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discrete regime: few quanta →
→ Z =
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Γ
λNΓ
symΓ

A(Γ)

A(Γ) =

�

v

�

dxvA(Γ, xv) =

�
e

�
dpeA(Γ, pe)

A(Γ) ≈ sum over histories for few particles

continuum regime: many quanta →
S(ψ) ; Z =

�

Dψ eiSλ(ψ) or H(ψ) ; Z =

�

Dψ e−βH ⇒
⇒ Seff (φ) ; Zeff =

�
DφeiSeff (φ) or

Heff (φ) ; Zeff =
�

Dφeff e
−βHeff (φ)
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A QFT for Quantum Gravity?

Immediate questions:

A QFT on which spacetime?

a QFT of gravitons on some background doesn’t work

QG should explain origin and properties of spacetime itself (geometry
and topology?)

background independence!

it can be only be a QFT on some auxiliary or internal space (local
symmetry group is natural choice)

a QFT of what? what are the fundamental quanta?

gravitons do not work

quanta of space itself! fundamental excitations of space around the
vacuum (nothing)

we are not starting from scratch! ideas and results from LQG, matrix
models, simplicial QG,... Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 4/3
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interpreted as 2nd quantized theories

of simplicial geometry and

of canonical QG in 1st order formalism (QFT of spin networks)

complex field φ on GD for D-dimensional models, represents “2nd
quantized (D-1)-simplex”(or spin net vertex)

arguments of field have interpretation of geometric data (lengths, areas,
gravity connection,...)
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GFT action S(φ) with V (φ) of order D+1, and non-local pairing of field
variables (combinatorics of D-simplex)

FD are fat graphs/2-complexes Γ topologically dual to D-dimensional
simplicial complexes ∆ (discrete spacetime emerges as virtual construct)

FD amplitudes have structure of sum-over-histories formulation of
simplicial quantum gravity

Z =

�

Dφ eiS(φ) =
�

Γ

λNΓ

s[Γ]
Z(Γ) =

�

∆

w∆

�

Dg∆ eiS∆(g)

generalization of matrix models for 2d QG: more complicated
combinatorics + group-theoretic data

both geometry and topology are dynamical
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The Group Field Theory formalism

L. Freidel, hep-th/0505016; D. Oriti, gr-qc/0512103;
D. Oriti, gr-qc/0607032
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GFT formalism: kinematics

consider a complex field φ over D copies of a group manifold G (e.g.
Lorentz group, for QG): φ(g1, ..., gD) : G× ...×G� �� �

D

→ C
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GFT formalism: kinematics

symmetries - gauge invariance: invariance under diagonal action of G:
φ(g1, ..., gD) = φ(g1g, ..., gDg)
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φ(g1, ..., gD) ≡ Pgφ(g1, ..., gD) ≡ �

dgφ(g1g, ..., gDg)

geometric meaning: D faces of (D-1)-simplex ‘close’;

⇒ field decomposes into intertwiners CJ1,...,JD,Λ
l1,...,lD

:

φ(g1, .., gD) =

�

φJ1..JD,Λ
k1,..,kD

DJ1
k1l1

(g1)..D
JD
kDlD
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:

φ(g1, .., gD) =

�

φJ1..JD,Λ
k1,..,kD

DJ1
k1l1

(g1)..D
JD
kDlD

(gD)CJ1,..,JD,Λ
l1,..,lD

can consider extended ‘pieces’of quantum space:

Jg ( )
1 1 Jg ( )

1 1

Jg ( )

Jg ( )
2 2

Jg ( )
2 2

Jg ( )
3 3

Jg ( )
3 3

Jg ( )
4 4

Jg ( )
4 4

5 5Jg ( )
5 5
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Jg ( )
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Jg ( )
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Jg ( )
4 4

5 5Jg ( )
5 5

generic state → spin network � simplicial (D-1)-complex, with geometric
data attached
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GFT formalism: classical dynamics

field action: SD(φ, λ) = 1
2

�

i=1,..,D

�

dgidg̃iφ(gi)K(gig̃
−1
i )φ(g̃i) +

λ
(D+1)

�D+1
i�=j=1

�

dgijφ(g1j)...φ(gD+1j)V(gijg
−1
ji )

exact choice of the K and V defines the model
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�

i=1,..,D

�

dgidg̃iφ(gi)K(gig̃
−1
i )φ(g̃i) +

λ
(D+1)

�D+1
i�=j=1

�

dgijφ(g1j)...φ(gD+1j)V(gijg
−1
ji )

exact choice of the K and V defines the model

combinatorics of arguments in V reflects gluing of (D-2)-faces in a
D-simplex, basic interaction of (D-1)-simplices to form D-simplices
K → gluing of D-simplices along (D-1)-simplices

Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 11/3



GFT formalism: classical dynamics

field action: SD(φ, λ) = 1
2

�

i=1,..,D

�

dgidg̃iφ(gi)K(gig̃
−1
i )φ(g̃i) +

λ
(D+1)

�D+1
i�=j=1

�

dgijφ(g1j)...φ(gD+1j)V(gijg
−1
ji )

exact choice of the K and V defines the model

combinatorics of arguments in V reflects gluing of (D-2)-faces in a
D-simplex, basic interaction of (D-1)-simplices to form D-simplices
K → gluing of D-simplices along (D-1)-simplices

= + +

φ

φ

φ φφ φ
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GFT formalism: classical dynamics

example 1 (D = 3): g ∈ SU(2)

K(gi, g̃i) =

	

i

δ(gig̃
−1) V(gij) =

	
i�=j

δ(gijg
−1
ji )
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GFT formalism: classical dynamics

example 1 (D = 3): g ∈ SU(2)

K(gi, g̃i) =

	

i

δ(gig̃
−1) V(gij) =

	
i�=j

δ(gijg
−1
ji )

example 2 (D = 3): g, h ∈ SU(2), s ∈ R

K(gi, si, g̃i, s̃i) =

	

i

(i∂si + �i) δ(gig̃
−1)δ(si − s̃)
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GFT formalism: classical dynamics

example 1 (D = 3): g ∈ SU(2)

K(gi, g̃i) =

	

i

δ(gig̃
−1) V(gij) =

	
i�=j

δ(gijg
−1
ji )

example 2 (D = 3): g, h ∈ SU(2), s ∈ R

K(gi, si, g̃i, s̃i) =

	

i

(i∂si + �i) δ(gig̃
−1)δ(si − s̃)

Equations of motion:	

i=1,..,D

�

dg̃iK(gig̃
−1
i )φ(g̃i) + λ

δV

δφ
= 0
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GFT formalism: classical dynamics

example 1 (D = 3): g ∈ SU(2)

K(gi, g̃i) =

	

i

δ(gig̃
−1) V(gij) =

	
i�=j

δ(gijg
−1
ji )

example 2 (D = 3): g, h ∈ SU(2), s ∈ R

K(gi, si, g̃i, s̃i) =

	

i

(i∂si + �i) δ(gig̃
−1)δ(si − s̃)

Equations of motion:	

i=1,..,D

�

dg̃iK(gig̃
−1
i )φ(g̃i) + λ

δV

δφ
= 0

no extensive study of classical dynamics carried out yet
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GFT formalism: quantum dynamics

the quantum theory is defined by the partition function, in terms of its
Feynman expansion:

Z =

�

Dφ eiS[φ] =

�
Γ

λNΓ

sym[Γ]
Z(Γ)
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the quantum theory is defined by the partition function, in terms of its
Feynman expansion:

Z =
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λNΓ

sym[Γ]
Z(Γ)

building blocks of FD are:
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Z =
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Dφ eiS[φ] =
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Z(Γ)

building blocks of FD are:

a) lines of propagation, with D labelled strands (dual to(D-1)-simplices),
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the quantum theory is defined by the partition function, in terms of its
Feynman expansion:

Z =

�

Dφ eiS[φ] =

�
Γ

λNΓ

sym[Γ]
Z(Γ)

building blocks of FD are:

a) lines of propagation, with D labelled strands (dual to(D-1)-simplices),

b) vertices of interaction (made of (D+1)× D labelled strands re-routed
following the combinatorics of a D-simplex) (thus dual to D-simplices),
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GFT formalism: quantum dynamics

the quantum theory is defined by the partition function, in terms of its
Feynman expansion:

Z =

�

Dφ eiS[φ] =

�
Γ

λNΓ

sym[Γ]
Z(Γ)

building blocks of FD are:

a) lines of propagation, with D labelled strands (dual to(D-1)-simplices),

b) vertices of interaction (made of (D+1)× D labelled strands re-routed
following the combinatorics of a D-simplex) (thus dual to D-simplices),

this produces: c) 2-cells, identified by strands of propagation passing
through several vertices, and then closing (for closed FD), dual to
(D-2)-simplices; d) ‘bubbles’: 3-cells bounded by the above 2-cells
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GFT formalism: quantum dynamics

= + +

φ

φ

φ φφ φ
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GFT formalism: quantum dynamics

= + +

φ

φ

φ φφ φ

Feynman graphs Γ are fat graphs/cellular complexes topologically dual to
D-dimensional triangulated (pseudo-)manifolds of ALL topologies
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GFT formalism: quantum dynamics

= + +

φ

φ

φ φφ φ

Feynman graphs Γ are fat graphs/cellular complexes topologically dual to
D-dimensional triangulated (pseudo-)manifolds of ALL topologies
Quantum Gravity formulated as a sum over simplicial complexes of all
topologies, as interaction processes
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GFT formalism: quantum dynamics

Feynman amplitudes can be written in both configuration (gi) and
momentum (Ji) space

Z(Γ) =

	�

dgiAΓ(gi) =
	�

Ji

AΓ(Ji)
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GFT formalism: quantum dynamics

Feynman amplitudes can be written in both configuration (gi) and
momentum (Ji) space

Z(Γ) =

	�

dgiAΓ(gi) =
	�

Ji

AΓ(Ji)

Z(Γ) are, in momentum space, Spin Foam models (labelled 2-complexes)
(Reisenberger, Rovelli), histories of spin networks

〈Ψ1 | Ψ2〉 =

�
DφO1O2 e

iS(φ) =

�

Γ/∂Γ=γ1∪γ2

λNΓ

sym[Γ]
Z(Γ)
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GFT formalism: quantum dynamics

Feynman amplitudes can be written in both configuration (gi) and
momentum (Ji) space

Z(Γ) =

	�

dgiAΓ(gi) =
	�

Ji

AΓ(Ji)

Z(Γ) are, in momentum space, Spin Foam models (labelled 2-complexes)
(Reisenberger, Rovelli), histories of spin networks

〈Ψ1 | Ψ2〉 =

�
DφO1O2 e

iS(φ) =

�

Γ/∂Γ=γ1∪γ2

λNΓ

sym[Γ]
Z(Γ)

Z(Γ) � discrete QG path integral → ′′ � Dg∆ ei S∆(g) ′′
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GFT formalism: quantum dynamics

Feynman amplitudes can be written in both configuration (gi) and
momentum (Ji) space

Z(Γ) =

	�

dgiAΓ(gi) =
	�

Ji

AΓ(Ji)

Z(Γ) are, in momentum space, Spin Foam models (labelled 2-complexes)
(Reisenberger, Rovelli), histories of spin networks

〈Ψ1 | Ψ2〉 =

�
DφO1O2 e

iS(φ) =

�

Γ/∂Γ=γ1∪γ2

λNΓ

sym[Γ]
Z(Γ)

Z(Γ) � discrete QG path integral → ′′ � Dg∆ ei S∆(g) ′′

in most models, Z(Γ) directly related to/derived from discretization of
continuum gravity action
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Example

3d Riemannian QG - D = 3, G = SU(2)
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Example

3d Riemannian QG - D = 3, G = SU(2)

Real field: φ(g1, g2, g3) = φ(g1g, g2g, g3g) : SU(2)×3 → R
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Example

3d Riemannian QG - D = 3, G = SU(2)

Real field: φ(g1, g2, g3) = φ(g1g, g2g, g3g) : SU(2)×3 → R

S[φ] = 1
2

�

dgi [Pgφ(g1, g2, g3)]
2 + λ

4

�
dgj [Ph1φ(g1, g2, g3)]×

×[Ph2φ(g3, g5, g4)][Ph3φ(g4, g2, g6)][Ph4φ(g6, g5, g1)]
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Example

3d Riemannian QG - D = 3, G = SU(2)

Real field: φ(g1, g2, g3) = φ(g1g, g2g, g3g) : SU(2)×3 → R

S[φ] = 1
2

�

dgi [Pgφ(g1, g2, g3)]
2 + λ

4

�
dgj [Ph1φ(g1, g2, g3)]×

×[Ph2φ(g3, g5, g4)][Ph3φ(g4, g2, g6)][Ph4φ(g6, g5, g1)]

The Feynman amplitude for this model is:

Z(Γ) =


	
e∗∈Γ

�
dge∗

� 	

f∗
δ(

	

e∗∈∂f∗
ge∗)
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Example

3d Riemannian QG - D = 3, G = SU(2)

Real field: φ(g1, g2, g3) = φ(g1g, g2g, g3g) : SU(2)×3 → R

S[φ] = 1
2

�

dgi [Pgφ(g1, g2, g3)]
2 + λ

4

�
dgj [Ph1φ(g1, g2, g3)]×

×[Ph2φ(g3, g5, g4)][Ph3φ(g4, g2, g6)][Ph4φ(g6, g5, g1)]

The Feynman amplitude for this model is:

Z(Γ) =


	
e∗∈Γ

�
dge∗

� 	

f∗
δ(

	

e∗∈∂f∗
ge∗)

same result from path integral quantization of 3d Riemannian gravity on
triangulation ∆ dual to Γ

SM(e, ω) =

�

M
tr(e ∧ F (ω)) → S∆(Xe, ge∗) =

�

e

tr (XeGe)
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Example

Z(Γ) =


	

e

�

su(2)

dXe

�
	

e∗

�

SU(2)

dge∗
�

ei
�

e tr(XeGe)

so that the ge∗ play the role of discretized connection

in momentum space: φ(g1, g2, g3) → φj1j2j3m1m2m3
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Example

Z(Γ) =


	

e

�

su(2)

dXe

�
	

e∗

�

SU(2)

dge∗
�

ei
�

e tr(XeGe)

so that the ge∗ play the role of discretized connection

in momentum space: φ(g1, g2, g3) → φj1j2j3m1m2m3

Z(Γ) =

��

f

�

jf


 �

f ∆jf

�
v

��
� j1 j2 j3

j4 j5 j6

��
�
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Example

Z(Γ) =


	

e

�

su(2)

dXe

�
	

e∗

�

SU(2)

dge∗
�

ei
�

e tr(XeGe)

so that the ge∗ play the role of discretized connection

in momentum space: φ(g1, g2, g3) → φj1j2j3m1m2m3

Z(Γ) =

��

f

�

jf


 �

f ∆jf

�
v

��
� j1 j2 j3

j4 j5 j6

��
�

this is the so-called Ponzano-Regge spin foam model for 3d Riemannian
quantum gravity
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Example

Z(Γ) =


	

e

�

su(2)

dXe

�
	

e∗

�

SU(2)

dge∗
�

ei
�

e tr(XeGe)

so that the ge∗ play the role of discretized connection

in momentum space: φ(g1, g2, g3) → φj1j2j3m1m2m3

Z(Γ) =

��

f

�

jf


 �

f ∆jf

�
v

��
� j1 j2 j3

j4 j5 j6

��
�

this is the so-called Ponzano-Regge spin foam model for 3d Riemannian
quantum gravity��

� j1 j2 j3

j4 j5 j6
��

� ∝j→∞ ei SR(je) + e−i SR(je),

SR = Regge action, je = edge lengths
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GFTs as a general framework for (discrete) Quantum
Gravity approaches
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GFT and Loop Quantum Gravity

GFT (boundary) states are Spin Networks, based on full Lorentz group (not
SU(2) in general)
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GFT and Loop Quantum Gravity

GFT (boundary) states are Spin Networks, based on full Lorentz group (not
SU(2) in general)

GFTs are 2nd quantization of theories based on SpinNets wave functions,
re-written as multi-particle states, with vertices as ’particles’
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GFT and Loop Quantum Gravity

GFT (boundary) states are Spin Networks, based on full Lorentz group (not
SU(2) in general)

GFTs are 2nd quantization of theories based on SpinNets wave functions,
re-written as multi-particle states, with vertices as ’particles’

Any operator from 1st quantization (LQG) has a 2nd quantized (GFT)
counterpart
(S. Drappeau, E. Livine, D.O., in progress)
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2nd quantization of spin nets
(S. Drappeau, E. Livine, D.O., in progress)

1

2

3

4

Γ g
g

g

23

12

34

ΨΓ(g12, g23, ...) = ΨΓ(G1g12G
−1
2 , ...) =

=

��V
i=1

�

dGi




ΦΓ(G1g12G
−1
2 , G2g23G

−1
3 , ...) =

=

��V
i=1 PGi



ΦΓ(g12, g23, ...)
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2nd quantization of spin nets
(S. Drappeau, E. Livine, D.O., in progress)

1

2

3

4

Γ g
g

g

23

12

34

ΨΓ(g12, g23, ...) = ΨΓ(G1g12G
−1
2 , ...) =

=

��V
i=1

�

dGi




ΦΓ(G1g12G
−1
2 , G2g23G

−1
3 , ...) =

=

��V
i=1 PGi



ΦΓ(g12, g23, ...)

φΓ(�g1, �g2, ...) =

��V
i=1 PGi




ψΓ(�g1, �g2, ...)
1

2

3

4

g

g g

g

g

g
1

1

1

1

2

2

2

2

3

3

1 2
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2nd quantization of spin nets
(S. Drappeau, E. Livine, D.O., in progress)

1

2

3

4

Γ g
g

g

23

12

34

ΨΓ(g12, g23, ...) = ΨΓ(G1g12G
−1
2 , ...) =

=

��V
i=1

�

dGi




ΦΓ(G1g12G
−1
2 , G2g23G

−1
3 , ...) =

=

��V
i=1 PGi



ΦΓ(g12, g23, ...)

φΓ(�g1, �g2, ...) =

��V
i=1 PGi




ψΓ(�g1, �g2, ...)
1

2

3

4

g

g g

g

g

g
1

1

1

1

2

2

2

2

3

3

1 2

1

2

3

4

g

g g

g

g

g
1

1

1

1

2

2

2

2

3

3

1 2

φsymΓ (�g1, �g2, ...) =

��E
i=1 Phi




φΓ(�g1, �g2, ...)

Ph1φ((g1
1 , g

1
2 , g

1
3), (g2

1 , g
2
2 , g

2
3), ...) =�

dhiφ((g1
1h1, g

1
2 , g

1
3), (g2

1h1, g
2
2 , g

2
3), ...)
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2nd quantization of spin nets
(S. Drappeau, E. Livine, D.O., in progress)

1

2

3

4

Γ g
g

g

23

12

34

ΨΓ(g12, g23, ...) = ΨΓ(G1g12G
−1
2 , ...) =

=

��V
i=1

�

dGi




ΦΓ(G1g12G
−1
2 , G2g23G

−1
3 , ...) =

=

��V
i=1 PGi



ΦΓ(g12, g23, ...)

φΓ(�g1, �g2, ...) =

��V
i=1 PGi




ψΓ(�g1, �g2, ...)
1

2

3

4

g

g g

g

g

g
1

1

1

1

2

2

2

2

3

3

1 2

1

2

3

4

g

g g

g

g

g
1

1

1

1

2

2

2

2

3

3

1 2

φsymΓ (�g1, �g2, ...) =

��E
i=1 Phi




φΓ(�g1, �g2, ...)

Ph1φ((g1
1 , g

1
2 , g

1
3), (g2

1 , g
2
2 , g

2
3), ...) =�

dhiφ((g1
1h1, g

1
2 , g

1
3), (g2

1h1, g
2
2 , g

2
3), ...)

⇒ ΨΓ(g12, g23, ...) = φsymΓ (�g1, �g2, ...) g12 = g1
1g

2−1
1 , .......
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2nd quantization of spin nets
(S. Drappeau, E. Livine, D.O., in progress)

φΓ(�g1, �g2, ...) ≈ Ψ(x1, x2, ...) ΨΓ(g12, g23, ...) ≈ Ψ(x1 − x2, ....)
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2nd quantization of spin nets
(S. Drappeau, E. Livine, D.O., in progress)

φΓ(�g1, �g2, ...) ≈ Ψ(x1, x2, ...) ΨΓ(g12, g23, ...) ≈ Ψ(x1 − x2, ....)

Ψ(x1, x2, ...) → ψ(x) → S(φ), ...
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2nd quantization of spin nets
(S. Drappeau, E. Livine, D.O., in progress)

φΓ(�g1, �g2, ...) ≈ Ψ(x1, x2, ...) ΨΓ(g12, g23, ...) ≈ Ψ(x1 − x2, ....)

Ψ(x1, x2, ...) → ψ(x) → S(φ), ...

φΓ(�g1, �g2, ...) →�

(a{k}, a
†
{k}), {k} = {ji,mi,Λ}, φ{k}(�g) =

�
iD

ji
mini

(gi)C
j1..ji..,Λ
n1..ni..

�

→
φ(�g) = φ(g1, .., gD) (GFTfield) → SGFT (φ), ...
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2nd quantization of spin nets
(S. Drappeau, E. Livine, D.O., in progress)

φΓ(�g1, �g2, ...) ≈ Ψ(x1, x2, ...) ΨΓ(g12, g23, ...) ≈ Ψ(x1 − x2, ....)
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φΓ(�g1, �g2, ...) →�

(a{k}, a
†
{k}), {k} = {ji,mi,Λ}, φ{k}(�g) =

�
iD

ji
mini

(gi)C
j1..ji..,Λ
n1..ni..

�

→
φ(�g) = φ(g1, .., gD) (GFTfield) → SGFT (φ), ...

1st quantized (LQG) operators → 2nd quantized (GFT) operators,....
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2nd quantization of spin nets
(S. Drappeau, E. Livine, D.O., in progress)

φΓ(�g1, �g2, ...) ≈ Ψ(x1, x2, ...) ΨΓ(g12, g23, ...) ≈ Ψ(x1 − x2, ....)

Ψ(x1, x2, ...) → ψ(x) → S(φ), ...

φΓ(�g1, �g2, ...) →�

(a{k}, a
†
{k}), {k} = {ji,mi,Λ}, φ{k}(�g) =

�
iD

ji
mini

(gi)C
j1..ji..,Λ
n1..ni..

�

→
φ(�g) = φ(g1, .., gD) (GFTfield) → SGFT (φ), ...

1st quantized (LQG) operators → 2nd quantized (GFT) operators,....

