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motivation

Spatial diff invariant states in LQG: In the dual of Hkin. Labeled
among other things by diff equivalence classes of graphs.

Important because

home of the scalar constraint (→ Thiemann)

home of physical states

But do we understand them?
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motivation

Spatial diff invariant states in LQG: In the dual of Hkin. Labeled
among other things by diff equivalence classes of graphs.

Important because

home of the scalar constraint (→ Thiemann)

home of physical states

But do we understand them?

Any of these a homogenous isotropic universe?
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. . .

Need: Operators to probe the physical content. Have:

Total volume

Hamilton constraint with constant lapse

Not enough. Rather complicated.
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. . .

Need: Operators to probe the physical content. Have:

Total volume

Hamilton constraint with constant lapse

Not enough. Rather complicated.

Also : Need to understand structure of Hdiff better.

Idea: Start with toy model – Quantum scalar field in LQG-like rep.
(→ Thiemann, Starodubtsev, Ashtekar + Lewandowski + Sahlmann)

In particular: Space of spatially diffeo invariant states Hdiff, and
operators thereon.
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what we’ll do

Starting point: Scalar field/U(1) sigma model quantized a la LQG:

Tx,λ = exp(iλφ(x)), π(f) =

∫
π(y)f(y), λ ∈ I(≡ R, Z resp.)

represented as operators on Hkin.
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π(y)f(y), λ ∈ I(≡ R, Z resp.)

represented as operators on Hkin.
First exercise : Characterize Hdiff explicitly for this model.
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what we’ll do

Starting point: Scalar field/U(1) sigma model quantized a la LQG:

Tx,λ = exp(iλφ(x)), π(f) =

∫
π(y)f(y), λ ∈ I(≡ R, Z resp.)

represented as operators on Hkin.
First exercise : Characterize Hdiff explicitly for this model.
Second exercise : Quantize the diffeomorphism invariant quantities

Lα =

∫
π(x) exp[iαφ(x)]

{Lα , Lα′} = i(α − α′)Lα+α′ , Lα = L−α

(these generate "target space diffeos").
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Hkin

The usual representation (in unusual notation) :
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The usual representation (in unusual notation) :
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(Notation: λ : x 7−→ λx)
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Hkin

The usual representation (in unusual notation) :
Σ: spatial slice.
λ, λ′ . . .: Functions Σ −→ I, nonzero at finitely many points ("graph").
(Notation: λ : x 7−→ λx)
Cyl: span of objects |λ〉.
Hkin: closure of Cyl under product

〈λ |λ′〉 =
∏

x∈Σ

δ(λx, λ′
x)
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Hkin

The usual representation (in unusual notation) :
Σ: spatial slice.
λ, λ′ . . .: Functions Σ −→ I, nonzero at finitely many points ("graph").
(Notation: λ : x 7−→ λx)
Cyl: span of objects |λ〉.
Hkin: closure of Cyl under product

〈λ |λ′〉 =
∏

x∈Σ

δ(λx, λ′
x)

Representation of basic variables:

Tx,λ|λ〉 = |λ + λδx〉, π(f)|λ〉 =
∑

x∈Σ

λxf(x)|λ〉

Spatial diffeos unitarily implemented.
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Hdiff

Definition of Hdiff : Space of linear forms on Cyl with scalar product.
Obtained via group averaging map Γ. Morally:

(ΓΨ)(Φ) = (Vol(Diff))−1

∫

Diff
Dϕ 〈ϕ ∗ Ψ |Φ〉.
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Hdiff

Definition of Hdiff : Space of linear forms on Cyl with scalar product.
Obtained via group averaging map Γ. Morally:

(ΓΨ)(Φ) = (Vol(Diff))−1

∫

Diff
Dϕ 〈ϕ ∗ Ψ |Φ〉.

More precise formulation gives (→ ALMMT):

(ΓΨγ)(Φ) =
∑

ϕ1∈Diff / Diffγ

F ( |GSγ | )
∑

ϕ2∈GSγ

〈ϕ1 ∗ ϕ2 ∗ Ψγ |Φ〉.

(usual choice: F (n) = n−1. For the moment choose F (n) = 1).

Exploring . . . – Loops 07 25/06/2007 – p. 6/17



Hdiff

Definition of Hdiff : Space of linear forms on Cyl with scalar product.
Obtained via group averaging map Γ. Morally:

(ΓΨ)(Φ) = (Vol(Diff))−1

∫

Diff
Dϕ 〈ϕ ∗ Ψ |Φ〉.

