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Effective equations [MB, Skirzewski]

Do not work with full states explicitly, rather with finitely many
moments (expectation values, fluctuations, . . . ).

Coupled equations of motion capture back-reaction of spreading
and deforming wave packets as quantum corrections to classical
equations.
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Effective equations [MB, Skirzewski]

Do not work with full states explicitly, rather with finitely many
moments (expectation values, fluctuations, . . . ).

Coupled equations of motion capture back-reaction of spreading
and deforming wave packets as quantum corrections to classical
equations.

Dynamical coherent states (interacting vacuum) determined
order by order in semiclassical (or other) expansions, starting
from “free” kinematical coherent states.
Avoid explicit form and representation of states (as well as inner
product).

Systematic route to descend from conceptually and technically
difficult “fundamental” theory to intuitive description.
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Illustration: anharmonic oscillator

Hamiltonian

Ĥ =
1

2m
p̂2 + V (q̂) =

1

2m
p̂2 +

1

2
mω2q̂2 +

1

3
λq̂3
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Illustration: anharmonic oscillator

Hamiltonian

Ĥ =
1

2m
p̂2 + V (q̂) =

1

2m
p̂2 +

1

2
mω2q̂2 +

1

3
λq̂3

“Classical” variables given by expectation values, equations of
motion (Ehrenfest theorem)

d

dt
〈q̂〉 =

1

i~
〈[q̂, Ĥ ]〉 =

1

m
〈p̂〉

d

dt
〈p̂〉 =

1

i~
〈[p̂, Ĥ ]〉 = −mω2〈q̂〉 − λ〈q̂2〉

= −mω2〈q̂〉 − λ〈q̂〉2 − λ(∆q)2

= −V ′(〈q̂〉) − λ(∆q)2

couple expectation values to fluctuation (∆q)2 = 〈(q̂ − 〈q̂〉)2〉,
requiring quantum correction.
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Dynamical fluctuations

Fluctuations are themselves dynamical:

d

dt
(∆q)2 =

d

dt
(〈q̂2〉 − 〈q̂〉2) =

1

i~
〈[q̂2, Ĥ ]〉 − 2〈q̂〉 d

dt
〈q̂〉

=
1

m
〈q̂p̂+ p̂q̂〉 − 2

m
〈q̂〉〈p̂〉 =

2

m
Cqp
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Dynamical fluctuations

Fluctuations are themselves dynamical:

d

dt
(∆q)2 =

d

dt
(〈q̂2〉 − 〈q̂〉2) =

1

i~
〈[q̂2, Ĥ ]〉 − 2〈q̂〉 d

dt
〈q̂〉

=
1

m
〈q̂p̂+ p̂q̂〉 − 2

m
〈q̂〉〈p̂〉 =

2

m
Cqp

Requires covariance Cqp = 1
2〈q̂p̂+ p̂q̂〉 − 〈q̂〉〈p̂〉, evolving as

d

dt
Cqp =

1

m
Cqp +mω2(∆q)2 + 6λ〈q̂〉(∆q)2 + 3λG0,3

with higher moment G0,3 = 〈(q̂ − 〈q̂〉)3〉 = 〈q̂3〉 − 3〈q̂〉(∆q)2 − 〈q̂〉3
of third order (skewness).
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Quantum variables

Iteration shows that all infinitely many quantum variables

Ga,n :=
〈(

(q̂ − 〈q̂〉ψ)n−a(p̂− 〈p̂〉ψ)a
)
symm

〉

ψ

of a state |ψ〉 are coupled to each other and to expectation
values. Whole system of infinitely many ordinary differential
equations is equivalent to the partial Schrödinger equation.
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Quantum variables

Iteration shows that all infinitely many quantum variables

Ga,n :=
〈(

(q̂ − 〈q̂〉ψ)n−a(p̂− 〈p̂〉ψ)a
)
symm

〉

ψ

of a state |ψ〉 are coupled to each other and to expectation
values. Whole system of infinitely many ordinary differential
equations is equivalent to the partial Schrödinger equation.

Effective equations involve only finitely many local degrees of
freedom. If (∆q)(q, p) is known, inserting it into
d
dt〈p̂〉 = −V ′(〈q̂〉) − λ(∆q)2 results in effective equations for
q = 〈q̂〉 and p = 〈p̂〉.