.............
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GFT and Loop Quantum Gravity

GFT (boundary) states are Spin Networks, based on full Lorentz group (not
SU(2) in general)
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GFT and Loop Quantum Gravity

GFT (boundary) states are Spin Networks, based on full Lorentz group (not
SU(2) in general)

GFTs are 2nd quantization of SpinNets, re-written as multi-particle states,
with vertices as ’particles’
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GFT and Loop Quantum Gravity

GFT (boundary) states are Spin Networks, based on full Lorentz group (not
SU(2) in general)

GFTs are 2nd quantization of SpinNets, re-written as multi-particle states,
with vertices as ’particles’

Any operator from 1st quantization (LQG) has a 2nd quantized (GFT)
counterpart
(S. Drappeau, E. Livine, D.O., in progress)
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GFT and Loop Quantum Gravity

GFT (boundary) states are Spin Networks, based on full Lorentz group (not
SU(2) in general)

GFTs are 2nd quantization of SpinNets, re-written as multi-particle states,
with vertices as ’particles’

Any operator from 1st quantization (LQG) has a 2nd quantized (GFT)
counterpart
(S. Drappeau, E. Livine, D.O., in progress)

GFTs provide 2nd quantized dynamics: GFT classical eqns are quantum
eqns of spin net functionals
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GFT and Loop Quantum Gravity

GFT (boundary) states are Spin Networks, based on full Lorentz group (not
SU(2) in general)

GFTs are 2nd quantization of SpinNets, re-written as multi-particle states,
with vertices as ’particles’

Any operator from 1st quantization (LQG) has a 2nd quantized (GFT)
counterpart
(S. Drappeau, E. Livine, D.O., in progress)

GFTs provide 2nd quantized dynamics: GFT classical eqns are quantum
eqns of spin net functionals

GFT perturbative expansion at tree level (trivial topology) defines physical
scalar product of LQG !!! (L. Freidel)

〈Ψ1 | Ψ2〉phys =

�

Γ|tree/∂Γ=γ1∪γ2

λNΓ

sym[Γ]
Z(Γ)
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GFT and Loop Quantum Gravity

open issues:
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GFT and Loop Quantum Gravity

open issues:

construct GFT models with explicit relation with canonical quantization:
2 possible directions (both being explored)
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GFT and Loop Quantum Gravity

open issues:

construct GFT models with explicit relation with canonical quantization:
2 possible directions (both being explored)

find specific GFT in D=4, with SU(2) spin nets (and LQG dynamics),
giving either the new model by Engle, Pereira and Rovelli, or some
closely related but different one, probably also based on the “dual
way”of imposing the simplicity constraint (see Carlo’s talk)
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GFT and Loop Quantum Gravity

open issues:

construct GFT models with explicit relation with canonical quantization:
2 possible directions (both being explored)

find specific GFT in D=4, with SU(2) spin nets (and LQG dynamics),
giving either the new model by Engle, Pereira and Rovelli, or some
closely related but different one, probably also based on the “dual
way”of imposing the simplicity constraint (see Carlo’s talk)
find specific GFT in D=4, with Lorentz spin networks, with the same
kinematics as the covariant canonical LQG of S. Alexandrov, providing
a dynamics for the same
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GFT and Loop Quantum Gravity

open issues:

construct GFT models with explicit relation with canonical quantization:
2 possible directions (both being explored)

find specific GFT in D=4, with SU(2) spin nets (and LQG dynamics),
giving either the new model by Engle, Pereira and Rovelli, or some
closely related but different one, probably also based on the “dual
way”of imposing the simplicity constraint (see Carlo’s talk)
find specific GFT in D=4, with Lorentz spin networks, with the same
kinematics as the covariant canonical LQG of S. Alexandrov, providing
a dynamics for the same

beyond tree level: there is much more than that in a QFT, → there is
much more in GFT than in LQG....
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GFT and Simplicial Quantum Gravity

GFT seems to incorporate formalism, insights and ideas from both main
approaches to simplicial quantum gravity:

Z =

�

Dφ eiS[φ] =

�
Γ

λNΓ

sym[Γ]
�

{Ji}
AΓ(Ji)
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GFT and Simplicial Quantum Gravity

GFT seems to incorporate formalism, insights and ideas from both main
approaches to simplicial quantum gravity:

Z =

�

Dφ eiS[φ] =

�
Γ

λNΓ

sym[Γ]
�

{Ji}
AΓ(Ji)

Quantum Regge Calculus: for fixed triangulation/FD, GFT define
simplicial sum over geometries, with unique measure (for given GFT)

Z =

�

Dφ eiS[φ]
� ZQRC =

�
{Ji}

AΓ(Ji) ≈ “

�

Dg eiSGR(g)”

Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 24/3



GFT and Simplicial Quantum Gravity

GFT seems to incorporate formalism, insights and ideas from both main
approaches to simplicial quantum gravity:

Z =

�

Dφ eiS[φ] =

�
Γ

λNΓ

sym[Γ]
�

{Ji}
AΓ(Ji)

Quantum Regge Calculus: for fixed triangulation/FD, GFT define
simplicial sum over geometries, with unique measure (for given GFT)

Z =

�

Dφ eiS[φ]
� ZQRC =

�
{Ji}

AΓ(Ji) ≈ “

�

Dg eiSGR(g)”

Dynamical Triangulations: freeze the geometric data, then GFT gives
QG as sum over triangulations

Z =

�
Dφ eiS[φ]

� ZDT =

�

Γ

1

sym[Γ]
AΓ(λ) ≈ “

�

Dg eiSGR(g)”

(too much included? need for further restriction to 1) trivial topology, 2)
Causal Dynamical Triangulations? QFT meaning of CDT restrictions?)
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GFT and Simplicial Quantum Gravity

key issue: find a specific GFT with amplitude equal to exp of Regge action,
times measure, for each triangulation
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GFT and Simplicial Quantum Gravity

key issue: find a specific GFT with amplitude equal to exp of Regge action,
times measure, for each triangulation

most likely, relevant version of Regge calculus is 1st order one, e.g. (D=3)
S =

�

e LeΘe(ge∗)
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GFT and Simplicial Quantum Gravity

key issue: find a specific GFT with amplitude equal to exp of Regge action,
times measure, for each triangulation

most likely, relevant version of Regge calculus is 1st order one, e.g. (D=3)
S =

�

e LeΘe(ge∗)

differences between known spin foam models (GFT Feynman amplitudes)
and Regge-like one (same for different D, i.e. for BF or gravity):
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GFT and Simplicial Quantum Gravity

key issue: find a specific GFT with amplitude equal to exp of Regge action,
times measure, for each triangulation

most likely, relevant version of Regge calculus is 1st order one, e.g. (D=3)
S =

�

e LeΘe(ge∗)

differences between known spin foam models (GFT Feynman amplitudes)
and Regge-like one (same for different D, i.e. for BF or gravity):

path integral (Regge or GR-like) vs symmetrized one (usual spin foams)
ZBF =

� De � DωeiS(e,ω) =

�
+
De � DωeiS(e,ω) +

�

− De � DωeiS(e,ω) =�

+
De � DωeiS(e,ω) +

�
+
De � Dωe−iS(e,ω) = ZGR + Z∗

GR

Teitelboim, Halliwell-Hartle, Giddings-Strominger, etc
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GFT and Simplicial Quantum Gravity

key issue: find a specific GFT with amplitude equal to exp of Regge action,
times measure, for each triangulation

most likely, relevant version of Regge calculus is 1st order one, e.g. (D=3)
S =

�

e LeΘe(ge∗)

differences between known spin foam models (GFT Feynman amplitudes)
and Regge-like one (same for different D, i.e. for BF or gravity):

path integral (Regge or GR-like) vs symmetrized one (usual spin foams)
ZBF =

� De � DωeiS(e,ω) =

�
+
De � DωeiS(e,ω) +

�

− De � DωeiS(e,ω) =�

+
De � DωeiS(e,ω) +

�
+
De � Dωe−iS(e,ω) = ZGR + Z∗

GR

Teitelboim, Halliwell-Hartle, Giddings-Strominger, etc

complex amplitudes (Regge or GR-like) vs real ones (usual spin foams)
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GFT and Simplicial Quantum Gravity

