Holomorphic quantization in background-independent quantum field theory

Robert Oeckl

Centro de Ciencias Matemáticas UNAM, Morelia

> Cinvestav-IPN Queretaro 19 August 2011

Outline

Motivation

The general boundary formulation

- Basic structure
- Probability interpretation
- Recovering the standard formulation

Bolomorphic Quantization

- Ingredients
 - Lagrangian field theory
 - Geometric quantization
 - Schrödinger-Feynman quantization
- Classical Data
- The Quantum Theory
- Main Result
- Coherent states

Why a different formulation of quantum theory?

Usually a quantum system is encoded through a Hilbert space \mathscr{H} of states and an operator algebra \mathscr{A} of observables.

This standard formulation of quantum theory has limitations that obstruct its application in a general relativistic context:

- Its operational meaning is tied to a background time: States encode information on the system between measurements, the product of observables encodes temporal composition of measurements, probability is conserved in time etc.
- Its ability to describe physics locally is not manifest, but arises dynamically, depending on the background metric: Causality and cluster decomposition allow then a factorization of the S-matrix.

B A B A B B B O Q O

A new formulation

Can we reformulate what constitutes a quantum theory such that

- there is no reference to time
- Iocality is manifest
- what was considered a quantum theory previously is still a quantum theory
- extra assumptions are kept to a minimum?

A new formulation

Can we reformulate what constitutes a quantum theory such that

- there is no reference to time
- Iocality is manifest
- what was considered a quantum theory previously is still a quantum theory
- extra assumptions are kept to a minimum?

YES, using:

- The mathematical framework of **topological quantum field theory**. (A branch of modern algebraic topology.)
- A generalization of the Born rule.

General boundary formulation generalizing amplitudes

A starting point is the idea to generalize transition amplitudes.

curved space-time general 60 m dary standard QM QM QM evolutia inside evolution in time space-like hypersurfaces corry states boundary of general space-time region corries generalized states states at time instances evolution in foliation

> < = > = = < < < <

Basic structures

At the basis of the general boundary formulation lies an assignment of algebraic structures to geometric ones.

Basic geometric structures (representing pieces of spacetime):

- hypersurfaces: oriented manifolds of dimension d-1
- **regions**: oriented manifolds of dimension *d* with boundary

Basic algebraic structures:

- To each hypersurface Σ associate a Hilbert space \mathscr{H}_{Σ} of states.
- To each region M with boundary ∂M associate a linear **amplitude** map $\rho_M : \mathscr{H}_{\partial M} \to \mathbb{C}$.

Core axioms

The structures are subject to a number of axioms, in the spirit of **topological quantum field theory**:

- Let $\overline{\Sigma}$ denote Σ with opposite orientation. Then $\mathscr{H}_{\overline{\Sigma}} = \mathscr{H}_{\Sigma}^*$.
- (Decomposition rule) Let $\Sigma = \Sigma_1 \cup \Sigma_2$ be a disjoint union of hypersurfaces. Then $\mathscr{H}_{\Sigma} = \mathscr{H}_{\Sigma_1} \otimes \mathscr{H}_{\Sigma_2}$.
- (Gluing rule) If *M* and *N* are adjacent regions, then

 $egin{aligned} &
ho_{\mathcal{M}\cup\mathcal{N}}(\psi_1\otimes\psi_2)\cdot c_{\mathcal{M},\mathcal{N}}\ &=\sum_{i\in\mathbb{N}}
ho_{\mathcal{M}}(\psi_1\otimes\xi_i)
ho_{\mathcal{N}}(\xi_i^*\otimes\psi_2) \end{aligned}$

Here, $\psi_1 \in \mathscr{H}_{\Sigma_1}$, $\psi_2 \in \mathscr{H}_{\Sigma_2}$ and $\{\xi_i\}_{i \in \mathbb{N}}$ is an ON-basis of \mathscr{H}_{Σ} . $c_{M,N}$ is the gluing anomaly.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 うらう

Amplitudes and Probabilities

Consider the context of a general spacetime region M with boundary Σ .