For perturbative potentials around the harmonic oscillator, an
adiabatic and semiclassical approximation decouples the
equations and allows one to compute ∆q order by order.
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Low energy effective action

To first order in ~ and second in adiabatic approximation,
formulated as a second order equation for q:
(
m+ ~U ′′′(q)2

32m2ω5(1+ U′′(q)

mω2 )
5
2

)
q̈ +

~

“

4mω2U ′′′(q)U ′′′′(q)
“

1+ U′′(q)

mω2

”

−5U ′′′(q)3
”

128m3ω7(1+ U′′(q)

mω2 )
7
2

q̇2

+mω2q + U ′(q) + ~U ′′′(q)

4mω(1+ U′′(q)

mω2 )
1
2

= 0

with general anharmonic potential U(q).

Effective theory – p.6



Low energy effective action

To first order in ~ and second in adiabatic approximation,
formulated as a second order equation for q:
(
m+ ~U ′′′(q)2

32m2ω5(1+ U′′(q)

mω2 )
5
2

)
q̈ +

~

“

4mω2U ′′′(q)U ′′′′(q)
“

1+ U′′(q)

mω2

”

−5U ′′′(q)3
”

128m3ω7(1+ U′′(q)

mω2 )
7
2

q̇2

+mω2q + U ′(q) + ~U ′′′(q)

4mω(1+ U′′(q)

mω2 )
1
2

= 0

with general anharmonic potential U(q).

Agrees with 1-particle irreducible low energy effective action

Γeff [q] =

∫
dt

((
m+

~(U ′′′)2

32m2(ω2 + U ′′

m )
5

2

)
q̇2

2

−1

2
mω2q2 − U − ~ω

2

(
1 +

U ′′

mω2

) 1

2

)
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Properties

−→ General states can be used through initial values of
quantum variables, not tied to vacuum state.
(Adiabatic regimes may not exist for any choice.)

−→ Generalizable to constrained systems, physical inner
product implemented through reality conditions for classical type
functions without explicit integral (or other) form for
normalization of states.

−→ (Off-shell) anomaly issue addressed order by order e.g. for
cosmological perturbations.

−→ Graph-changing operators seem tractable. Moments and
correlations to other edges arise only once new edge degrees of
freedom are excited. Keep finite reservoir: include correlations
between all edges, but have only finitely many present in
Hamiltonian. (Difficult in edge-wise coherent states.)
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Solvable cosmological model [gr-qc/0608100]

Friedmann equation c2
√
p = 1

2p
−3/2p2

φ provides loop Hamiltonian

p̂φ = Ĥ = |p̂ sin c| for evolution in φ.

Describes whole class of quantizations: apply canonical
transformation from (c, p) to (p1−kc, pk). Examples: “µ0” for
k = 0, “µ̄” for k = 3/2 as limiting cases of range 0 < k < 3/2
parameterizing behavior of inhomogeneous constraint operator.

Large-H description of loop quantum cosmology constraint.
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Solvable cosmological model [gr-qc/0608100]

Friedmann equation c2
√
p = 1

2p
−3/2p2

φ provides loop Hamiltonian

p̂φ = Ĥ = |p̂ sin c| for evolution in φ.

Describes whole class of quantizations: apply canonical
transformation from (c, p) to (p1−kc, pk). Examples: “µ0” for
k = 0, “µ̄” for k = 3/2 as limiting cases of range 0 < k < 3/2
parameterizing behavior of inhomogeneous constraint operator.

Large-H description of loop quantum cosmology constraint.

Procedure: Possible to solve for wave function [see also Ashtekar,

Corichi, Singh], but solvable in much stronger sense. Moments
decouple from expectation values; no quantum back-reaction.

Then, much more efficient to solve for expectation
values/moments directly; road to effective equations in
perturbation theory for more general models.

Effective theory – p.8



Equations of motion

For solvability, introduce Ĵ = p̂êic: linear Ĥ = −1
2 i(Ĵ − Ĵ†).

(Absolute value not relevant for large-H solutions.)

