∗. So, p-compactness
and p-pseudocompactness are not equivalent properties in the class of topologi-
cal groups. On the other hand, for topological groups, p-pseudocompactness and
PRK(p)-pseudocompactness are equivalent. In fact, for topological groups, pseudo-
compactness and M-pseudocompactness, with M ⊂ ω∗, are equivalent properties
([GFS]).

Example 5.12. There is a non-Frolı́k space which isR(p)-pseudocompact for every
p ∈ ω∗.

Proof. For eachp ∈ ω∗ and each open subsetO ofω∗, |R(p)∩O| = 2ω (Actually,
|S(p) ∩O| = 2ω). It follows immediately from the fact that S(p) is dense and the
fact that every open subset ofω∗ has cellularity 2ω. Let B = {Bλ : λ < 2ω} be a base
of ω∗. Recursively choose for each λ < 2ω and each p ∈ ω∗ two different points
a
p
λ , b

p
λ in Bλ∩R(p), in such a way that apλ �∈ {bpγ : γ < λ} and bpλ �∈ {apγ : γ ≤ λ}.

Let X = ω ∪ {apλ : λ < 2ω, and p ∈ ω∗} and Y = ω ∪ {bpλ : λ < 2ω, and p ∈ ω∗},
both with its topology inherited by βω. By Theorem 5.6,X and Y areR(p)-pseudo-
compact for every p ∈ ω∗, but X× Y is not pseudocompact because the sequence
of open subsets {(n, n)} does not have any accumulation point inX× Y . SoX and
Y do not belong to the class of Frolı́k F . ��
Problem 5.13. Is there a non Frolı́k space which is S(p)-pseudocompact for every
p ∈ ω∗?
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