More precise formulation gives (→ ALMMT):

(ΓΨγ)(Φ) =
∑

ϕ1∈Diff / Diffγ

F ( |GSγ | )
∑

ϕ2∈GSγ

〈ϕ1 ∗ ϕ2 ∗ Ψγ |Φ〉.

(usual choice: F (n) = n−1. For the moment choose F (n) = 1).
Scalar product given by (ΓΨ |ΓΨ′) := (ΓΨ)(Ψ′).
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First exercise . . .

Characterize Hdiff explicitly for this model.

Instead of case by case analysis (dimension, topology of Σ, class of
diffeomorphisms, . . . ):
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First exercise . . .

Characterize Hdiff explicitly for this model.

Instead of case by case analysis (dimension, topology of Σ, class of
diffeomorphisms, . . . ):

Assumption: Diff can map any two sets of n points of Σ onto each
other, and permute any set of n points, for any n.

Satisfied for example for Σ connected, dim Σ > 1, smooth diffeos.
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First exercise . . .

Characterize Hdiff explicitly for this model.

Instead of case by case analysis (dimension, topology of Σ, class of
diffeomorphisms, . . . ):

Assumption: Diff can map any two sets of n points of Σ onto each
other, and permute any set of n points, for any n.

Satisfied for example for Σ connected, dim Σ > 1, smooth diffeos.

Not satisfied for example for Σ = S1. Will say more, later.
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. . .

Note: From assumption follows: Quantities

Nλ
α =

∑

x

δ(λx, α) (= number of "charges" α in |λ〉)

completely contain diff invariant information of |λ〉.
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. . .

Note: From assumption follows: Quantities

Nλ
α =

∑

x

δ(λx, α) (= number of "charges" α in |λ〉)

completely contain diff invariant information of |λ〉.
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. . .

Build a Hilbert space out of such invariants:
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Build a Hilbert space out of such invariants:
I∗ .

= I\{0}
N, N ′, . . .: Functions I∗ −→ N that are nonzero in only finitely many
places.
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. . .

Build a Hilbert space out of such invariants:
I∗ .

= I\{0}
N, N ′, . . .: Functions I∗ −→ N that are nonzero in only finitely many
places.
V : linear span of objects |N).
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Build a Hilbert space out of such invariants:
I∗ .

= I\{0}
N, N ′, . . .: Functions I∗ −→ N that are nonzero in only finitely many
places.
V : linear span of objects |N).
Inner product on V : (N |N ′)

.
=

∏
λ Nλ! δ(Nλ, N ′

λ)
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N, N ′, . . .: Functions I∗ −→ N that are nonzero in only finitely many
places.
V : linear span of objects |N).
Inner product on V : (N |N ′)

.
=

∏
λ Nλ! δ(Nλ, N ′
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Proposition:
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= I\{0}
N, N ′, . . .: Functions I∗ −→ N that are nonzero in only finitely many
places.
V : linear span of objects |N).
Inner product on V : (N |N ′)

.
=

∏
λ Nλ! δ(Nλ, N ′

λ)

Proposition:

V ⊂ Cyl∗ via (N |(|λ〉)
.
= (N |N (λ))

Exploring . . . – Loops 07 25/06/2007 – p. 9/17
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Build a Hilbert space out of such invariants:
I∗ .

= I\{0}
N, N ′, . . .: Functions I∗ −→ N that are nonzero in only finitely many
places.
V : linear span of objects |N).
Inner product on V : (N |N ′)

.
=

∏
λ Nλ! δ(Nλ, N ′

λ)

Proposition:

V ⊂ Cyl∗ via (N |(|λ〉)
.
= (N |N (λ))

Γ|λ〉 = (N (λ)|
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. . .

Build a Hilbert space out of such invariants:
I∗ .