Solvable “free” system, but non-canonical variables (p̂, Ĵ),
centrally extended sl(2,R) algebra

[p̂, Ĵ ] = ~Ĵ , [p̂, Ĵ†] = −~Ĵ† , [Ĵ , Ĵ†] = −2~p̂− ~
2
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Equations of motion

For solvability, introduce Ĵ = p̂êic: linear Ĥ = −1
2 i(Ĵ − Ĵ†).

(Absolute value not relevant for large-H solutions.)

Solvable “free” system, but non-canonical variables (p̂, Ĵ),
centrally extended sl(2,R) algebra

[p̂, Ĵ ] = ~Ĵ , [p̂, Ĵ†] = −~Ĵ† , [Ĵ , Ĵ†] = −2~p̂− ~
2

Equations of motion for p := 〈p̂〉, J := 〈Ĵ〉
ṗ = −1

2(J + J̄) , J̇ = −1
2(p+ ~) = ˙̄J

with general solution
p(φ) = 1

2(c1e
−φ + c2e

φ) − 1
2~

J(φ) = 1
2(c1e

−φ − c2e
φ) + iH

“Bounce” since |p| → ∞ for φ→ ±∞, but could enter deep
quantum regime if c1c2 < 0; solvable model would break down.
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Reality condition

Classically we have JJ̄ = p2 for J = p exp(ic). This is related to
the physical inner product: exp(ic) becomes unitary operator.
Implies c1c2 = H2 +O(~), bouncing solution (e2δ = c2/c1)

p(φ) = Hcosh(φ− δ) − ~ , J(φ) = −H(sinh(φ− δ) + i)
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Reality condition

Classically we have JJ̄ = p2 for J = p exp(ic). This is related to
the physical inner product: exp(ic) becomes unitary operator.
Implies c1c2 = H2 +O(~), bouncing solution (e2δ = c2/c1)

p(φ) = Hcosh(φ− δ) − ~ , J(φ) = −H(sinh(φ− δ) + i)

Uncertainties: Ġ0,2 = −2G1,2, Ġ2,2 = −2G1,2 and

Ġ1,2 = −1
2G

2,2 − 3
2G

0,2 − 1
2(p2 − JJ̄ + ~p+ ~

2/2)

 H

 δ

p(  ) φ

φ

For H ≫ ~ solution given by
(∆p)2 = G0,2 ≈ ~Hcosh(2(φ− δ2))
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Effective equations without back-reaction

Same equations of motion for expectation values follow from
effective Hamiltonian

Heff = 〈Ĥ〉 =
1

2i
(J − J̄) = p sin c

Only difference to classical Hamiltonian is replacement of c by
sin c. Proves validity of effective equations in this model.
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Effective equations without back-reaction

Same equations of motion for expectation values follow from
effective Hamiltonian

Heff = 〈Ĥ〉 =
1

2i
(J − J̄) = p sin c

Only difference to classical Hamiltonian is replacement of c by
sin c. Proves validity of effective equations in this model.

Consequence of solvability in this specific factor ordering.
Implies decoupling of higher moments rather than just closed
solutions for wave functions.

Generalizing the model introduces quantum back-reaction
effects and additional terms in effective equations. Then, just
using sin c for c does not provide reliable effective equations,
rather phenomenological ones.
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Interactions [MB, Hern ández, Skirzewski]

Effective equation with non-zero potential:

ṗ = −J + J̄

2
+

J + J̄

(J − J̄)2
p3V (φ)

+3
p3(J + J̄)

(J − J̄)4
(GJJ +GJ̄ J̄ − 2GJJ̄)V (φ)

−6
p2(J + J̄)

(J − J̄)3
(GpJ −GpJ̄ )V (φ) + 3

p(J + J̄)

(J − J̄)2
Gpp V (φ)

− 2p3

(J − J̄)3
(GJJ −GJ̄ J̄ )V (φ) +

3p2

(J − J̄)2
(GpJ +GpJ̄ )V (φ)

together with equations for J̇ and Ġa,2 as independent variables.

No regime of adiabatic quantum variables found so far: essential
quantum degrees of freedom in presence of interactions or
anisotropy and inhomogeneity, unlike in free bounce model.
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General effective equations

Three types of corrections in constraints of loop quantum gravity:

−→ Use of holonomies implies higher powers of connection
components, e.g. sin c instead of c in free bounce model.
Moreover, spatial discretization effects.

