Reduction of a Quantum Theory
Cosmological Degrees of Freedom in Loop Quantum Gravity

Tim Koslowski
tim@physik.uni-wuerzburg.de

Institut für Theoretische Physik und Astrophysik
Universität Würzburg

June 26,
at ”Loops 07” in Morelia, Mexico
Overview

What are the cosmological degrees of freedom of LQG?

1. Classical insight:

"Symmetry reduction in class. systems is furnished by a pull-back under a Poisson map (\(\eta^* \))"

\(\Rightarrow \) Construct "quantum Poisson map"

2. Quantum Reduction:

"Use a mechanism similar to Morita equivalence and Rieffel induction"

3. Application to Loop Quantum Gravity \(\Rightarrow \) Extract Cosmology
Observables: Restricted Sensitivity

- Poisson system: Observables in focus (Symmetry assumption \Rightarrow Sensitivity of measurements restricted)
 - Observable algebra: $\mathcal{A}_{\text{class}} = C_c^\infty(\Gamma)$ (smooth functions of compact support on phase space)
 - Algebraic structure by point wise operations $+, \times, .*, ||.||$
 - Poisson-structure: $\{., .\} : \mathcal{A}_{\text{class}} \times \mathcal{A}_{\text{class}} \rightarrow \mathcal{A}_{\text{class}}$

Tim Koslowski
tim@physik.uni-wuerzburg.de
Institut für Theoretische Physik und Astrophysik
Universität Würzburg

Reduction of a Quantum Theory
Observables: Restricted Sensitivity

Poisson system: Observables in focus (Symmetry assumption ⇒ Sensitivity of measurements restricted)

- Observable algebra: $\mathcal{A}_{\text{class}} = C^\infty_c(\Gamma)$ (smooth functions of compact support on phase space)
- Algebraic structure by point wise operations $+, \times, \cdot, ||.||$
- Poisson-structure: $\{.,.\} : \mathcal{A}_{\text{class}} \times \mathcal{A}_{\text{class}} \to \mathcal{A}_{\text{class}}$

- Restricted Sensitivity (measurements separate only points in Γ_o): Measurements insensitive to functions vanishing on Γ_o
 \Rightarrow Ideal of functions $\mathcal{I} = \{ f \in \mathcal{A}_{\text{class}} : f|_{\Gamma_o} = 0 \}$
Observables: Restricted Sensitivity

Poisson system: Observables in focus (Symmetry assumption \Rightarrow Sensitivity of measurements restricted)

- Observable algebra: $\mathcal{A}_{\text{class}} = C^\infty_c(\Gamma)$ (smooth functions of compact support on phase space)
- Algebraic structure by point wise operations $+\,\times\,\cdot\,\ast\,\|\|$
- Poisson-structure: $\{\cdot\,\cdot\}$: $\mathcal{A}_{\text{class}} \times \mathcal{A}_{\text{class}} \rightarrow \mathcal{A}_{\text{class}}$

• Restricted Sensitivity (measurements separate only points in Γ_o):
 Measurements insensitive to functions vanishing on Γ_o
 \Rightarrow Ideal of functions $\mathcal{I} = \{ f \in \mathcal{A}_{\text{class}} : f|_{\Gamma_o} = 0 \}$
 $\Rightarrow \eta^*\mathcal{A}_{\text{class}} = \mathcal{A}_{\text{class}}/\mathcal{I}$, i.e. equivalence classes of observables, that agree on Γ_o.
 $\{ \eta^* f, \eta^* g \} = \eta^* \{ f, g \} \ \forall f, g \in \mathcal{A}_{\text{class}}$ (Poisson map)
 \Rightarrow Find ”Quantum Poisson Maps”!