Probabilities in quantum theory are generally conditional probabilities. They depend on two pieces of information. Here these are:

- $\mathscr{S} \subset \mathscr{H}_{\Sigma}$ representing **preparation** or **knowledge**
- $\mathscr{A} \subset \mathscr{H}_{\Sigma}$ representing **observation** or the **question**

The probability that the system is described by \mathscr{A} given that it is described by \mathscr{S} is:

$$P(\mathscr{A}|\mathscr{S}) = \frac{|\rho_{M} \circ P_{\mathscr{S}} \circ P_{\mathscr{A}}|^{2}}{|\rho_{M} \circ P_{\mathscr{S}}|^{2}}$$

• P_S and P_S are the orthogonal projectors onto the subspaces.

Recovering transition amplitudes and probabilities

Via time-translation symmetry identify $\mathscr{H}_{\Sigma_1} \cong \mathscr{H}_{\Sigma_2} \cong \mathscr{H}$. Then,

 $\rho_{[t_1,t_2]}(\psi_1\otimes\psi_2^*)=\langle\psi_2,U(t_1,t_2)\psi_1\rangle.$

To compute the probability of measuring ψ_2 at t_2 given that we prepared ψ_1 at t_1 we set

$$\mathscr{S} = \psi_1 \otimes \mathscr{H}^*, \quad \mathscr{A} = \mathscr{H} \otimes \psi_2^*.$$

The resulting expression yields correctly

$$P(\mathscr{A}|\mathscr{S}) = |\langle \psi_2, U(t_1, t_2)\psi_1 \rangle|^2.$$

Holomorphic Quantization

For linear field theories with certain additional data a quantization scheme can be devised that yields a quantum field theory in GBF form. This can be seen as a kind of functor from a category of classical field theories to a category of quantum field theories.

Lagrangian field theory

Formulate field theory in terms of first order Lagrangian density $\Lambda(\phi, \partial \phi, x)$. For a spacetime region *M* the **action** of a field ϕ is

$$S_{M}(\phi) := \int_{M} \Lambda(\phi(\cdot), \partial \phi(\cdot), \cdot).$$
(1)

Classical solutions in *M* are extremal points of this action. For a hypersurface Σ the symplectic form is

$$(\omega_{\Sigma})_{\phi}(X,Y) = -\frac{1}{2} \int_{\Sigma} \left((X^{b}Y^{a} - Y^{b}X^{a}) \partial_{\mu} \lrcorner \frac{\delta^{2}\Lambda}{\delta\varphi^{b}\delta\partial_{\mu}\varphi^{a}} \Big|_{\phi} + (Y^{a}\partial_{\nu}X^{b} - X^{a}\partial_{\nu}Y^{b}) \partial_{\mu} \lrcorner \frac{\delta^{2}\Lambda}{\delta\partial_{\nu}\varphi^{b}\delta\partial_{\mu}\varphi^{a}} \Big|_{\phi} \right).$$
(2)

> < = > = = < < < <

Geometric quantization

- Let L denote the space of classical solutions with a symplectic form ω .
 - We consider a hermitian line bundle *B* over *L* with a connection ∇ that has curvature 2-form ω . Define the **prequantum** Hilbert space *H* as the space of square-integrable sections with inner product

$$\langle s',s
angle = \int (s'(\eta),s(\eta))_\eta \,\mathrm{d}\mu(\eta).$$

⁽²⁾ This Hilbert space is too large. Choose in each complexified tangent space $(T_{\phi}L)^{\mathbb{C}}$ a Lagrangian subspace P_{ϕ} with respect to ω_{ϕ} . We then restrict H to those sections s of B such that

$$\nabla_{\overline{X}}s = 0,$$
 (3)

if $X_{\phi} \in P_{\phi}$ for all $\phi \in L$. This is called a **polarization**.

