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Groups and graphs

Caveat

All groups and graphs in this talk are finite. Some of the results may be
true for the infinite case, but I haven’t studied this.

Definition

An automorphism of a graph is a permutation of the vertex set that
preserves edges and non-edges.

Question [König, 1936]

Given an abstract group G , is there a graph Γ for which Aut(Γ) ∼= G?

Answer [Frucht, 1938]

Yes; in fact, there are infinitely many such graphs for any group G .
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General constructions, though, required far more than |G | vertices.

Example: Z5
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Related Question [first reference Alspach, 1974]

Given a particular representation of a permutation group G , is there a
graph Γ for which Aut(Γ) ∼= G as permutation groups?

Eg. a transitive permutation group of order n acting on n vertices?

If |G | = n is transitive on the n vertices of a graph Γ, then the action of G
is regular. It is well-known that this is equivalent to Γ being a Cayley
graph on G .

Cayley digraphs

The Cayley digraph Γ = Cay(G,S) is the digraph whose vertices are the
elements of G , with an arc from g to gs if and only if s ∈ S . If we want to
ensure that these are edges rather than arcs, we require S = S−1.

Notice that left-multiplying by h preserves adjacency, so the regular
representation of G is in Aut(Γ).
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Cayley graph examples

Examples
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Definition

A graphical regular representation (GRR) of a group G is a graph Γ such
that Aut(Γ) is regular and isomorphic to G .

So it is a Cayley graph on G ,
that has no graph automorphisms other than the left-regular
representation of G .

Additional automorphisms

Notice that if ϕ is a group automorphism of G that preserves the set S ,
then it induces a graph automorphism on Γ = Cay(G, S). We have:
g ∼ gs if and only if s ∈ S .
For ϕ to be a graph automorphism, we need
ϕ(g) ∼ ϕ(gs) if and only if g ∼ gs, which is equivalent to s ∈ S .
Now, ϕ(gs) = ϕ(g)ϕ(s),
so ϕ(g) ∼ ϕ(gs) if and only if ϕ(s) ∈ S .
Since ϕ(S) = S , ϕ is a graph automorphism.
In particular, since S is inverse-closed, if there is an automorphism of G
that takes every element of G to itself or its inverse, then Γ has this extra
automorphism.
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Abelian groups

Automorphism

Recall that a group G is abelian if and only if x → x−1 is an automorphism
of G .

So abelian groups cannot have GRRs. (Unless they have exponent 2.)

Example

0
1

2

3

4

5
6

7

8

9

10

11

Joy Morris joint work with Pablo Spiga and others (SIGMAP, National Autonomous University of Mexico, Morelia, Mexico)Regular Representations June 28, 2018 7 / 28



Abelian groups

Automorphism

Recall that a group G is abelian if and only if x → x−1 is an automorphism
of G . So abelian groups cannot have GRRs.

(Unless they have exponent 2.)

Example

0
1

2

3

4

5
6

7

8

9

10

11

Joy Morris joint work with Pablo Spiga and others (SIGMAP, National Autonomous University of Mexico, Morelia, Mexico)Regular Representations June 28, 2018 7 / 28



Abelian groups

Automorphism

Recall that a group G is abelian if and only if x → x−1 is an automorphism
of G . So abelian groups cannot have GRRs. (Unless they have exponent 2.)

Example

0
1

2

3

4

5
6

7

8

9

10

11

Joy Morris joint work with Pablo Spiga and others (SIGMAP, National Autonomous University of Mexico, Morelia, Mexico)Regular Representations June 28, 2018 7 / 28



Abelian groups

Automorphism

Recall that a group G is abelian if and only if x → x−1 is an automorphism
of G . So abelian groups cannot have GRRs. (Unless they have exponent 2.)

Example

0
1

2

3

4

5
6

7

8

9

10

11

Joy Morris joint work with Pablo Spiga and others (SIGMAP, National Autonomous University of Mexico, Morelia, Mexico)Regular Representations June 28, 2018 7 / 28



Abelian groups

Automorphism

Recall that a group G is abelian if and only if x → x−1 is an automorphism
of G . So abelian groups cannot have GRRs. (Unless they have exponent 2.)