Tim Koslowski
tim@physik.uni-wuerzburg.de
Institut für Theoretische Physik und Astrophysik
Universität Würzburg
Reduction of a Quantum Theory
Problem: Quantum Phase space is non commutative

Goal: ”Extend Phase Space Reduction to Quantum Systems”
Problem: ”Γ_{quant} is non commutative” : $e^{iax} e^{ibp} e^{-iax} e^{-ibp} = e^{iab}$
Problem: Quantum Phase space is non commutative

Goal: "Extend Phase Space Reduction to Quantum Systems"
Problem: "Γ\text{quant} is non commutative":
\[e^{iax}e^{ibp}e^{-iax}e^{-ibp} = e^{iab} \]
⇒ Operator ordering is important (QFTs need particular ordering to be well defined!)
Problem: Quantum Phase space is non commutative

Goal: "Extend Phase Space Reduction to Quantum Systems"

Problem: "Γ_{quant} is non commutative":

\[e^{iax}e^{ibp}e^{-iax}e^{-ibp} = e^{iab} \]

⇒ Operator ordering is important (QFTs need particular ordering to be well defined!)

• Example:

\[H_{class} = p^2 + V(q) + c = f(q)pf^{-2}(q)pf(q) + V(q) + c =: H'_{class} \]

using a definite solution of \(f'' + (V + c)f = 0: \)

\[\hat{H} = \hat{p}^2 + V(\hat{q}) \] whereas \(\hat{H}' = \hat{p}^2 \)
Problem: Quantum Phase space is non commutative

Goal: ”Extend Phase Space Reduction to Quantum Systems”

Problem: ”Γ_{quant} is non commutative”: $e^{iax} e^{ibp} e^{-iax} e^{-ibp} = e^{iab}$

⇒ Operator ordering is important (QFTs need particular ordering to be well defined!)

• Example:

$H_{\text{class}} = p^2 + V(q) + c = f(q)pf^{-2}(q)pf(q) + V(q) + c =$ H_{class}'

using a definite solution of $f'' + (V + c)f = 0$:

$\hat{H} = \hat{p}^2 + V(\hat{q})$ whereas $\hat{H}' = \hat{p}^2$

⇒ Quantization and Reduction do generally not commute!
Objective

- We do **not** want to ”reduce and then quantize”, but:
”reduce the quantum system”, i.e. we seek: E for (A, π, H), s.t.

\[
\begin{align*}
\text{(1) Matching VEVs:} & \quad \forall T \in D: \exists S \leftrightarrow T (D\text{ dense in } A) \omega(S) = \omega_o(T) \\
\text{(2) "Correct" reduced observable algebra} & \quad E_{A} \rightarrow A_{o} \hbar \rightarrow 0 \downarrow \eta^{*} \downarrow \hbar \rightarrow 0 \quad C(\Gamma) \rightarrow C(\Gamma_{o})
\end{align*}
\]

Definition: Quantum Poisson map E together with $S \leftrightarrow T$.
Objective

- We do **not** want to ”reduce and then quantize”, but:
 ”reduce the quantum system”, i.e. we seek: \(\mathcal{E} \) for \((\mathcal{A}, \pi, \mathcal{H})\), s.t.

1. Matching VEVs: \(\forall T \in D : \exists S \leftrightarrow T \) (\(D \) dense in \(\mathcal{A}_o \))

\[
\omega(S) = \omega_o(T)
\]
Objective

• We do not want to "reduce and then quantize", but: "reduce the quantum system", i.e. we seek: \mathcal{E} for $(\mathcal{A}, \pi, \mathcal{H})$, s.t.

(1) Matching VEVs: $\forall T \in D : \exists S \leftrightarrow T$ (D dense in \mathcal{A}_o)

$$\omega(S) = \omega_o(T)$$

(2) "Correct" reduced observable algebra

$$\begin{array}{ccc}
\mathcal{A} & \longrightarrow & \mathcal{A}_o \\
\hbar \rightarrow 0 & \downarrow & \eta^* & \downarrow & \hbar \rightarrow 0 \\
C(\Gamma) & \longrightarrow & C(\Gamma_o)
\end{array}$$
Objective

• We do not want to "reduce and then quantize", but: "reduce the quantum system", i.e. we seek: \mathcal{E} for $(\mathcal{A}, \pi, \mathcal{H})$, s.t.

