internal relativity: a progress report

olaf dreyer imperial college london

overview

- internal relativity
- the setup
- gravity
- discussion

Internal relativity

lorentz, bell, ... : maxwell equations give minkowski space

$$E_{z} = Zez'(x^{2} + y^{2} + {z'}^{2})^{-3/2}$$

$$E_{x} = Zex(x^{2} + y^{2} + {z'}^{2})^{-3/2} \left(1 - \frac{v^{2}}{c^{2}}\right)^{-1/2} \qquad z' = (z - z_{N}(t)) \left(1 - \frac{v^{2}}{c^{2}}\right)^{-1/2}$$

$$E_{y} = Zey(x^{2} + y^{2} + {z'}^{2})^{-3/2} \left(1 - \frac{v^{2}}{c^{2}}\right)^{-1/2}$$

$$B_{x} = -\frac{v}{c}E_{y}$$

$$B_{y} = \frac{v}{c}E_{x}$$

Internal relativity

how does the system look from the inside?

■a conjecture

matter has a dual role:

define the geometry \frown matter

two

setup

three dimensional spin systems on a lattice

examples:

(i) ising model (+ modifications)

(ii) stringnet condensates(a la wen, quantum graphity)

ground state

characterized by

 $heta_0$

the vacuum

Ist level

excitations

"elementary particles"

2nd level

bound state of excitations

 •			
$\cap V$	er	VI	

 $|k\rangle$

 θ_0

bound states

level 2

level l

ground state level 0

three

the argument

newton's law

Internal relativity

how does the system look like from the inside?

• constant speed of light

\rightarrow lorentzian metric

• newtonian gravity in low speed limit

\rightarrow metric is curved

five

matter on geometry

- spacetime fundamental
- einstein's equations fundamental
- L^2 (geometry)
- LQG, spin foams

matter & geometry emergent

- spacetime emergent
- matter emergent
- derive einstein's equations
- derive the equivalence principle
- internal relativity

emergence

- because matter and geometry emerge together they are free to influence each other.
- gravity requires two levels of emergence.
- it is important to solve a model (i.e. to look at the emergent physics) see also D. Oriti

"problem of time" trap

problem of time: what to do with

$$H|\psi
angle=0$$
 ?

internal relativity:

- problem arises because of unphysical idealization
- matter and geometry arise together
- matter part is dropped

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G F_{\mu\nu}$$

• it is ok to have an external time

cosmological constant problem

no matter on geometry

no cosmological constant problem

od, hep-th/0409048

ether?

not your grandfathers ether

old ether:

- carried electromagnetic waves
- matter is an additional ingredient

new ether:

• carries all matter

the lorentz group

current understanding: lorentz group fundamental

e.g.: fundamental particles = irreducible representations of the lorentz group

internal relativity: particles define the symmetry

the lorentz group is not part of the setup.

quantum mechanics

classical objects

have shown: classicality implies curvature

maxwell's equations imply minkowski space quantum mechanics implies general relativity

this circle does not close here. start with a quantum theory

observable effects

- cosmology: how does the emergence of spacetime look like?
- fundamental constants: there should be relations between the fundamental constants.

■G=|?

no units: G should naturally be I

in fact: G is naturally small

$$\frac{F_{el}}{F_g} \le N^{\alpha} \qquad \qquad \alpha = \mathcal{O}(1)$$

 $N\gg 1:\;$ number of constituents between the levels

internal relativity sheds light on the hierarchy problem