key issue: find a specific GFT with amplitude equal to exp of Regge action,
times measure, for each triangulation

most likely, relevant version of Regge calculus is 1st order one, e.g. (D=3)
S =

�

e LeΘe(ge∗)

differences between known spin foam models (GFT Feynman amplitudes)
and Regge-like one (same for different D, i.e. for BF or gravity):

path integral (Regge or GR-like) vs symmetrized one (usual spin foams)
ZBF =

� De � DωeiS(e,ω) =

�
+
De � DωeiS(e,ω) +

�

− De � DωeiS(e,ω) =�

+
De � DωeiS(e,ω) +

�
+
De � Dωe−iS(e,ω) = ZGR + Z∗

GR

Teitelboim, Halliwell-Hartle, Giddings-Strominger, etc

complex amplitudes (Regge or GR-like) vs real ones (usual spin foams)

lagrangian symmetries vs canonical symmetries
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GFT and Simplicial Quantum Gravity

key issue: find a specific GFT with amplitude equal to exp of Regge action,
times measure, for each triangulation

most likely, relevant version of Regge calculus is 1st order one, e.g. (D=3)
S =

�

e LeΘe(ge∗)

differences between known spin foam models (GFT Feynman amplitudes)
and Regge-like one (same for different D, i.e. for BF or gravity):

path integral (Regge or GR-like) vs symmetrized one (usual spin foams)
ZBF =

� De � DωeiS(e,ω) =

�
+
De � DωeiS(e,ω) +

�

− De � DωeiS(e,ω) =�

+
De � DωeiS(e,ω) +

�
+
De � Dωe−iS(e,ω) = ZGR + Z∗

GR

Teitelboim, Halliwell-Hartle, Giddings-Strominger, etc

complex amplitudes (Regge or GR-like) vs real ones (usual spin foams)

lagrangian symmetries vs canonical symmetries

may be useful to introduce extra variables (not g-only or j-only) to
reproduce (e, ω) or (Le, ge∗) Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 25/3



A GFT for simplicial Quantum Gravity
(D.O., T. Tlas, in preparation)

consider the GFT, for D = 3, both Riemannian and Lorentzian, based on
the complex field φα(g1, s1; g2, s2; g3, s3) : [(G× R)×3/G] → C, with
φα=+1 = φ , φα=−1 = φ∗ (orientation dependence)
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A GFT for simplicial Quantum Gravity
(D.O., T. Tlas, in preparation)

consider the GFT, for D = 3, both Riemannian and Lorentzian, based on
the complex field φα(g1, s1; g2, s2; g3, s3) : [(G× R)×3/G] → C, with
φα=+1 = φ , φα=−1 = φ∗ (orientation dependence)

and the action

S =

�

G

dgi

�

R

dsi φ
∗(gi, si)


	
i

(i∂i + �i)

�
φ(gi, si) +

+

�

αi

λ

4

�

dgijdsijφ
α1(g1j , s1j)...φ

α4(g4j , s4j)

	

ij

δ(gij , gji)δ(αisij + αj

S =

�

G

dgi

�
R

dMi φ
∗(gi,Mi)


	

i

(�i +Mi)

�

φ(gi,Mi) +

+

�
αi

λ

4

�
dgijdMijφ

α1(g1j ,M1j)...φ
α4(g4j ,M4j)

	

ij

δ(gij , gji)δ(Mij −

Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 26/3



A GFT for simplicial Quantum Gravity
(D.O., T. Tlas, in preparation)

consider the GFT, for D = 3, both Riemannian and Lorentzian, based on
the complex field φα(g1, s1; g2, s2; g3, s3) : [(G× R)×3/G] → C, with
φα=+1 = φ , φα=−1 = φ∗ (orientation dependence)

and the action

S =

�

G

dgi

�

R

dsi φ
∗(gi, si)


	
i

(i∂i + �i)

�
φ(gi, si) +

+

�

αi

λ

4

�

dgijdsijφ
α1(g1j , s1j)...φ

α4(g4j , s4j)

	

ij

δ(gij , gji)δ(αisij + αj

S =

�

G

dgi

�
R

dMi φ
∗(gi,Mi)


	

i

(�i +Mi)

�

φ(gi,Mi) +

+

�
αi

λ

4

�
dgijdMijφ

α1(g1j ,M1j)...φ
α4(g4j ,M4j)

	

ij

δ(gij , gji)δ(Mij −

usual model(s) = SUL restriction:

�

i(i∂i + �i) →�

i(δ(gi, g̃i)δ(si − s̃i))
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A GFT for simplicial Quantum Gravity
(D.O., T. Tlas, in preparation)

resulting Feynman amplitude:

ZΓ(ge∗,Me) =

�	

e

C(Ne)

�

1√
1 +MeΘe(ge∗)

�Ne−1

×

Ne−1�

k=0

(Ne + k − 1)!

k!(Ne − k − 1)!

(−1)k

(2i
√

1 +Me)k

�
ei

�

e

√
1+MeΘe(ge∗) Me > −1
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A GFT for simplicial Quantum Gravity
(D.O., T. Tlas, in preparation)

resulting Feynman amplitude:

ZΓ(ge∗,Me) =

�	

e

C(Ne)

�

1√
1 +MeΘe(ge∗)

�Ne−1

×

Ne−1�

k=0

(Ne + k − 1)!

k!(Ne − k − 1)!

(−1)k

(2i
√

1 +Me)k

�
ei

�

e

√
1+MeΘe(ge∗) Me > −1

exactly path integral for 1st order Regge calculus, with
√

1 +Me = edge
length and Θe = deficit angle
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A GFT for simplicial Quantum Gravity
(D.O., T. Tlas, in preparation)

resulting Feynman amplitude:

ZΓ(ge∗,Me) =

�	

e

C(Ne)

�

1√
1 +MeΘe(ge∗)

�Ne−1

×

Ne−1�

k=0

(Ne + k − 1)!

k!(Ne − k − 1)!

(−1)k

(2i
√

1 +Me)k

�
ei

�

e

√
1+MeΘe(ge∗) Me > −1

exactly path integral for 1st order Regge calculus, with
√

1 +Me = edge
length and Θe = deficit angle

for Me < −1
√

1 +Me → i
√

1 +Me, i.e. corresponding contribution
(wrong orientation) exponentially suppressed
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A GFT for simplicial Quantum Gravity
(D.O., T. Tlas, in preparation)

resulting Feynman amplitude:

ZΓ(ge∗,Me) =

�	

e

C(Ne)

�

1√
1 +MeΘe(ge∗)

�Ne−1

×

Ne−1�

k=0

(Ne + k − 1)!

k!(Ne − k − 1)!

(−1)k

(2i
√

1 +Me)k

�
ei

�

e

√
1+MeΘe(ge∗) Me > −1

exactly path integral for 1st order Regge calculus, with
√

1 +Me = edge
length and Θe = deficit angle

for Me < −1
√

1 +Me → i
√

1 +Me, i.e. corresponding contribution
(wrong orientation) exponentially suppressed

can consider variations of this model....
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A GFT for simplicial Quantum Gravity
(D.O., T. Tlas, in preparation)

resulting Feynman amplitude:

ZΓ(ge∗,Me) =

�	

e

C(Ne)

�

1√
1 +MeΘe(ge∗)

�Ne−1

×

Ne−1�

k=0

(Ne + k − 1)!

k!(Ne − k − 1)!

