General covariance and the foundations of quantum theory

Robert Oeckl

Centro de Ciencias Matemáticas
UNAM, Morelia

Quantum Theory: Reconsideration of Foundations - 6
Linnéuniveritetet, Växjö
12 June 2012
"That 'sharp time' is an anomaly in Q.M. and that besides, so to speak independently of that, the special role of time poses a serious obstacle to adapting Q.M. to the relativity principle, is something that in recent years I have brought up again and again, unfortunately without being able to make the shadow of a useful counterproposal."
E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften 23 (1935), 807-812, 823-828, 844-849

The special role of time

Historically, quantum theory was first developed in a non-relativistic context, modeled on an analogy with non-relativistic classical mechanics. This imprinted a special role of time on its very foundations.

The operational meaning of its ingredients is tied to a background time

- States in the Hilbert space \mathcal{H} encode information on a system between measurements.
- The product of observables understood as operators on \mathcal{H} encodes temporal composition of measurements.
- The Hamiltonian operator encodes evolution in time.

While a "work-around" was found to accomodate special relativity, general relativity poses a much more serious challenge.

Advocating a new formulation of the foundations

Can we reformulate what constitutes a quantum theory such that

- there is no reference to time
- the traditional formalism of a Hilbert space with operators as observables is recovered exactly (in the right cirumstances)
- locality is manifest?

Advocating a new formulation of the foundations

Can we reformulate what constitutes a quantum theory such that

- there is no reference to time
- the traditional formalism of a Hilbert space with operators as observables is recovered exactly (in the right cirumstances)
- locality is manifest?

YES, using:

- The mathematical framework of topological quantum field theory. (A branch of modern algebraic topology.)
- A generalization of the Born rule.

This is called the general boundary formulation (GBF).

GBF: Basic ingredients - spacetime

The elimination of an abolsute notion of time comes at the cost of introducing a weak notion of spacetime. This consists of:

- hypersurfaces: oriented manifolds of dimension d - 1
- regions: oriented manifolds of dimension d with boundary
- regions

This setting is generally covariant in the sense that the manifolds merely need to carry a topological structure. However, they may carry additonal structure such as a metric, depending on the model to be considered.

GBF: Basic ingredients - algebraic structures

As in topological quantum field theory [Witten, Segal, Atiyah etc. 1980's] algebraic structures are associated to the spacetime structures:

- To each hypersurface Σ associate a Hilbert space \mathcal{H}_{Σ} of states.
- To each region M with boundary ∂M associate a linear amplitude $\operatorname{map} \rho_{M}: \mathcal{H}_{\partial M} \rightarrow \mathbb{C}$.

Core axioms

The structures are subject to a number of axioms:

- Let $\bar{\Sigma}$ denote Σ with opposite orientation. Then $\mathcal{H}_{\bar{\Sigma}}=\mathcal{H}_{\Sigma}^{*}$.
- (Decomposition rule) Let $\Sigma=\Sigma_{1} \cup \Sigma_{2}$ be a disjoint union of hypersurfaces. Then $\mathcal{H}_{\Sigma}=\mathcal{H}_{\Sigma_{1}} \otimes \mathcal{H}_{\Sigma_{2}}$.
- (Gluing rule) If M and N are adjacent regions, then:

$$
\rho_{M \cup N}\left(\psi_{1} \otimes \psi_{2}\right):=\sum_{i \in \mathbb{N}} \rho_{M}\left(\psi_{1} \otimes \xi_{i}\right) \rho_{N}\left(\xi_{i}^{*} \otimes \psi_{2}\right)
$$

Here, $\psi_{1} \in \mathcal{H}_{\Sigma_{1}}, \psi_{2} \in \mathcal{H}_{\Sigma_{2}}$ and $\left\{\xi_{i}\right\}_{i \in \mathbb{N}}$ is an ON-basis of \mathcal{H}_{Σ}.

Recovering transition amplitudes

Consider special regions in Minkowski space.

- region: $M=\left[t_{1}, t_{2}\right] \times \mathbb{R}^{3}$
- boundary: $\partial M=\Sigma_{1} \cup \bar{\Sigma}_{2}$
- state space:

$$
\mathcal{H}_{\partial M}=\mathcal{H}_{\Sigma_{1}} \otimes \mathcal{H}_{\bar{\Sigma}_{2}}=\mathcal{H}_{\Sigma_{1}} \otimes \mathcal{H}_{\Sigma_{2}}^{*}
$$

Via time-translation symmetry identify $\mathcal{H}_{\Sigma_{1}} \cong \mathcal{H}_{\Sigma_{2}} \cong \mathcal{H}$. Then:

$$
\rho_{\left[t_{1}, t_{2}\right]}\left(\psi_{1} \otimes \psi_{2}^{*}\right)=\left\langle\psi_{2}, U\left(t_{1}, t_{2}\right) \psi_{1}\right\rangle
$$

Recovering transition amplitudes

Consider special regions in Minkowski space.