(1) Matching VEVs: $\forall T \in D : \exists S \leftrightarrow T$ (D dense in \mathcal{A}_o)

$$\omega(S) = \omega_o(T)$$

(2) "Correct" reduced observable algebra

\[
\begin{array}{c}
\mathcal{A} \quad \longrightarrow \quad \mathcal{A}_o \\
\hbar \rightarrow 0 \quad \downarrow \quad \eta^* \quad \downarrow \quad \hbar \rightarrow 0 \\
C(\Gamma) \quad \longrightarrow \quad C(\Gamma_o)
\end{array}
\]

Definition: **Quantum Poisson map** \mathcal{E} together with $S \leftrightarrow T$.
Embedding a Space

$S^1 \rightarrow T^2$

T^2
Embedding a Vector Bundle
Projecting to the Embedded Base Space
Non commutative Embeddings

- Non commutative topol. space = C^*-algebra \mathcal{A}
- Non commutative vector bundle = Hilbert-C^*-modules \mathcal{E} over \mathcal{A}
 \mathcal{E} is an \mathcal{A}-module with a sesquilinear structure
 $\langle . , . \rangle_\mathcal{A}$, with dense range in \mathcal{A}, satisfying certain properties.
Non commutative Embeddings

- Non commutative topol. space = C^*-algebra \mathcal{A}
- Non commutative vector bundle = Hilbert-C^*-modules \mathcal{E} over \mathcal{A}
 \mathcal{E} is an \mathcal{A}-module with a sesquilinear structure $\langle ., . \rangle_\mathcal{A}$, with dense range in \mathcal{A}, satisfying certain properties.
- induces a Morita equivalent C^*-algebra $\mathcal{B} = \{ e_1 \langle e_2, . \rangle_\mathcal{A} : e_i \in \mathcal{E} \}$
Non commutative Embeddings

- Non commutative topol. space = C^*-algebra \mathcal{A}
- Non commutative vector bundle = Hilbert-C^*-modules \mathcal{E} over \mathcal{A}
- \mathcal{E} is an \mathcal{A}-module with a sesquilinear structure $\langle ., . \rangle_{\mathcal{A}}$, with dense range in \mathcal{A}, satisfying certain properties.
- induces a Morita equivalent C^*-algebra $\mathcal{B} = \{e_1 \langle e_2, . \rangle_{\mathcal{A}} : e_i \in \mathcal{E}\}$
- Rieffel induction: $\omega_\mathcal{B}(e_1 \langle e_2, . \rangle_{\mathcal{A}}) := \omega_\mathcal{A}(\langle e_1, e_2 \rangle_{\mathcal{A}})$.
- $C(\mathbb{X})$ often admits pre-Hilb.-C^*-module over $\mathcal{A}_{\text{quant.}}$ (\mathbb{X}=\text{config. space})
Non commutative Embeddings

- Non commutative topol. space = C^*-algebra \mathfrak{A}
- Non commutative vector bundle = Hilbert-C^*-modules \mathcal{E} over \mathfrak{A}
 \mathcal{E} is an \mathfrak{A}-module with a sesquilinear structure $\langle ., . \rangle_\mathfrak{A}$, with dense range in \mathfrak{A}, satisfying certain properties.
- induces a Morita equivalent C^*-algebra $\mathfrak{B} = \{ e_1 \langle e_2, . \rangle_\mathfrak{A} : e_i \in \mathcal{E} \}$
- Rieffel induction: $\omega_\mathfrak{B}(e_1 \langle e_2, . \rangle_\mathfrak{A}) := \omega_\mathfrak{A}(\langle e_1, e_2 \rangle_\mathfrak{A})$.
- $C(X)$ often admits pre-Hilb.-C^*-module over $\mathfrak{A}_{quant.}$ (X=config. space)
 \Rightarrow Embedding $m : X_0 \to X$ allows: $P : C(X) \to C(X_0) : f \mapsto m^*f$ and an "inverse" $i : C(X_0) \to C(X)$ s.t. $P \circ i = id_{C(X_0)}$ and $i \circ P = id_{\text{Img}_i}$.
Non commutative Embeddings