(−1)k

(2i
√

1 +Me)k

�
ei

�

e

√
1+MeΘe(ge∗) Me > −1

exactly path integral for 1st order Regge calculus, with
√

1 +Me = edge
length and Θe = deficit angle

for Me < −1
√

1 +Me → i
√

1 +Me, i.e. corresponding contribution
(wrong orientation) exponentially suppressed

can consider variations of this model....

DT restriction (fixed geometric data): φ(gi, si) eigenstate of i∂i, trivial
gauge invariance (D.O., in progress)
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The problem of the
emergence of the

continuum (and of GR) from
GFTs
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Some current strategies (very much
simplified!) seen from GFT

〈Ψ1 | Ψ2〉 =

�

DφO1(φ)O2(φ) eiS(φ) =

�
Γ|γ1∪γ2

λNΓ

s[Γ]

�
{Ji}

A(Ji)

LQG/SF semiclassical states: construct kinematical spin network states
such that γ � Σ and {Ji} � hΣ(x); then study their dynamics using an
appropriate spin foam model, in which they would appear as boundary
states
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Some current strategies (very much
simplified!) seen from GFT

〈Ψ1 | Ψ2〉 =

�

DφO1(φ)O2(φ) eiS(φ) =

�
Γ|γ1∪γ2

λNΓ

s[Γ]

�
{Ji}

A(Ji)

LQG/SF semiclassical states: construct kinematical spin network states
such that γ � Σ and {Ji} � hΣ(x); then study their dynamics using an
appropriate spin foam model, in which they would appear as boundary
states

GFT translation: identify appropriate hugely populated (1024? 1051?)
“multi-particle states”(each with its own “momentum”), that can be
approximated by a continuum, characterized by a smooth “momentum
field”. Study their dynamics in perturbative expansion around the vacuum,
analyzing hugely complicated FD amplitudes (complexity of the FD �
complexity of the states)
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Some current strategies in GFT terms

Regge Calculus: study behaviour of discretized path integral on a given
triangulation (possibly hugely complicated), as function of parameters.
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Some current strategies in GFT terms

Regge Calculus: study behaviour of discretized path integral on a given
triangulation (possibly hugely complicated), as function of parameters.

GFT translation: consider one single Feynman diagram (possibly hugely
complicated) and compute amplitude as function of parameters.

Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 30/3



Some current strategies in GFT terms

Regge Calculus: study behaviour of discretized path integral on a given
triangulation (possibly hugely complicated), as function of parameters.

GFT translation: consider one single Feynman diagram (possibly hugely
complicated) and compute amplitude as function of parameters.

Dynamical triangulations: computes sum over equilateral (le = a)
triangulations of given topology, in the limit a→ 0, with associated
renormalization of couplings.
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Some current strategies in GFT terms

Regge Calculus: study behaviour of discretized path integral on a given
triangulation (possibly hugely complicated), as function of parameters.

GFT translation: consider one single Feynman diagram (possibly hugely
complicated) and compute amplitude as function of parameters.

Dynamical triangulations: computes sum over equilateral (le = a)
triangulations of given topology, in the limit a→ 0, with associated
renormalization of couplings.

GFT translation: consider subset of FDs of given topology, and with
constant momenta = p (drop all QFT degrees of freedom); compute the
restricted partition function, for p→ 0, while renormalising the couplings.
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Some current strategies in GFT terms

Regge Calculus: study behaviour of discretized path integral on a given
triangulation (possibly hugely complicated), as function of parameters.

GFT translation: consider one single Feynman diagram (possibly hugely
complicated) and compute amplitude as function of parameters.

Dynamical triangulations: computes sum over equilateral (le = a)
triangulations of given topology, in the limit a→ 0, with associated
renormalization of couplings.

GFT translation: consider subset of FDs of given topology, and with
constant momenta = p (drop all QFT degrees of freedom); compute the
restricted partition function, for p→ 0, while renormalising the couplings.

are FDs the right language/tool?
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Some current strategies in GFT terms

Regge Calculus: study behaviour of discretized path integral on a given
triangulation (possibly hugely complicated), as function of parameters.

GFT translation: consider one single Feynman diagram (possibly hugely
complicated) and compute amplitude as function of parameters.

Dynamical triangulations: computes sum over equilateral (le = a)
triangulations of given topology, in the limit a→ 0, with associated
renormalization of couplings.

GFT translation: consider subset of FDs of given topology, and with
constant momenta = p (drop all QFT degrees of freedom); compute the
restricted partition function, for p→ 0, while renormalising the couplings.

are FDs the right language/tool?

if continuum is many-particle physics, NO!
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Continuum spacetime: a condensed
matter picture

suggestions from condensed matter and analog gravity systems (superfluid
Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, etc)

Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 31/3
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Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, etc)

spacetime as a condensate/fluid phase of fundamental discrete
constituents, described by QFT
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Continuum spacetime: a condensed
matter picture

suggestions from condensed matter and analog gravity systems (superfluid
Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, etc)

spacetime as a condensate/fluid phase of fundamental discrete
constituents, described by QFT

continuum is hydrodynamic approximation, valid at T ≈ 0, close to
equilibrium, and for N → ∞
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suggestions from condensed matter and analog gravity systems (superfluid
Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, etc)

spacetime as a condensate/fluid phase of fundamental discrete
constituents, described by QFT

continuum is hydrodynamic approximation, valid at T ≈ 0, close to
equilibrium, and for N → ∞
metric is (function of) hydrodynamic variable(s) (v, ρ)
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Continuum spacetime: a condensed
matter picture

suggestions from condensed matter and analog gravity systems (superfluid
Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, etc)

spacetime as a condensate/fluid phase of fundamental discrete
constituents, described by QFT

continuum is hydrodynamic approximation, valid at T ≈ 0, close to
equilibrium, and for N → ∞
metric is (function of) hydrodynamic variable(s) (v, ρ)

continuum evolution governed by hydrodynamic equations for such
collective variables;
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Continuum spacetime: a condensed
matter picture

suggestions from condensed matter and analog gravity systems (superfluid
Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, etc)

spacetime as a condensate/fluid phase of fundamental discrete
constituents, described by QFT

continuum is hydrodynamic approximation, valid at T ≈ 0, close to
equilibrium, and for N → ∞
metric is (function of) hydrodynamic variable(s) (v, ρ)

continuum evolution governed by hydrodynamic equations for such
collective variables;

in general, (modified) GR does not coincide with hydrodynamics, but is
reproduced only in some limits
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Continuum spacetime: a condensed
matter picture

suggestions from condensed matter and analog gravity systems (superfluid
Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, etc)

spacetime as a condensate/fluid phase of fundamental discrete
constituents, described by QFT

continuum is hydrodynamic approximation, valid at T ≈ 0, close to
equilibrium, and for N → ∞
metric is (function of) hydrodynamic variable(s) (v, ρ)

continuum evolution governed by hydrodynamic equations for such
collective variables;

in general, (modified) GR does not coincide with hydrodynamics, but is
reproduced only in some limits

questions from CM perspective: what are the atoms of space? what is the
microscopic theory? which CM system reproduces full GR?
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Continuum spacetime from GFTs:
a different perspective

To look at GFTs from LQG, SF, DT, etc standpoints is not taking them
seriously and leads to complications in approaching the problem of the
continuum
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Continuum spacetime from GFTs:
a different perspective

To look at GFTs from LQG, SF, DT, etc standpoints is not taking them
seriously and leads to complications in approaching the problem of the
continuum

instead, take GFT seriously as the QFT, the discrete microscopic theory, of
the atoms of space, its fundamental constituents
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Continuum spacetime from GFTs:
a different perspective

To look at GFTs from LQG, SF, DT, etc standpoints is not taking them
seriously and leads to complications in approaching the problem of the
continuum

instead, take GFT seriously as the QFT, the discrete microscopic theory, of
the atoms of space, its fundamental constituents

GFT as a quantum theory of ‘pre-geometric structures’, from which
geometry only emerges in some limit
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Continuum spacetime from GFTs:
a different perspective