Example

0
1

2

3

4

5
6

7

8

9

10

11

Joy Morris joint work with Pablo Spiga and others (SIGMAP, National Autonomous University of Mexico, Morelia, Mexico)Regular Representations June 28, 2018 8 / 28



Generalised dicyclic groups

Definition

A group G is generalised dicyclic if it has an index 2 abelian subgroup A
and an element x 6∈ A that satisfy x4 = 1, x−1ax = a−1 for every a ∈ A.

The map that fixes every element of A and inverts every element of Ax is
an automorphism of G . So generalised dicyclic groups cannot have GRRs.

Theorem (Nowitz 1968, Watkins 1971)

There are two infinite families of groups that do not admit a GRR:

abelian groups containing a non-involution (i.e. of exponent greater
than 2);

generalised dicyclic groups.

Theorem (Hetzel 1976, Godsil 1981)

With the exception of these two infinite families and 13 other groups of
order at most 32, every group has a GRR.
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Definition

A digraphical regular representation (DRR) of a group G is a digraph Γ
such that Aut(Γ) is regular and isomorphic to G .

Theorem (Babai, 1980)

With 5 small exceptions, every group has a DRR.

The exceptions

Z2
2, Z3

2, Z4
2, Z2

3, Q8.

Question (Babai, 1980)

Many of the DRRs contain digons; indeed, these are used to distinguish
some edges from others. Is it possible to find “proper” digraphs that act
as DRRs?
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Oriented Regular Representations

Definition

An oriented graph is a directed graph with at most one arc between any
two vertices.

An oriented regular representation of a group G is an
oriented graph Γ such that Aut(Γ) is regular and isomorphic to G .

So Babai’s question is, what groups admit an ORR? As in the case of
GRRs, there is an obstruction.
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Obvious obstruction: a disconnected Cayley graph is never
a GRR/DRR/ORR

Unless it has at most 2 vertices.

Extra graph automorphism:

fix
e g multiply by g
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Obvious obstruction (Babai)

Notice that if s ∈ S has s2 = 1 then Cay(G,S) is not an oriented graph.

Therefore, if G is a group for which every generating set contains at least
one element of order 2, G cannot admit an ORR.

Definition

For an abelian group A, the generalised dihedral group Dih(A) is the group
〈A, x〉 with x2 = 1 and x−1ax = a−1 for every a ∈ A. (If A is cyclic this is
a dihedral group.)

Note...

... that in Dih(A), every element ax of Ax has
(ax)2 = axax = aa−1x2 = 1. Thus, generalised dihedral groups cannot be
generated without an element of order 2.

Observation (Babai, 1980)

Generalised dihedral groups do not admit ORRs.
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Results

Theorem (Babai and Imrich, 1979)

Every group of odd order admits a tournament regular representation (and
so an ORR),

except C3 × C3 which does not admit a DRR.

Theorem (M. and Spiga, 2017)

Every non-solvable group admits an ORR.

Theorem (Spiga, 2017+)

Every group admits an ORR, unless it is:

generalised dihedral;

C3 × C3 or C3 × C 3
2 ;

a 2-group, with additional conditions.
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Final theorem

Theorem (Morris and Spiga, 2018+)

Every group admits an ORR unless the group is:

generalised dihedral; or

one of 11 exceptions of order at most 64.
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Major tool

Lemma (Nowitz-Watkins, 1972)

Let Γ = Cay(G, S) and let X ⊆ S .

If every automorphism of Γ that fixes
the vertex 1 also fixes every vertex of X , then every automorphism of Γ
that fixes 1 fixes 〈X 〉. In particular, if 〈X 〉 = G , then Aut(Γ) ∼= G, so Γ is
a GRR/DRR/ORR.

Proof.

Since the graph is vertex-transitive, the hypothesis implies that any time
any one vertex is fixed, all of its neighbours via elements of X are fixed.
Since 〈X 〉 = G the graph is connected, so fixing one vertex forces every
vertex to be fixed. The orbit-stabiliser theorem then implies that
|Aut(Γ)| = |G|.
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A GRR for C n
2 where n ≥ 6 (Imrich, 1970)

Let Cn
2 = 〈a1, . . . , an〉.