- Non commutative topol. space = C^*-algebra \mathcal{A}
- Non commutative vector bundle = Hilbert-C^*-modules \mathcal{E} over \mathcal{A}
 \mathcal{E} is an \mathcal{A}-module with a sesquilinear structure $\langle ., . \rangle_\mathcal{A}$, with dense range in \mathcal{A}, satisfying certain properties.
- induces a Morita equivalent C^*-algebra $\mathcal{B} = \{ e_1 \langle e_2, . \rangle_\mathcal{A} : e_i \in \mathcal{E} \}$
- Rieffel induction: $\omega_\mathcal{B}(e_1 \langle e_2, . \rangle_\mathcal{A}) := \omega_\mathcal{A}(\langle e_1, e_2 \rangle_\mathcal{A})$.
- $C(X)$ often admits pre-Hilb.-C^*-module over $\mathcal{A}_{quant.}$ (X=config. space)
 \Rightarrow Embedding $m : X_o \rightarrow X$ allows: $P : C(X) \rightarrow C(X_o) : f \mapsto m^* f$ and an “inverse” $i : C(X_o) \rightarrow C(X)$ s.t. $P \circ i = id_{C(X_o)}$ and $i \circ P = id_{\text{Img}_i}$
 \Rightarrow ”quantum embedding” : (P, i) induces reduced $\mathcal{A}_o = \{ T_{g_1,g_2} : f_o \mapsto P(i(P(g_1)) \langle i(P(g_2)), i(f_o) \rangle_\mathcal{A}) : g_1, g_2 \in C(X) \}$ and representation $\omega_\mathcal{B}(T_{g_1,g_2}) := \omega_\mathcal{A}(\langle i(P(g_1)), i(P(g_2)) \rangle_\mathcal{A})$.
Non straight Holonomies of isotropic connections

- ODE: $\dot{h}(t) = i\epsilon \epsilon_i(t) \tau^i h(t)$; fix t to arc length

$$\Rightarrow \ddot{h}_{11} = \frac{\dddot{\epsilon}_1 + i\dddot{\epsilon}_2}{\dddot{\epsilon}_1 + i\dddot{\epsilon}_2} \dot{h}_{11} + (i\epsilon \epsilon_3 - \epsilon_3 \frac{\dddot{\epsilon}_1 + i\dddot{\epsilon}_2}{\dddot{\epsilon}_1 + i\dddot{\epsilon}_2} - c^2) h_{11}, \ h_{12} \text{ similarly}$$
Non straight Holonomies of isotropic connections

- ODE: \(\dot{h}(t) = i c \dot{e}_i(t) \tau^i h(t) \); fix \(t \) to arc length

\[
\ddot{h}_{11} = \frac{\ddot{e}_1 + i \ddot{e}_2}{\dot{e}_1 + i \dot{e}_2} \dot{h}_{11} + \left(i c \dot{e}_3 - e_3 \frac{\ddot{e}_1 + i \ddot{e}_2}{\dot{e}_1 + i \dot{e}_2} - c^2 \right) h_{11}, \quad h_{12} \text{ similarly}
\]

(Brunnemann/Fleischhack independently T.K.): spiral holonomies:

\[
e(t) = \frac{1}{\sqrt{R^2 + b^2}} (R \sin(t), R \cos(t), bt)
\]

\[
\Rightarrow \text{spiral holonomy matrix elements: } \exp\left(\frac{it}{2} \sqrt{(c - A)^2 + B^2} \right).
\]
Non straight Holonomies of isotropic connections

- ODE: \(\dot{h}(t) = i c \dot{e}_i(t) \tau^i h(t) \); fix \(t \) to arc length

\[
\ddot{h}_{11} = \frac{\dot{e}_1 + i \dot{e}_2}{\dot{e}_1 + i \dot{e}_2} \dot{h}_{11} + (i c \dot{e}_3 - e_3 \frac{\dot{e}_1 + i \dot{e}_2}{\dot{e}_1 + i \dot{e}_2} - c^2) h_{11}, \quad h_{12} \text{ similarly}
\]