- region: $M=\left[t_{1}, t_{2}\right] \times \mathbb{R}^{3}$
- boundary: $\partial M=\Sigma_{1} \cup \bar{\Sigma}_{2}$
- state space:

$$
\mathcal{H}_{\partial M}=\mathcal{H}_{\Sigma_{1}} \otimes \mathcal{H}_{\bar{\Sigma}_{2}}=\mathcal{H}_{\Sigma_{1}} \otimes \mathcal{H}_{\Sigma_{2}}^{*}
$$

Via time-translation symmetry identify $\mathcal{H}_{\Sigma_{1}} \cong \mathcal{H}_{\Sigma_{2}} \cong \mathcal{H}$. Then:

$$
\rho_{\left[t_{1}, t_{2}\right]}\left(\psi_{1} \otimes \psi_{2}^{*}\right)=\left\langle\psi_{2}, U\left(t_{1}, t_{2}\right) \psi_{1}\right\rangle
$$

- But, does it make sense do go beyond this example?
- Does the boundary Hilbert space $\mathcal{H}_{\partial M}$ have a useful physical interpretation in general?

Amplitudes and probabilities

Generalizing the Born rule

Consider the context of a general spacetime region M with boundary Σ.

Probabilities in quantum theory are generally conditional probabilities. They depend on two pieces of information. Here these are:

- $\mathcal{S} \subset \mathcal{H}_{\Sigma}$ representing preparation or knowledge
- $\mathcal{A} \subset \mathcal{H}_{\Sigma}$ representing observation or the question

The probability that the system is described by \mathcal{A} given that it is described by \mathcal{S} is:

$$
P(\mathcal{A} \mid \mathcal{S})=\frac{\left\|\rho_{M} \circ P_{\mathcal{S}} \circ P_{\mathcal{A}}\right\|^{2}}{\left\|\rho_{M} \circ P_{\mathcal{S}}\right\|^{2}}=\frac{\sum_{i \in I}\left|\rho_{M}\left(P_{\mathcal{S}}\left(P_{\mathcal{A}}\left(\xi_{i}\right)\right)\right)\right|^{2}}{\sum_{i \in I}\left|\rho_{M}\left(P_{\mathcal{S}}\left(\xi_{i}\right)\right)\right|^{2}}
$$

- $P_{\mathcal{S}}$ and $P_{\mathcal{A}}$ are the orthogonal projectors onto the subspaces, $\left\{\xi_{i}\right\}_{i \in I}$ an ON-basis of \mathcal{H}_{Σ}.

Recovering standard probabilities

Generalizing the Born rule

To compute the probability of measuring ψ_{2} at t_{2} given that we prepared ψ_{1} at t_{1} we set

$$
\mathcal{S}=\psi_{1} \otimes \mathcal{H}^{*}, \quad \mathcal{A}=\mathcal{H} \otimes \psi_{2}^{*}
$$

The resulting expression yields correctly
$P(\mathcal{A} \mid \mathcal{S})=\frac{\left\|\rho_{\left[t_{1}, t_{2}\right]} \circ P_{\mathcal{S}} \circ P_{\mathcal{A}}\right\|^{2}}{\left\|\rho_{\left[t_{1}, t_{2}\right]} \circ P_{\mathcal{S}}\right\|^{2}}=\frac{\left|\rho_{\left[t_{1}, t_{2}\right]}\left(\psi_{1} \otimes \psi_{2}^{*}\right)\right|^{2}}{1}=\left|\left\langle\psi_{2}^{*}, U\left(t_{1}, t_{2}\right) \psi_{1}\right\rangle\right|^{2}$.

Status and recent developments

- By restricting to special spacetime regions (time-intervals) the traditional formalism is reproduced exactly. [RO 2005; RO 2010]
- Three dimensional quantum gravity is already formulated as a TQFT and fits thus "automatically" into the GBF. Also the GBF is extensively used in spin foam quantum gravity. [C. Rovelli et al.]
- There is a powerful and compelling concept of observable. [RO 2010; RO 2012]
- A natural testing ground for the GBF is quantum field theory.
- State spaces on timelike hypersurfaces and "evolution" in spacelike directions. [RO 2005]
- New S-matrix type asymptotic amplitudes in Minkowski space, DeSitter space, Anti-deSitter space. [D. Colosi, RO 2008; D. Colosi 2009; M. Dohse 2011]
- Quantum Yang-Mills Theory in 2 dimensions for arbitrary regions and hypersurfaces with corners. [RO 2006]
- Rigorous (holomorphic) quantization of linear and affine field theories without need for metric background. [RO 2010; RO 2011]

Selected references

Short overview:

R. O., Probabilities in the general boundary formulation, J. Phys.: Conf. Ser. 67 (2007) 012049, hep-th/0612076.

Basics:

R. O., General boundary quantum field theory: Foundations and probability interpretation, Adv. Theor. Math. Phys. 12 (2008) 319-352, hep-th/0509122.

Observables:
R. O., Observables in the general boundary formulation, Quantum Field Theory and Gravity (Regensburg, 2010), Birkhäuser, Basel, 2012, pp. 137-156, arXiv:1101.0367.
R. O., Schrödinger-Feynman quantization and composition of observables in general boundary quantum field theory, arXiv:1201.1877.