Let S = {a1, . . . , an, a1a2, . . . an−1an, a1a2an−2an−1, a1a2an−1an}.
The induced subgraph on S is asymmetric:

a1

a1a2

a2

a2a3

a3

a3a4

a4

a4a5

· · ·

an−2

an−2an−1

an−1

an−1an−0

an

a1a2an−2an−1 a1a2an−1an
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only vertex of valency 6
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Main ideas of proof

We first consider all groups that can be generated by at most 3 elements,
and either use a small generating set to construct an ORR, or show that
the group does not admit an ORR.

Lemma (M. and Spiga)

If G is a finite group,

G 6∼= Q8,

G 6∼= C3 × C 3
2 ,

G 6∼= C3 × C3,

and G has an irredundant generating set {a1, . . . , a`} such that

|ai | > 2 for each 1 ≤ i ≤ `; and

|a−1
i ai+1| > 2 for each 1 ≤ i ≤ `− 1,

then G admits an ORR.

Using CFSG and induction on the smallest size of a generating set, we
show that every non-solvable group admits such a generating set.
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2-groups

Pablo showed that such generating sets exist in many other situations, but
there were also families of 2-groups that do not admit such generating
sets.

Specifically, 2-groups containing a large, low-index elementary
abelian group can fail to admit such a generating set.

Example

V is an elementary abelian 2-group of high rank, g is an involution that
commutes with some elements of V and exchanges others. In V o 〈g〉:

every element of V has order 2;

every element of Vg has order 2 or 4;

the product of any two elements of Vg lies in V , so has order 2.
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2-groups

The approach we used in our final paper in the context of this example:

assume that V has rank at least 6.

Take an Imrich generating set T for V and ensure that every element
of gT has order 4.

Observe that this generating set induces an independent set in the
Cayley graph.

Choose some additional elements for the generating set, and use the
2-neighbourhood to ensure that g is forced to be fixed (pointwise),
and gT is fixed setwise, whenever e is fixed.

Observe that this implies T is fixed setwise, so every element of T is
fixed pointwise, and therefore by Nowitz-Watkins, the Cayley graph is
an ORR.

Joy Morris joint work with Pablo Spiga and others (SIGMAP, National Autonomous University of Mexico, Morelia, Mexico)Regular Representations June 28, 2018 20 / 28



2-groups

The approach we used in our final paper in the context of this example:

assume that V has rank at least 6.

Take an Imrich generating set T for V and ensure that every element
of gT has order 4.

Observe that this generating set induces an independent set in the
Cayley graph.

Choose some additional elements for the generating set, and use the
2-neighbourhood to ensure that g is forced to be fixed (pointwise),
and gT is fixed setwise, whenever e is fixed.

Observe that this implies T is fixed setwise, so every element of T is
fixed pointwise, and therefore by Nowitz-Watkins, the Cayley graph is
an ORR.

Joy Morris joint work with Pablo Spiga and others (SIGMAP, National Autonomous University of Mexico, Morelia, Mexico)Regular Representations June 28, 2018 20 / 28



2-groups

The approach we used in our final paper in the context of this example:

assume that V has rank at least 6.

Take an Imrich generating set T for V and ensure that every element
of gT has order 4.

Observe that this generating set induces an independent set in the
Cayley graph.

Choose some additional elements for the generating set, and use the
2-neighbourhood to ensure that g is forced to be fixed (pointwise),
and gT is fixed setwise, whenever e is fixed.

Observe that this implies T is fixed setwise, so every element of T is
fixed pointwise, and therefore by Nowitz-Watkins, the Cayley graph is
an ORR.

Joy Morris joint work with Pablo Spiga and others (SIGMAP, National Autonomous University of Mexico, Morelia, Mexico)Regular Representations June 28, 2018 20 / 28



2-groups

The approach we used in our final paper in the context of this example:

assume that V has rank at least 6.

Take an Imrich generating set T for V and ensure that every element
of gT has order 4.