(Brunnemann/Fleischhack independently T.K.): spiral holonomies:
\[
e(t) = \frac{1}{\sqrt{R^2 + b^2}} (R \sin(t), R \cos(t), bt)
\]

\[
\Rightarrow \text{spiral holonomy matrix elements: } \exp\left(\frac{it}{2} \sqrt{(c - A)^2 + B^2} \right).
\]
- Notice that spiral holonomies are \textbf{not} almost periodic, but:

\textit{Matrix elements are asymptotically} \(|c| \gg A, B \text{ almost periodic.} \)

\textbf{Conjecture 1:} All holonomies are asymptotically almost periodic.
(already proved, whenever Liouville-Green ansatz converges.)
Non straight Holonomies of isotropic connections

- ODE: \(\dot{h}(t) = i c \dot{e}_i(t) \tau^i h(t) \); fix \(t \) to arc length
 \[
 \ddot{h}_{11} = \frac{\ddot{e}_1 + i \ddot{e}_2}{\ddot{e}_1 + i \ddot{e}_2} h_{11} + (i c \ddot{e}_3 - e_3 \frac{\ddot{e}_1 + i \ddot{e}_2}{\ddot{e}_1 + i \ddot{e}_2} - c^2) h_{11}, \ h_{12} \text{ similarly}
 \]
 (Brunnemann/Fleischhack independently T.K.): spiral holonomies:
 \[
 e(t) = \frac{1}{\sqrt{R^2 + b^2}} (R \sin(t), R \cos(t), bt)
 \]
 \(\Rightarrow \) spiral holonomy matrix elements: \(\exp\left(\frac{it}{2} \sqrt{(c - A)^2 + B^2}\right) \).

- Notice that spiral holonomies are **not** almost periodic, but:
 Matrix elements are asymptotically \(|c| >> A, B \text{ almost periodic.} \)

Conjecture 1: All holonomies are asymptotically almost periodic.
(already proved, whenever Liouville-Green ansatz converges.)

ODE is approximated by an approximation of paths through piecewise spirals.

Conjecture 2: All holonomy matrix elements are in the uniform closure of spiral holonomy matrix elements.
Construction needs second countability of \mathcal{A} ⇒ partially gauge-fix extended diffeos. ⇒ ”scaffold” ⇒ ”allowed graphs” and ”allowed surfaces”, enough for all diffeo.classes of $\text{Cyl}(A) \circ \mathcal{W}(E)$.

• piecewise spirals with rational radii, heights
• ”umbrella shaped” surfaces for Weyl-operators with unit area
• vertices at points with rational coordinates
⇒ Only very small diffeos. are needed in gauge fixing
⇒ Holonomy ODE is approximated

$\mathcal{P} : \text{Cyl} \gamma \mapsto \text{Cyl} \phi_{\text{scaff}}(\gamma)$ | \mathcal{A}_{iso} and i by ”partially inverting” $\mathcal{P} E = \text{Cyl}$ with $\langle \text{Cyl}_1, \text{Cyl}_2 \rangle_{\mathcal{A}} : \text{Cyl} \mapsto \text{Cyl}_1 \langle \pi(\text{Cyl}_2) \Omega, \pi(\text{Cyl}_2) \Omega \rangle$ full

• kinematical constraints solved by restriction ($\text{Dom}(\mathcal{P}), \text{Img}(i)$) to constraint surface in full LQG
• New combinatorial problems in finding kernel of scalar constraint!
Cosmology from LQG

Construction needs second countability of $\mathcal{A} \Rightarrow$ partially gauge-fix extended diffeos. \Rightarrow ”scaffold”
\Rightarrow ”allowed graphs” and ”allowed surfaces”, enough for all diffeo.classes of $\text{Cyl}(A) \circ \mathcal{W}(E)$.
- piecewise spirals with rational radii, heights
- ”umbrella shaped” surfaces for Weyl-operators with unit area
- vertices at points with rational coordinates
Cosmology from LQG