−→ Genuine quantum corrections due to back-reaction of
spreading wave packet.

−→ Inverse powers of triad components corrected for small
triads. Ignored in solvable model, but more important in
inhomogeneous situations.
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General effective equations

Three types of corrections in constraints of loop quantum gravity:

−→ Use of holonomies implies higher powers of connection
components, e.g. sin c instead of c in free bounce model.
Moreover, spatial discretization effects.

−→ Genuine quantum corrections due to back-reaction of
spreading wave packet.

−→ Inverse powers of triad components corrected for small
triads. Ignored in solvable model, but more important in
inhomogeneous situations.

Inhomogeneous constraints give rise to anomaly issue in
presence of quantum corrections.
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Anomalies

Effective constraints can be computed without paying attention
to constraint algebra. Anomaly freedom implementable
subsequently, order by order e.g. in perturbative
inhomogeneities.

Test if specific quantum corrections can be compatible with
covariance and how strongly ambiguities are restricted.
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Anomalies

Effective constraints can be computed without paying attention
to constraint algebra. Anomaly freedom implementable
subsequently, order by order e.g. in perturbative
inhomogeneities.

Test if specific quantum corrections can be compatible with
covariance and how strongly ambiguities are restricted.

Non-trivial quantum corrections possible for anomaly-free
effective constraints. Results in well-defined set of equations in
terms of gauge invariant observables.
[More in Mikhail Kagan’s talk this afternoon]

[Work in collaboration with Hossain, Kagan, Mulryne, Nunes, Shankaranarayanan]
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Example: scalar cosmological modes

Inverse power corrections computed for diagonal metric
perturbations (scalar mode Eai = Eδai in longitudinal gauge).
Correction factor from Thiemann’s quantization in terms of flux
Ev =

∫
Sv

d2yE(y):

α(Ev) = (2πγℓ2P)−1
√
|Ev|

(√
|Ev + 2πγℓ2P| −

√
|Ev − 2πγℓ2P|

)

= 1 + 1
4πγℓ

4
P/E

2
v +O(ℓ8P/E

4
v)

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2

(r)α

µ

r=1/2
r=3/4

r=1
r=3/2

r=2

More complicated for off-
diagonal perturbation which
requires non-Abelian calcula-
tions.
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Anomaly cancellation

Insert correction functions in effective constraints, e.g.

∫
d3xN

(ǫijkF
i
ab − 2(1 + γ2)Kj

[aK
k
b])E

a
jE

b
k√

|det(Ecl )|
α(Eai )

and compute Poisson brackets with diffeomorphism constraint.
Absence of anomalies relates dependence of correction
functions on (known) diagonal and (unknown) off-diagonal
metric modes.
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Anomaly cancellation

Insert correction functions in effective constraints, e.g.

∫
d3xN

(ǫijkF
i
ab − 2(1 + γ2)Kj

[aK
k
b])E

a
jE

b
k√

|det(Ecl )|
α(Eai )

and compute Poisson brackets with diffeomorphism constraint.
Absence of anomalies relates dependence of correction
functions on (known) diagonal and (unknown) off-diagonal
metric modes.

Provides conjectures to be tested by direct computations of full
function α(Eai ) from 〈EajEbk/

√
|det(Ecl )|〉 without mode

assumption. Non-trivial internal consistency test whether loop
effects can be compatible with covariance, and of how strongly
ambiguities will be restricted.
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Possible quantum effects

Use (partial) effective constraint
[MB, Hernández, Kagan, Singh, Skirzewski]

∫
d3xN

(ǫijkF
i
ab − 2(1 + γ2)Kj

[a
Kk
b])E

a
jE

b
k√

|det(Ecl )|
α(E)

specialized to scalar mode where α is known.
Constraint surface as well as gauge transformations change.
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Possible quantum effects

Use (partial) effective constraint
[MB, Hernández, Kagan, Singh, Skirzewski]

∫
d3xN

(ǫijkF
i
ab − 2(1 + γ2)Kj

[a
Kk
b])E

a
jE

b
k√

|det(Ecl )|
α(E)

specialized to scalar mode where α is known.
Constraint surface as well as gauge transformations change.

