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Why a di�erent formulation of quantum theory?

Usually a quantum system is encoded through a Hilbert space H of states
and an operator algebra A of observables.

This standard formulation of quantum theory has limitations that obstruct
its application in a general relativistic context:

Its operational meaning is tied to a background time: States encode
information on the system between measurements, the product of
observables encodes temporal composition of measurements,
probability is conserved in time etc.

Its ability to describe physics locally is not manifest, but arises
dynamically, depending on the background metric: Causality and
cluster decomposition allow then a factorization of the S-matrix.
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A new formulation

Can we reformulate what constitutes a quantum theory such that

there is no reference to time

locality is manifest

what was considered a quantum theory previously is still a quantum
theory

extra assumptions are kept to a minimum?

YES, using:

The mathematical framework of topological quantum �eld theory.
(A branch of modern algebraic topology.)

A generalization of the Born rule.

Robert Oeckl (CCM-UNAM) Holomorphic quantization Queretaro 20110819 4 / 22



A new formulation

Can we reformulate what constitutes a quantum theory such that

there is no reference to time

locality is manifest

what was considered a quantum theory previously is still a quantum
theory

extra assumptions are kept to a minimum?

YES, using:

The mathematical framework of topological quantum �eld theory.
(A branch of modern algebraic topology.)

A generalization of the Born rule.

Robert Oeckl (CCM-UNAM) Holomorphic quantization Queretaro 20110819 4 / 22



General boundary formulation
generalizing amplitudes

A starting point is the idea to generalize transition amplitudes.
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Basic structures

At the basis of the general boundary formulation lies an assignment of
algebraic structures to geometric ones.

Basic geometric structures (representing pieces of spacetime):

hypersurfaces: oriented manifolds of dimension d −1

regions: oriented manifolds of dimension d with boundary

Basic algebraic structures:

To each hypersurface Σ associate a Hilbert space HΣ of states.

To each region M with boundary ∂M associate a linear amplitude
map ρM : H∂M → C.
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Core axioms

The structures are subject to a number of axioms, in the spirit of
topological quantum �eld theory:

Let Σ denote Σ with opposite orientation. Then HΣ = H ∗
Σ .

(Decomposition rule) Let Σ = Σ1∪Σ2 be a disjoint union of
hypersurfaces. Then HΣ = HΣ1

⊗HΣ2
.

(Gluing rule) If M and N are adjacent regions, then

ρM∪N(ψ1⊗ψ2) · cM,N

= ∑
i∈N

ρM(ψ1⊗ξi )ρN(ξ
∗
i ⊗ψ2)

Here, ψ1 ∈HΣ1
, ψ2 ∈HΣ2

and
{ξi}i∈N is an ON-basis of HΣ. cM,N

is the gluing anomaly.
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Amplitudes and Probabilities

Consider the context of a general spacetime region
M with boundary Σ.

Probabilities in quantum theory are generally conditional probabilities.
They depend on two pieces of information. Here these are:

S ⊂HΣ representing preparation or knowledge

A ⊂HΣ representing observation or the question

The probability that the system is described by A given that it is described
by S is:

P(A |S ) =
|ρM ◦PS ◦PA |2

|ρM ◦PS |2

PS and PA are the orthogonal projectors onto the subspaces.
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Recovering transition amplitudes and probabilities

region: M = [t1, t2]×R3

boundary: ∂M = Σ1∪Σ2

state space: H∂M =
HΣ1

⊗HΣ2
= HΣ1

⊗H ∗
Σ2

Via time-translation symmetry identify HΣ1
∼= HΣ2

∼= H . Then,

ρ[t1,t2](ψ1⊗ψ
∗
2) = 〈ψ2,U(t1, t2)ψ1〉.

To compute the probability of measuring ψ2 at t2 given that we prepared
ψ1 at t1 we set

S = ψ1⊗H ∗, A = H ⊗ψ
∗
2 .

The resulting expression yields correctly

P(A |S ) = |〈ψ2,U(t1, t2)ψ1〉|2.
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Holomorphic Quantization

For linear �eld theories with certain additional data a quantization scheme
can be devised that yields a quantum �eld theory in GBF form. This can
be seen as a kind of functor from a category of classical �eld theories to a
category of quantum �eld theories.
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Lagrangian �eld theory

Formulate �eld theory in terms of �rst order Lagrangian density
Λ(ϕ,∂ϕ,x). For a spacetime region M the action of a �eld φ is

SM(φ) :=
∫
M

Λ(φ(·),∂φ(·), ·). (1)

Classical solutions in M are extremal points of this action.
For a hypersurface Σ the symplectic form is

(ωΣ)φ (X ,Y ) =−1
2

∫
Σ

(
(X bY a−Y bX a) ∂µy

δ 2Λ

δϕbδ ∂µϕa

∣∣∣∣
φ

+(Y a
∂νX

b−X a
∂νY

b) ∂µy
δ 2Λ

δ ∂νϕbδ ∂µϕa

∣∣∣∣
φ

)
. (2)
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Geometric quantization

Let L denote the space of classical solutions with a symplectic form ω .

1 We consider a hermitian line bundle B over L with a connection ∇

that has curvature 2-form ω . De�ne the prequantum Hilbert space H
as the space of square-integrable sections with inner product

〈s ′,s〉=
∫

(s ′(η),s(η))η dµ(η).