Observe that this generating set induces an independent set in the
Cayley graph.

Choose some additional elements for the generating set, and use the
2-neighbourhood to ensure that g is forced to be fixed (pointwise),
and gT is fixed setwise, whenever e is fixed.

Observe that this implies T is fixed setwise, so every element of T is
fixed pointwise, and therefore by Nowitz-Watkins, the Cayley graph is
an ORR.

Joy Morris joint work with Pablo Spiga and others (SIGMAP, National Autonomous University of Mexico, Morelia, Mexico)Regular Representations June 28, 2018 20 / 28



2-groups

The approach we used in our final paper in the context of this example:

assume that V has rank at least 6.

Take an Imrich generating set T for V and ensure that every element
of gT has order 4.

Observe that this generating set induces an independent set in the
Cayley graph.

Choose some additional elements for the generating set, and use the
2-neighbourhood to ensure that g is forced to be fixed (pointwise),
and gT is fixed setwise, whenever e is fixed.

Observe that this implies T is fixed setwise, so every element of T is
fixed pointwise, and therefore by Nowitz-Watkins, the Cayley graph is
an ORR.

Joy Morris joint work with Pablo Spiga and others (SIGMAP, National Autonomous University of Mexico, Morelia, Mexico)Regular Representations June 28, 2018 20 / 28



Edge colouring

Any Cayley (di)graph is naturally an edge-coloured (di)graph, where the
colour corresponds to the element of the connection set that it came from.

Example

0
1

2

3

4
5

6

7

8

9

n = 10, S = {1, 2, 4}.
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In the case of a Cayley graph, to ensure that each edge has a consistent
colour, we must assign the same colour to s as to s−1.

Example

0
1

2

3

4
5

6

7

8

9

n = 10, S = {1, 9, 2, 8, 4, 6}.
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Clearly, if a group admits a GRR, then the same Cayley graph with this
edge colouring will be a coloured graphical regular representation for the
same group.

Furthermore, in our earlier proof, we showed that if ϕ is a group
automorphism of G that preserves the set S , then g ∼ gs if and only if
under the corresponding graph automorphism, ϕ(g) ∼ ϕ(g)ϕ(s). In the
case of abelian or generalised dicyclic groups, the automorphism that maps
every s to either s or s−1, preserves the colour of every edge. Thus,
neither abelian nor generalised dicyclic groups will admit coloured GRRs.

A more interesting question, therefore, relates to the number of coloured
GRRs for any given group.
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Proposition

In a connected Cayley colour digraph Cay(G ;S), only the regular
representation of G preserves the colours.

Proof.

I will show that whenever α fixes g , it also fixes gs for every s ∈ S . By
connectedness, the result follows using induction.
Suppose that the arc from g to gs is coloured red, so every s-arc is red.
This is the only red arc from g , so the preservation of colours forces
α(gs) = α(g)s = gs.

e

s

g

gs
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Notice...

in a graph (rather than a digraph), this proof won’t work immediately,
because

when α(g) = g , α(gs) could be gs or gs−1.
However, the proof will work if every element of S is an involution.

Also...

The condition of connectedness is necessary.
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Coloured GRRs

If we also allow graph automorphisms that come from group
automorphisms but preserve edge colours, I have been studying this
question with Ted Dobson, Brandon Fuller, Ademir Hujdurović, Klavdija
Kutnar, Luke Morgan, Dave Morris, and Gabriel Verret (in various
combinations), calling it the CCA (Cayley Colour Automorphism) problem.

Joy Morris joint work with Pablo Spiga and others (SIGMAP, National Autonomous University of Mexico, Morelia, Mexico)Regular Representations June 28, 2018 26 / 28



Future work

Although we have constructed ORRs on all but finitely many groups,
we have made no attempt (yet) to establish asymptotic results.

We are working on further analysis of “small” groups and colour
graphs whose colour-preserving automorphisms are all regular or
affine.

The question of how common it is for a colour Cayley graph to be a
coloured GRR is wide open.

I have no idea what is known for infinite groups and graphs.
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we have made no attempt (yet) to establish asymptotic results.
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Thank you!
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