= I\{0}
N, N ′, . . .: Functions I∗ −→ N that are nonzero in only finitely many
places.
V : linear span of objects |N).
Inner product on V : (N |N ′)

.
=

∏
λ Nλ! δ(Nλ, N ′

λ)

Proposition:

V ⊂ Cyl∗ via (N |(|λ〉)
.
= (N |N (λ))

Γ|λ〉 = (N (λ)|

Scalar product on Hdiff is (· | ·) from above.
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Hdiff as Fock space

Fock-structure on Hkin :
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Hdiff as Fock space

Fock-structure on Hkin : It’s natural to define (α ∈ I∗)

N̂α|N)
.
= Nα|N) N̂

.
=

∑

α∈I∗

N̂α

aα|N)
.
= Nα|N − δα) a†

α|N)
.
= |N + δα)
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Hdiff as Fock space

Fock-structure on Hkin : It’s natural to define (α ∈ I∗)

N̂α|N)
.
= Nα|N) N̂

.
=

∑

α∈I∗

N̂α

aα|N)
.
= Nα|N − δα) a†

α|N)
.
= |N + δα)

Lemma: The N̂ ’s are symmetric, aα, a†
α mutually adjoint, and

[a†
α, a†

α′ ] = [aα, aα′ ] = 0, [aα, a†
α′ ] = δ(α, α′)id, a†

αaα = N̂α
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Hdiff as Fock space

Fock-structure on Hkin : It’s natural to define (α ∈ I∗)

N̂α|N)
.
= Nα|N) N̂

.
=

∑

α∈I∗

N̂α

aα|N)
.
= Nα|N − δα) a†

α|N)
.
= |N + δα)

Lemma: The N̂ ’s are symmetric, aα, a†
α mutually adjoint, and

[a†
α, a†

α′ ] = [aα, aα′ ] = 0, [aα, a†
α′ ] = δ(α, α′)id, a†

αaα = N̂α

Note: Not the usual Fourier coefficients of the field. Graph-changing.
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aside: Σ = S
1

In this case Hdiff more complicated (“knotting"):

|λ1, λ2 . . . , λN ) 6= |λ2, λ1 . . . , λN ) in general.
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aside: Σ = S
1

In this case Hdiff more complicated (“knotting"):

|λ1, λ2 . . . , λN ) 6= |λ2, λ1 . . . , λN ) in general.

|λ1, λ2 . . . , λN ) ≡ |λi, λi+1, . . . , λi−1) always.

Fock structure?

a†
α|λ1 . . .)

.
=

∑

i

|α, λi, λi+1, . . .), aα|λ1 . . .) =
∑

i

δ(λi, α)|λ1 . . . λ̌i . . .)

and one finds
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aside: Σ = S
1

In this case Hdiff more complicated (“knotting"):

|λ1, λ2 . . . , λN ) 6= |λ2, λ1 . . . , λN ) in general.

|λ1, λ2 . . . , λN ) ≡ |λi, λi+1, . . . , λi−1) always.

Fock structure?

a†
α|λ1 . . .)

.
=

∑

i

|α, λi, λi+1, . . .), aα|λ1 . . .) =
∑

i

δ(λi, α)|λ1 . . . λ̌i . . .)

and one finds

[aα, aα′ ] = 0, [a†
α, a†

α′ ] = 0, [aα, a†
α] = 1

but [aα, a†
α′ ] = −Rα→α′ for α 6= α′.
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Second exercise. . .

Try to quantize

Lα =

∫
π(x) exp[iαϕ(x)].
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Try to quantize

Lα =

∫
π(x) exp[iαϕ(x)].

On Hkin : Need to order π to the right,

Sα|λ〉 :=
∑

x∈Σ

λx|λ + αδx〉.
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Second exercise. . .

Try to quantize

Lα =

∫
π(x) exp[iαϕ(x)].

On Hkin : Need to order π to the right,

Sα|λ〉 :=
∑

x∈Σ

λx|λ + αδx〉.

Can check: The Sα have right commutation relations.
Also note: They are graph-changing.
However:
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Second exercise. . .

Try to quantize

Lα =

∫
π(x) exp[iαϕ(x)].

On Hkin : Need to order π to the right,

Sα|λ〉 :=
∑

x∈Σ

λx|λ + αδx〉.

Can check: The Sα have right commutation relations.
Also note: They are graph-changing.
However:

Proposition: The L̂α have no densely defined adjoints.
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. . .

On Hdiff (under Assumption) : The Sα have dual action , S̃α, on V .
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. . .

On Hdiff (under Assumption) : The Sα have dual action , S̃α, on V .

Proposition: With notation a0 = a†
0 := id

S̃α =
∑

λ

(λ − α)a†
λ−αaλ
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Proposition: With notation a0 = a†
0 := id

S̃α =
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λ

(λ − α)a†
λ−αaλ

By definition: the S̃α satisfy the commutation relations. Moreover:
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. . .