To look at GFTs from LQG, SF, DT, etc standpoints is not taking them
seriously and leads to complications in approaching the problem of the
continuum

instead, take GFT seriously as the QFT, the discrete microscopic theory, of
the atoms of space, its fundamental constituents

GFT as a quantum theory of ‘pre-geometric structures’, from which
geometry only emerges in some limit

big issue is how a continuum spacetime emerge from such discrete QFT
description; what is a continuum spacetime from a GFT perspective?
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Continuum spacetime from GFTs:
a different perspective

To look at GFTs from LQG, SF, DT, etc standpoints is not taking them
seriously and leads to complications in approaching the problem of the
continuum

instead, take GFT seriously as the QFT, the discrete microscopic theory, of
the atoms of space, its fundamental constituents

GFT as a quantum theory of ‘pre-geometric structures’, from which
geometry only emerges in some limit

big issue is how a continuum spacetime emerge from such discrete QFT
description; what is a continuum spacetime from a GFT perspective?

hypothesis: continuum is coherent many-particles physics for GFT atoms
of space at very low temperature (hydrodynamic approx)

Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 32/3



A research programme (D.O., gr-qc/0612301)

need to develop and use Statistical GFT
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A research programme (D.O., gr-qc/0612301)

need to develop and use Statistical GFT

can work in Lagrangian framework → RG analysis
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A research programme (D.O., gr-qc/0612301)

need to develop and use Statistical GFT

can work in Lagrangian framework → RG analysis

or in Hamiltonian framework:
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A research programme (D.O., gr-qc/0612301)

need to develop and use Statistical GFT

can work in Lagrangian framework → RG analysis

or in Hamiltonian framework:

analyse canonical/Hamiltonian structure of GFTs, canonical GFT quantization, Fock

structure, ground state, symmetries and conservation laws, (D. O., J. Ryan, A. Youssef, in preparation)
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A research programme (D.O., gr-qc/0612301)

need to develop and use Statistical GFT

can work in Lagrangian framework → RG analysis

or in Hamiltonian framework:

analyse canonical/Hamiltonian structure of GFTs, canonical GFT quantization, Fock

structure, ground state, symmetries and conservation laws, (D. O., J. Ryan, A. Youssef, in preparation)

identify notion of temperature (D.O., in progress)
related to Wick rotation of suitable time variable(s); in GFT case it will correspond to some discrete geometric variable (internal

time)
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A research programme (D.O., gr-qc/0612301)

need to develop and use Statistical GFT

can work in Lagrangian framework → RG analysis

or in Hamiltonian framework:

analyse canonical/Hamiltonian structure of GFTs, canonical GFT quantization, Fock

structure, ground state, symmetries and conservation laws, (D. O., J. Ryan, A. Youssef, in preparation)

identify notion of temperature (D.O., in progress)
related to Wick rotation of suitable time variable(s); in GFT case it will correspond to some discrete geometric variable (internal

time)

identify GFT phases for T → 0, large number of quanta, for different GFT
models
microscopic details mostly irrelevant (e.g. exact form of Feynman amplitudes/SF), what is relevant: variables, symmetries, statistics,

general form of interaction
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A research programme (D.O. gr-qc/0612301)

continuum spacetime ≡ fluid phase, i.e. intertwiners/(D-1)-simplices
condense or reach ground state and evolve coherently, as a
fluid-continuum
spacetime as a fundamentally quantum phenomenon; dynamics largely determined by conservation eqns; crucial: what is the resulting

topology and dimensionality of the fluid? how are they related to those of the underlying group manifold? .........
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i (x) → connection variables?

will other fields emerge at the same time as effective gravity?
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extract effective dynamics of these hydrodynamic degrees of freedom from
microscopic GFTs can use usual QFT methods for condensed matter physics + insights from analog gravity
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continuum spacetime ≡ fluid phase, i.e. intertwiners/(D-1)-simplices
condense or reach ground state and evolve coherently, as a
fluid-continuum
spacetime as a fundamentally quantum phenomenon; dynamics largely determined by conservation eqns; crucial: what is the resulting

topology and dimensionality of the fluid? how are they related to those of the underlying group manifold? .........

identify hydrodynamic variables - effective metric
what is GFT analogue of v(x), ρ(x)? guess: φ(g1, ..., g4) → Φ(Gi) → Gµ(x) → AIJ

i (x) → connection variables?

will other fields emerge at the same time as effective gravity?

extract effective dynamics of these hydrodynamic degrees of freedom from
microscopic GFTs can use usual QFT methods for condensed matter physics + insights from analog gravity

look for geometric interpretation of hydrodynamic variables and dynamics
(does it give (modified) GR?)
GFTs contain topology change......is the effective continuum theory going to be GR on a fixed topology, or rather the classical

continuum theory on superspace behind 3rd quantized gravity?
Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 34/3



Hamiltonian analysis - Fock structure
(D.O., J. Ryan, A. Youssef, in preparation)

consider model with kinetic term:

S =

�

dgi

�

R

dsi φ
†(g1, s1; ...; gD, sD)

	
i

(i∂si + �i)φ(g1, s1; ...; gD, sD)+h.

for generic group G (Riemannian or Lorentzian)
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i

(i∂si + �i)φ(g1, s1; ...; gD, sD)+h.

for generic group G (Riemannian or Lorentzian)

take si as time variables, and gi as ‘space’variables; for each argument of
field there is one time variable
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dsi φ
†(g1, s1; ...; gD, sD)

	
i

(i∂si + �i)φ(g1, s1; ...; gD, sD)+h.

for generic group G (Riemannian or Lorentzian)

take si as time variables, and gi as ‘space’variables; for each argument of
field there is one time variable

‘naive phase space’: (φ, φ†, πiφ, π
i
φ†) → ‘polymomentum’ formulation (ala

De Donder-Weyl) (see Kanatchikov)
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dsi φ
†(g1, s1; ...; gD, sD)
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(i∂si + �i)φ(g1, s1; ...; gD, sD)+h.

for generic group G (Riemannian or Lorentzian)

take si as time variables, and gi as ‘space’variables; for each argument of
field there is one time variable

‘naive phase space’: (φ, φ†, πiφ, π
i
φ†) → ‘polymomentum’ formulation (ala

De Donder-Weyl) (see Kanatchikov)

D = 2 →: eqns motion: (i∂1 + �1)(i∂2 + �2)φ = 0, ....
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consider model with kinetic term:

S =

�

dgi

�

R

dsi φ
†(g1, s1; ...; gD, sD)

	
i

(i∂si + �i)φ(g1, s1; ...; gD, sD)+h.

for generic group G (Riemannian or Lorentzian)

take si as time variables, and gi as ‘space’variables; for each argument of
field there is one time variable

‘naive phase space’: (φ, φ†, πiφ, π
i
φ†) → ‘polymomentum’ formulation (ala

De Donder-Weyl) (see Kanatchikov)

D = 2 →: eqns motion: (i∂1 + �1)(i∂2 + �2)φ = 0, ....

basis of solutions spanned by ’plane wave’ solutions of (i∂2 + �2)φ = 0

(times generic plane wave in ’1’ variables), + ’plane wave’ solutions of
(i∂1 + �1)φ = 0 (times plane wave in ’2’ variables), plus complex conjugate
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Hamiltonian analysis - Fock structure
(D.O., J. Ryan, A. Youssef, in preparation)

each class of solutions → subset of field modes→ subalgebra of
creation/annihilation operators upon quantization
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each class of solutions → subset of field modes→ subalgebra of
creation/annihilation operators upon quantization

decompose modes according to sign of (eigenvalue of) �i = −Ci, i.e.
Casimir of group G in representation ρi; such eigenvalue can be positive or
negative in Lorentzian case, only positive in Riemannian
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creation/annihilation operators upon quantization

decompose modes according to sign of (eigenvalue of) �i = −Ci, i.e.
Casimir of group G in representation ρi; such eigenvalue can be positive or
negative in Lorentzian case, only positive in Riemannian

momenta: π1
φ = (−i∂2 + �2)φ

† , ....
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Hamiltonian analysis - Fock structure
(D.O., J. Ryan, A. Youssef, in preparation)

each class of solutions → subset of field modes→ subalgebra of
creation/annihilation operators upon quantization

decompose modes according to sign of (eigenvalue of) �i = −Ci, i.e.
Casimir of group G in representation ρi; such eigenvalue can be positive or
negative in Lorentzian case, only positive in Riemannian

momenta: π1
φ = (−i∂2 + �2)φ

† , ....