Construction needs second countability of \(\mathfrak{A} \) \(\Rightarrow \) partially gauge-fix extended diffeos. \(\Rightarrow \) ”scaffold”
\(\Rightarrow \) ”allowed graphs” and ”allowed surfaces”, enough for all diffeo.classes of \(\text{Cyl}(A) \circ \mathcal{W}(E) \).
- piecewise spirals with rational radii, heights
- ”umbrella shaped” surfaces for Weyl-operators with unit area
- vertices at points with rational coordinates
\(\Rightarrow \) Only very small diffeos. are needed in gauge fixing
\(\Rightarrow \) Holonomy ODE is approximated

\[
\begin{align*}
P : \text{Cyl}_\gamma & \mapsto \text{Cyl}_{\phi_{\text{scaff.}}(\gamma)}|_{A_{iso}} \text{ and } i \text{ by } ”\text{partially inverting” } P \\
\mathcal{E} = \text{Cyl} \text{ with } \langle \text{Cyl}_1, \text{Cyl}_2 \rangle_{\mathfrak{A}} : \text{Cyl} & \mapsto \text{Cyl}_1\langle \pi(\text{Cyl}_2)\Omega, \pi(\text{Cyl})\Omega \rangle_{\text{full}}
\end{align*}
\]
Cosmology from LQG

Construction needs second countability of $\mathcal{A} \Rightarrow$ partially gauge-fix extended diffeos. \Rightarrow ”scaffold”
\Rightarrow ”allowed graphs” and ”allowed surfaces”, enough for all diffeo.classes of $Cyl(A) \circ W(E)$.

- piecewise spirals with rational radii, heights
- ”umbrella shaped” surfaces for Weyl-operators with unit area
- vertices at points with rational coordinates

\Rightarrow Only very small diffeos. are needed in gauge fixing
\Rightarrow Holonomy ODE is approximated

$P : Cyl_{\gamma} \mapsto Cyl_{\phi_{scaff.}(\gamma)}|_{A_{iso}}$ and i by ”partially inverting” P

$\mathcal{E} = Cyl$ with $\langle Cyl_1, Cyl_2 \rangle_{\mathcal{A}} : Cyl \mapsto Cyl_1\langle \pi(Cyl_2)\Omega, \pi(Cyl)\Omega \rangle_{full}$

- kinematical constraints solved by restriction $(Dom(P), Img(i))$ to constraint surface in full LQG
- New combinatorial problems in finding kernel of scalar constraint!
Conclusions

- Symmetry reduction of Poisson system through Poisson-mapping η^*
- certain important Poisson reductions η^* can be cast as (P, i)
Conclusions

- Symmetry reduction of Poisson system through Poisson-mapping η^*
- Certain important Poisson reductions η^* can be cast as (P, i)
- Used (P, i) to reduce Quantum System, s.t.
 - Reduced quantum algebra "relevant part of the system"
 - Induced representation (matching as matrix elements)
Symmetry reduction of Poisson system through Poisson-mapping η^*

certain important Poisson reductions η^* can be cast as (P, i)

Used (P, i) to reduce Quantum System, s.t.

- reduced quantum algebra "relevant part of the system"
- induced representation (matching as matrix elements)

Cosmology from LQG:

- Systematic construction of Cosmology from LQG (no μ_o!)
- Dynamics induced from LQG (Conj. 2)
Conclusions

- Symmetry reduction of Poisson system through Poisson-mapping η^*
- Certain important Poisson reductions η^* can be cast as (P, i)
- Used (P, i) to reduce Quantum System, s.t.
 - Reduced quantum algebra ”relevant part of the system”
 - Induced representation (matching as matrix elements)
- Cosmology from LQG:
 - Systematic construction of Cosmology from LQG (no μ_0!)
 - Dynamics induced from LQG (Conj. 2)
- Future work:
 - Explore scalar constraint surface \Rightarrow Cosmology
 - Use holomorphic cosmological states (proposed by J. Engle)