On Hdiff (under Assumption) : The Sα have dual action , S̃α, on V .

Proposition: With notation a0 = a†
0 := id

S̃α =
∑

λ

(λ − α)a†
λ−αaλ

By definition: the S̃α satisfy the commutation relations. Moreover:

Lemma:
S̃†

α =
∑

λ

λa†
λ+αaλ = S̃−α − α

∑

λ

a†
λ+αaλ.

So they don’t yet satisfy the adjointness relations. But that’s expected.
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. . .

Use symmetric ordering:

L̂α :=
1

2
(S̃α + S̃†

−α) =
∑

λ

(
λ −

α

2

)
a†

λ−αaλ

L̂α satisfy adjointness relations by definition. However. . .
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. . .

Use symmetric ordering:

L̂α :=
1

2
(S̃α + S̃†

−α) =
∑

λ

(
λ −

α

2

)
a†

λ−αaλ

L̂α satisfy adjointness relations by definition. However. . .

Lemma:

[L̂α, L̂α′ ] = (α − α′)L̂α+α′ +
1

4
αα′

(
a†
−αaα′ − a†

−α′aα

)

Algebra gets extended .
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. . .

Revisit choice of F (|GSγ |) in inner product:
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. . .

Revisit choice of F (|GSγ |) in inner product:
Proposition:

[L̂α, L̂α′ ] = (α − α′)L̂α+α′ +
1

4
αα′

(
a†
−αG(N̂)aα′ − a†

−α′G(N̂)aα

)

with G(n) =
F ((n + 1)!)

F ((n + 2)!)
−

F (n!)

F ((n + 1)!)
+ 1

Exploring . . . – Loops 07 25/06/2007 – p. 15/17



. . .

Revisit choice of F (|GSγ |) in inner product:
Proposition:

[L̂α, L̂α′ ] = (α − α′)L̂α+α′ +
1

4
αα′

(
a†
−αG(N̂)aα′ − a†

−α′G(N̂)aα

)

with G(n) =
F ((n + 1)!)

F ((n + 2)!)
−

F (n!)

F ((n + 1)!)
+ 1

Proposition: In the case of Σ = S1 additional correction

1

4
αα′

(
aα′a†

−α − aαa†
−α′

)

Exploring . . . – Loops 07 25/06/2007 – p. 15/17



. . .

Solutions of G(x) = 0 generically lead to indefinite inner products.
However:
Proposition:

F (n!) =

{
(N0 − n)!/c0N0! for n ≤ N0

0 else
.

has G = 0 and is non-negative.
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Solutions of G(x) = 0 generically lead to indefinite inner products.
However:
Proposition:

F (n!) =

{
(N0 − n)!/c0N0! for n ≤ N0

0 else
.

has G = 0 and is non-negative.

scalar product degenerate, Hkin "smaller"

corresponds to Σ finite, discrete.
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. . .

Solutions of G(x) = 0 generically lead to indefinite inner products.
However:
Proposition:

F (n!) =

{
(N0 − n)!/c0N0! for n ≤ N0

0 else
.

has G = 0 and is non-negative.

scalar product degenerate, Hkin "smaller"

corresponds to Σ finite, discrete.

−→ non-anomalous representation on Hdiff for scalar field + gravity if
scalars constrained to sit on gravity vertices.

Exploring . . . – Loops 07 25/06/2007 – p. 16/17



discussion

Have in toy model

explicitly characterized Hdiff as Fock space.

discussed ordering problems for certain diff-invariant quantities.
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discussion

Have in toy model

explicitly characterized Hdiff as Fock space.

discussed ordering problems for certain diff-invariant quantities.

Conclusions:

Happy about the algebraic nature of the problem.

Rediscovered that Hdiff tames graph changing operations.

Can solve quantization problem completely at least in discrete
case (or when coupled to gravity).
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discussion

Have in toy model

explicitly characterized Hdiff as Fock space.

discussed ordering problems for certain diff-invariant quantities.

Conclusions:

Happy about the algebraic nature of the problem.

Rediscovered that Hdiff tames graph changing operations.

Can solve quantization problem completely at least in discrete
case (or when coupled to gravity).

To do:

Do something analogous for gauge theory.

Connection to vertex operators for bosonic string?
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