Kähler polarization

We are interested in a Kähler polarization. Then P_{ϕ} is determined by a complex structure J_{ϕ} in $T_{\phi}L$ that is compatible with ω_{ϕ} . J_{ϕ} satisfies $J_{\phi} \circ J_{\phi} = -1$ and $\omega_{\phi}(J_{\phi}X, J_{\phi}Y) = \omega_{\phi}(X, Y)$. Then

$$P_{\phi} = \{ X \in (T_{\phi} L)^{\mathbb{C}} : iX = J_{\phi} X \}.$$
(4)

 J_{ϕ} yields a real inner product on $T_{\phi}L$:

$$g_{\phi}(X_{\phi}, Y_{\phi}) := 2\omega_{\Sigma}(X_{\phi}, J_{\phi}Y_{\phi}).$$
(5)

We shall require g_{ϕ} to be positive definite. We also obtain a complex inner product on $T_{\phi}L$ viewed as a complex vector space:

$$\{X_{\phi}, Y_{\phi}\}_{\phi} := g_{\phi}(X_{\phi}, Y_{\phi}) + 2\mathrm{i}\omega_{\phi}(X_{\phi}, Y_{\phi}).$$
(6)

The Hilbert space \mathcal{H} obtained from H through a Kähler polarization is also called the **holomorphic representation**.

Robert Oeck (CCM-UNAM)

Schrödinger-Feynman quantization

In the **Schrödinger representation** states are wave functions on instantaneous field configurations. Transition amplitudes between such wave functions can be obtained through the **Feynman path integral**:

$$\langle \psi_2, U_{[t_1, t_2]} \psi_1 \rangle = \int_{\mathcal{K}_{[t_1, t_2]}} \psi_1(\phi|_{t_1}) \overline{\psi_2(\phi|_{t_2})} \exp\left(\mathrm{i}S_{[t_1, t_2]}(\phi)\right) \,\mathrm{d}\mu(\phi), \quad (7)$$

The integral is over the space of field configurations $K_{[t_1,t_2]}$ in the time interval t_1, t_2 between initial state ψ_1 and final state ψ_2 . For spacetime regions M this generalizes to

$$\rho_M(\psi) = \int_{\mathcal{K}_M} \psi(\phi|_{\partial M}) \exp\left(\mathrm{i}S_M(\phi)\right) \mathrm{d}\mu(\phi), \tag{8}$$

If the space of classical solutions L_M is linear, the integral over the space K_M can be replaced by an integral over the "much smaller" space L_M .

⇒ ↓ ≡ ↓ ≡ ⊨ √ Q ∩

Classical Data

A classical linear field theory is encoded in the following data:

- For each hypersurface Σ there is a real vector space L_{Σ} (of classical solutions near Σ). L_{Σ} carries a non-degenerate symplectic form ω_{Σ} (from Lagrangian field theory). Moreover, L_{Σ} carries a compatible complex structure J_{Σ} (for geometric quantization). In particular, L_{Σ} is a real Hilbert space with g_{Σ} and a complex Hilbert space with $\{\cdot, \cdot\}_{\Sigma}$.
- For each region M there is a real vector space L_M (of classical solutions in M) and a real linear map $r_M : L_M \to L_{\partial M}$.
- The subspace $r_M(L_M) \subseteq L_{\partial M}$ is Lagrangian with respect to $\omega_{\partial M}$.
- These structures are compatible with orientation change, decomposition of hypersurfaces and gluing of regions. We also require a certain integrability condition.

It follows: $L_{\partial M} = r_M(L_M) \oplus_{\mathbb{R}} J_{\partial M} r_M(L_M)$ is an orthogonal sum.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 うらう

State spaces

For each hypersurface Σ we define a Hilbert space of states \mathscr{H}_{Σ} as follows. The polarization induced by the complex structure J_{Σ} yields a global trivialization of the prequantum bundle B_{Σ} . Polarized sections become **holomorphic** functions on L_{Σ} that are square-integrable with respect to a **Gaussian measure** v_{Σ} , depending on g_{Σ} ,

$$\langle \psi',\psi\rangle_{\Sigma} = \int_{\hat{L}_{\Sigma}} \psi(\phi)\overline{\psi'(\phi)}\,\mathrm{d}v_{\Sigma}(\phi).$$

If L_{Σ} is infinite-dimensional no Gaussian measure on L_{Σ} exists. However, v_{Σ} does exists on the larger space \hat{L}_{Σ} that is the algebraic dual of the topological dual of L_{Σ} . So, wave functions $\psi \in \mathscr{H}_{\Sigma}$ are really functions on \hat{L}_{Σ} . However, they turn out to be completely determined by their values on L_{Σ} .

▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● 9 Q @

Amplitudes

For each region M we define the linear amplitude map $\rho_M : \mathscr{H}_{\partial M} \to \mathbb{C}$ by

$$\rho_M(\psi) := \int_{\hat{L}_M} \psi(r(\phi)) \, \mathrm{d} v_M(\phi).$$

Here \hat{L}_M is an extension of L_M and v_M is a Gaussian measure on \hat{L}_M , depending on $g_{\partial M}$. v_M arises by combining three ingredients:

- A translation-invariant measure in the Feynman path integral.
- The factor $\exp(iS_M(\phi))$ in the Feynman path integral.
- The transformation between the Schrödinger and the holomorphic representations.

⇒ ↓ ≡ ↓ ≡ ⊨ √ Q ∩

Main Result

Theorem

The GBF core axioms are satisfied by this quantization prescription.

표▶ ▲ 표▶ 표|표 - • • • • •

Coherent States

The Hilbert spaces \mathscr{H}_{Σ} are reproducing kernel Hilbert spaces and contain coherent states of the form

$$\mathcal{K}_{\xi}(\phi) = \exp\left(rac{1}{2}\{\xi,\phi\}_{\Sigma}
ight)$$

associated to classical solutions $\xi \in L_{\Sigma}$. They have the reproducing property,

$$\langle K_{\xi}, \psi \rangle_{\Sigma} = \psi(\xi),$$

and satisfy the completeness relation

$$\langle \psi',\psi\rangle_{\Sigma} = \int_{\hat{L}_{\Sigma}} \langle \psi',\kappa_{\xi}\rangle_{\Sigma} \langle \kappa_{\xi},\psi\rangle_{\Sigma} dv_{\Sigma}(\xi).$$

They can be thought of as representing quantum states that approximate a specific classical solutions.

> < = > = = < < < <

Evolution Picture

Suppose *M* is a region with $\partial M = \Sigma_1 \cup \overline{\Sigma_2}$. If there is a unitary map $T: L_{\Sigma_1} \to L_{\Sigma_2}$ such that $r_M(L_M) = \{(\phi, T\phi) : \phi \in L_{\Sigma_1}\}$, then there is a unitary map $U: \mathscr{H}_{\Sigma_1} \to \mathscr{H}_{\Sigma_2}$ such that

$$ho_{\mathcal{M}}(\psi_1\otimes\psi_2^*)=\langle\psi_2,U\psi_1
angle_{\Sigma_2}$$

where

$$(U\psi)(\phi) = \psi(T^{-1}\phi)$$
 and $UK_{\xi} = K_{T\xi}$.

EL SOCO

Amplitudes of coherent states

Remarkably, the amplitude of a coherent state can be calculated explicitly. Let $\xi \in L_{\partial M}$ and set $\xi = \xi^{R} + J_{\partial M}\xi^{I} \in r_{M}(L_{M}) \oplus_{R} J_{\partial M}r_{M}(L_{M})$. Let \tilde{K}_{ξ} denote the normalized coherent state associated with ξ . Then,

$$\rho_{M}(\tilde{K}_{\xi}) = \exp\left(-\frac{1}{2}g_{\partial M}(\xi^{\mathsf{I}},\xi^{\mathsf{I}}) - \frac{\mathrm{i}}{2}g_{\partial M}(\xi^{\mathsf{R}},\xi^{\mathsf{I}})\right)$$

This has a compelling physical interpretation

Selected references

Short overview of the GBF:

R. O., *Probabilities in the general boundary formulation*, J. Phys.: Conf. Ser. **67** (2007) 012049, arXiv:hep-th/0612076.

- R. O., General boundary quantum field theory: Foundations and probability interpretation, Adv. Theor. Math. Phys. 12 (2008) 319-352, arXiv:hep-th/0509122.
- R. O., Holomorphic quantization of linear field theory in the general boundary formulation, arXiv:1009.5615.

▶ ▲ ∃ ▶ ∃ | = ●