α2∇2ψ − 3
ȧ

a
ψ̇ − 3

(
1 − α′

α
a2

)(
ȧ

a

)2

ψ = −4πGαa2 δT 0
0

ψ̈ + 2ψ
d

dη

(
ȧ

a

)(
1 − α′

α
a2

)
+ 3ψ̇

ȧ

a

(
1 − 2

3

α′

α
a2

)
− 4

3
αα′a2∇2ψ

+ψ

(
ȧ

a

)2
(

1 − 5
α′

α
a2 + 4

(
α′

α

)2

a4 − 2
α′′

α
a4

)
= 4πGαa2δT a(a)

∂a

(
ψ̇ +

ȧ

a
ψ(1 − 2a2α′/α)

)
= −4πGa2δT 0

a
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Implications

Combine to Poisson equation

∇2ψ − µ(E)ψ = 4πGα−1a2

(
δρ+ 3α−1 ȧ

a
(ρ̄+ P̄ )u

)

with µ(E) = 3ȧ2α′/α3 < 0: Small correction to Newton potential.
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Implications

Combine to Poisson equation

∇2ψ − µ(E)ψ = 4πGα−1a2

(
δρ+ 3α−1 ȧ

a
(ρ̄+ P̄ )u

)

with µ(E) = 3ȧ2α′/α3 < 0: Small correction to Newton potential.

Cosmology:

ψ̈ + 3(1 + w + ǫ1)
ȧ

a
ψ̇ − (w + ǫ2)∇2ψ + ǫ3

(
ȧ

a

)2

ψ = 0

with ǫ3 = −2α′′a4/α < 0. Large scale solutions (constant w):
ψ(η) = ηλ with λ = −ν

2 ± 1
2

√
ν2 − 4ǫ3. One solution increasing;

only slightly but over long evolution times.

Estimate during inflation: correction factor in power up to
e−60ǫ3 ≈ 1 − 102ǫ3 and ǫ3 > 10−6. Potentially visible.
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Comparison with boundary propagator

Loop quantum gravity now provides two examples for Newton
potential plus corrections.

Comparison:

−→ Properties of states required, but only finite number of
parameters such as expectation values, spread. Not as unique
as low energy effective actions unless distinguished state
available (“vacuum”).

−→ Detailed semiclassical analysis can rule out some
possibilities in absence of fundamental arguments for unique
(class of) state(s).

−→ Choices can be studied systematically by effective means.
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Conclusions

Effective theories provide means to extract phenomenological
information from fundamental quantum theories, focusing on few
essential parameters.

Now available for canonical quantizations, can take into account
requirements of loop quantum gravity.
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Conclusions

Effective theories provide means to extract phenomenological
information from fundamental quantum theories, focusing on few
essential parameters.

Now available for canonical quantizations, can take into account
requirements of loop quantum gravity.

Examples provided in cosmology, based on isotropic universe
sourced by free massless scalar as solvable zeroth order.
Serves as starting point for general perturbation theory.
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Conclusions

Effective theories provide means to extract phenomenological
information from fundamental quantum theories, focusing on few
essential parameters.

Now available for canonical quantizations, can take into account
requirements of loop quantum gravity.

Examples provided in cosmology, based on isotropic universe
sourced by free massless scalar as solvable zeroth order.
Serves as starting point for general perturbation theory.

Consistency conditions such as anomaly freedom, physical
inner product implementable order by order. Effective equations
result which preserve covariance. Suggests conjectures for
expectation values of fundamental quantities testable by direct
calculations using underlying operators.
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Conclusions

Effective theories provide means to extract phenomenological
information from fundamental quantum theories, focusing on few
essential parameters.

Now available for canonical quantizations, can take into account
requirements of loop quantum gravity.

Examples provided in cosmology, based on isotropic universe
sourced by free massless scalar as solvable zeroth order.
Serves as starting point for general perturbation theory.

Consistency conditions such as anomaly freedom, physical
inner product implementable order by order. Effective equations
result which preserve covariance. Suggests conjectures for
expectation values of fundamental quantities testable by direct
calculations using underlying operators.

Different approaches to the same question available, giving
valuable comparisons.
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