2 This Hilbert space is too large. Choose in each complexi�ed tangent
space (TφL)C a Lagrangian subspace Pφ with respect to ωφ . We then
restrict H to those sections s of B such that

∇
X
s = 0, (3)

if Xφ ∈ Pφ for all φ ∈ L. This is called a polarization.
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Kähler polarization

We are interested in a Kähler polarization. Then Pφ is determined by a
complex structure Jφ in TφL that is compatible with ωφ . Jφ satis�es
Jφ ◦Jφ =−1 and ωφ (JφX ,JφY ) = ωφ (X ,Y ). Then

Pφ = {X ∈ (TφL)C : iX = JφX}. (4)

Jφ yields a real inner product on TφL:

gφ (Xφ ,Yφ ) := 2ωΣ(Xφ ,JφYφ ). (5)

We shall require gφ to be positive de�nite. We also obtain a complex inner
product on TφL viewed as a complex vector space:

{Xφ ,Yφ}φ := gφ (Xφ ,Yφ ) +2iωφ (Xφ ,Yφ ). (6)

The Hilbert space H obtained from H through a Kähler polarization is
also called the holomorphic representation.
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Schrödinger-Feynman quantization

In the Schrödinger representation states are wave functions on
instantaneous �eld con�gurations. Transition amplitudes between such
wave functions can be obtained through the Feynman path integral:

〈ψ2,U[t1,t2]ψ1〉=
∫
K[t1 ,t2]

ψ1(φ |t1)ψ2(φ |t2)exp
(
iS[t1,t2](φ)

)
dµ(φ), (7)

The integral is over the space of �eld con�gurations K[t1,t2] in the time
interval t1, t2 between initial state ψ1 and �nal state ψ2. For spacetime
regions M this generalizes to

ρM(ψ) =
∫
KM

ψ(φ |∂M)exp(iSM(φ)) dµ(φ), (8)

If the space of classical solutions LM is linear, the integral over the space
KM can be replaced by an integral over the �much smaller� space LM .
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Classical Data

A classical linear �eld theory is encoded in the following data:

For each hypersurface Σ there is a real vector space LΣ (of classical

solutions near Σ). LΣ carries a non-degenerate symplectic form ωΣ

(from Lagrangian �eld theory). Moreover, LΣ carries a compatible
complex structure JΣ (for geometric quantization). In particular, LΣ is a
real Hilbert space with gΣ and a complex Hilbert space with {·, ·}Σ.

For each region M there is a real vector space LM (of classical solutions

in M) and a real linear map rM : LM → L∂M .

The subspace rM(LM)⊆ L∂M is Lagrangian with respect to ω∂M .

These structures are compatible with orientation change,
decomposition of hypersurfaces and gluing of regions. We also require
a certain integrability condition.

It follows: L∂M = rM(LM)⊕R J∂M rM(LM) is an orthogonal sum.
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State spaces

For each hypersurface Σ we de�ne a Hilbert space of states HΣ as follows.
The polarization induced by the complex structure JΣ yields a global
trivialization of the prequantum bundle BΣ. Polarized sections become
holomorphic functions on LΣ that are square-integrable with respect to a
Gaussian measure νΣ, depending on gΣ,

〈ψ ′,ψ〉Σ =
∫
L̂Σ

ψ(φ)ψ ′(φ)dνΣ(φ).

If LΣ is in�nite-dimensional no Gaussian measure on LΣ exists. However,
νΣ does exists on the larger space L̂Σ that is the algebraic dual of the
topological dual of LΣ. So, wave functions ψ ∈HΣ are really functions on
L̂Σ. However, they turn out to be completely determined by their values on
LΣ.
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Amplitudes

For each region M we de�ne the linear amplitude map ρM : H∂M → C by

ρM(ψ) :=
∫
L̂M

ψ(r(φ))dνM(φ).

Here L̂M is an extension of LM and νM is a Gaussian measure on L̂M ,
depending on g∂M . νM arises by combining three ingredients:

A translation-invariant measure in the Feynman path integral.

The factor exp(iSM(φ)) in the Feynman path integral.

The transformation between the Schrödinger and the holomorphic
representations.
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Main Result

Theorem

The GBF core axioms are satis�ed by this quantization prescription.
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Coherent States

The Hilbert spaces HΣ are reproducing kernel Hilbert spaces and contain
coherent states of the form

Kξ (φ) = exp

(
1

2
{ξ ,φ}Σ

)
associated to classical solutions ξ ∈ LΣ. They have the reproducing
property,

〈Kξ ,ψ〉Σ = ψ(ξ ),

and satisfy the completeness relation

〈ψ ′,ψ〉Σ =
∫
L̂Σ

〈ψ ′,Kξ 〉Σ〈Kξ ,ψ〉Σ dνΣ(ξ ).

They can be thought of as representing quantum states that approximate a
speci�c classical solutions.
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Evolution Picture

Suppose M is a region with ∂M = Σ1∪Σ2. If there is a unitary map
T : LΣ1

→ LΣ2
such that rM(LM) = {(φ ,Tφ) : φ ∈ LΣ1

}, then there is a
unitary map U : HΣ1

→HΣ2
such that

ρM(ψ1⊗ψ
∗
2) = 〈ψ2,Uψ1〉Σ2

where
(Uψ)(φ) = ψ(T−1φ) and UKξ = KTξ .
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Amplitudes of coherent states

Remarkably, the amplitude of a coherent state can be calculated explicitly.
Let ξ ∈ L∂M and set ξ = ξR +J∂Mξ I ∈ rM(LM)⊕R J∂M rM(LM). Let K̃ξ

denote the normalized coherent state associated with ξ . Then,

ρM(K̃ξ ) = exp

(
−1
2
g∂M(ξ

I,ξ I)− i
2
g∂M(ξ

R,ξ I)

)
This has a compelling physical interpretation . . .
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