Hamiltonian density:
HDW = πi∂iφ− L = 2π1

φ†π
2
φ + iπ1

φ�1φ+ iπ2
φ�2φ+ h.c.
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Hamiltonian analysis - Fock structure
(D.O., J. Ryan, A. Youssef, in preparation)

each class of solutions → subset of field modes→ subalgebra of
creation/annihilation operators upon quantization

decompose modes according to sign of (eigenvalue of) �i = −Ci, i.e.
Casimir of group G in representation ρi; such eigenvalue can be positive or
negative in Lorentzian case, only positive in Riemannian

momenta: π1
φ = (−i∂2 + �2)φ

† , ....

Hamiltonian density:
HDW = πi∂iφ− L = 2π1

φ†π
2
φ + iπ1

φ�1φ+ iπ2
φ�2φ+ h.c.

can define appropriate Poisson Brackets, conserved quantities, etc
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Hamiltonian analysis - Fock structure
(D.O., J. Ryan, A. Youssef, in preparation)

define one independent Hamiltonian density for each time direction: so that
HDW = H1 + H2 , with Hi = π1

φ†π
2
φ + iπiφ�iφ+ h.c
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define one independent Hamiltonian density for each time direction: so that
HDW = H1 + H2 , with Hi = π1

φ†π
2
φ + iπiφ�iφ+ h.c

from these, one independent Hamiltonian for each time direction: e.g.
H1 =

�

ds2dgiH1
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define one independent Hamiltonian density for each time direction: so that
HDW = H1 + H2 , with Hi = π1

φ†π
2
φ + iπiφ�iφ+ h.c

from these, one independent Hamiltonian for each time direction: e.g.
H1 =

�

ds2dgiH1

in Fourier modes: H1 =

�

ρ1+,... Cρ1a
†
1a1 +

�
ρ1−,... Cρ1b

†
1b1 etc; where

sum is over representations with positive Casimir and negative Casimir (in
Riemannian case, only first appear)
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define one independent Hamiltonian density for each time direction: so that
HDW = H1 + H2 , with Hi = π1

φ†π
2
φ + iπiφ�iφ+ h.c

from these, one independent Hamiltonian for each time direction: e.g.
H1 =

�

ds2dgiH1

in Fourier modes: H1 =

�

ρ1+,... Cρ1a
†
1a1 +

�
ρ1−,... Cρ1b

†
1b1 etc; where

sum is over representations with positive Casimir and negative Casimir (in
Riemannian case, only first appear)

note: Hi is independent of time si, as it should be;

Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 37/3



Hamiltonian analysis - Fock structure
(D.O., J. Ryan, A. Youssef, in preparation)

define one independent Hamiltonian density for each time direction: so that
HDW = H1 + H2 , with Hi = π1

φ†π
2
φ + iπiφ�iφ+ h.c

from these, one independent Hamiltonian for each time direction: e.g.
H1 =

�

ds2dgiH1

in Fourier modes: H1 =

�

ρ1+,... Cρ1a
†
1a1 +

�
ρ1−,... Cρ1b

†
1b1 etc; where

sum is over representations with positive Casimir and negative Casimir (in
Riemannian case, only first appear)

note: Hi is independent of time si, as it should be;

upon quantization, in order to preserve positivity of the Hamiltonian, it turns
out that GFTs of this type have to be quantized using Bose statistics in
Riemannian case, and Fermi statistics in Lorentzian case
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Hamiltonian analysis - Fock structure
(D.O., J. Ryan, A. Youssef, in preparation)

a†i , ai, b
†
i , bi are promoted to creation/annihilation operators for fundamental

atoms of space, being represented either as spin network vertices or as
D − 1-simplices. One obtains a Fock structure.
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†
i , bi are promoted to creation/annihilation operators for fundamental

atoms of space, being represented either as spin network vertices or as
D − 1-simplices. One obtains a Fock structure.

Riemannian spin network vertices are bosons; Lorentzian spin network
vertices are fermions

huge consequences for their properties as condensed matter systems

one can straightforwardly define consistent euclidean time periodic
formalism for each time variable, bound their final integration in partition
function to β = 1

kT
and define this way a notion of temperature (D.O. in

progress)
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Hamiltonian analysis - Fock structure
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a†i , ai, b
†
i , bi are promoted to creation/annihilation operators for fundamental

atoms of space, being represented either as spin network vertices or as
D − 1-simplices. One obtains a Fock structure.

Riemannian spin network vertices are bosons; Lorentzian spin network
vertices are fermions

huge consequences for their properties as condensed matter systems

one can straightforwardly define consistent euclidean time periodic
formalism for each time variable, bound their final integration in partition
function to β = 1

kT
and define this way a notion of temperature (D.O. in

progress)

ground state at T ≈ 0 given by lowest values of Casimir operators
(smallest representation), i.e. “energy”
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Hamiltonian analysis - Fock structure
(D.O., J. Ryan, A. Youssef, in preparation)

a†i , ai, b
†
i , bi are promoted to creation/annihilation operators for fundamental

atoms of space, being represented either as spin network vertices or as
D − 1-simplices. One obtains a Fock structure.

Riemannian spin network vertices are bosons; Lorentzian spin network
vertices are fermions

huge consequences for their properties as condensed matter systems

one can straightforwardly define consistent euclidean time periodic
formalism for each time variable, bound their final integration in partition
function to β = 1

kT
and define this way a notion of temperature (D.O. in

progress)

ground state at T ≈ 0 given by lowest values of Casimir operators
(smallest representation), i.e. “energy”

...............
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Conclusions

we may have already found the correct microscopic theory for the
fundamental constituents of space(time) (at least, we have a candidate)
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Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 39/3



Conclusions

we may have already found the correct microscopic theory for the
fundamental constituents of space(time) (at least, we have a candidate)

a local, discrete, fully background independent QFT of simplicial quantum
geometry/spin networks, from which a discrete spacetime emerges as a
Feynman graph, but with a rich and unexplored non-perturbative structure

a common framework for different approaches to Quantum Gravity

can use QFT language and techniques, develop corresponding statistical
field theory for microscopic constituents, to study their many-body physics

a way to realize the idea of spacetime as a condensate/fluid, and solve the
problem of the continuum in QG, and of Einstein gravity as an emergent
effective field theory

Group Field Theories: spacetime from quantum discreteness to an amergent continuum – p. 39/3



Conclusions

we may have already found the correct microscopic theory for the
fundamental constituents of space(time) (at least, we have a candidate)

a local, discrete, fully background independent QFT of simplicial quantum
geometry/spin networks, from which a discrete spacetime emerges as a
Feynman graph, but with a rich and unexplored non-perturbative structure

a common framework for different approaches to Quantum Gravity

can use QFT language and techniques, develop corresponding statistical
field theory for microscopic constituents, to study their many-body physics

a way to realize the idea of spacetime as a condensate/fluid, and solve the
problem of the continuum in QG, and of Einstein gravity as an emergent
effective field theory

only problem: there is plenty of work still to be done! :(
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