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Introduction:

Spherically symmetric space-times include Schwarzschild and therefore the
singularity.

They are the “next obvious thing” to try with loop quantum gravity after homogeneous
space-times.

Work in progress, we do not have results for the complete space-time.
Models always involve a tradeoff: using special features simplifies treatment but

lessens the value as lessons for the full theory.

We will carry out a Dirac quantization in the loop representation and discuss
implications for other approaches.



Spherically symmetric canonical quantum gravity:

Previous work on the spherical symmetry with the traditional variables for canonical
gravity: Berger, Chitre, Moncrief, Nutku (1973), Lund (1973), Unruh (1976),
and the definitive work (in vacuum): Kuchar (1994).

Kuchar does not simply use symmetry-reduced variables and proceed to a Dirac
quantization, but makes a careful choice of canonical variables such that the
quantization is immediate and the only dynamical variable is the mass. In this
sense it can be seen as a “microsuperspace quantization”.

Such a quantization has so little in common with the full theory that we cannot learn
anything about, for instance, the use of loop quantization or singularity elimination.

We would like to use less information about the model in question, i.e. just impose
spherical symmetry and then proceed with the usual quantization program.



Midi-superspaces: things complicate

Suppose one considers the usual spherical (spatial) metric,
ds’ = A>(r)dr® + B(r)>(r’d0” + r*sin” 0 d¢*)

And a appropriately spherical conjugate momenta. One will be left with
one diffeomorphism constraint Cr and a Hamiltonian constraint H. They will satisfy

the usual constraint algebra,
{C,C}=C
{(CCHY=H
{H,H} = gC

Remarkably, even this simple model has “the problem of dynamics” of
canonical quantum gravity. This problem is absent in homogeneous cosmologies.



Spherical symmetry with the new variables

Previous work with the new variables, Bengtsson (1988) Kastrup and Thiemann (1993)
and Bojowald and Swiderski (2005, 2006). Choose connections and triads adapted
to spherical symmetry,

A= Ay(x)Asdr + (A1(x)A1 + Ax(z)A2) df + ((Ar(z)As — Ax(x)Ay) sinf + Agcosf) dp,
d

E=FE" (H‘?}.""i;'iﬁjllg 3
dp

9 2 .0 ,
G + (El (x)A1 + E° (J‘}"ig) SlIlga—g + (El (x)As — E7 (,r}"il)
A’s are generators of su(2).

It simplifies the constraints if one introduces a “polar” canonical transformation in
the variables Ag, P¢,$3,PB

illl = fli{fﬂ.ﬁ:ﬁ,? P¥ = 9f! cos 3 — 2E? sin 3,
Ay = —Asinf, ps _251;-1_??5111,3—}— QEEA.??CDS;?,
E¥ = \J(EY)? + (E?)%.

To fix asymptotic problems (Bojowald, Swiderski), one does a further canonical
change,
A, = A, = 2cosad, P? =Pt P?=2E%cosa,

B —=n a+ 3,

Leading to the canonical pairs AX,EX,IZP,E‘”,n,P”.



Finally, one is left with the following form for the constraints,

G = P"+ (E*Y

D = P+ E¥A, — (E*) A,.

E? Ay ALVIE" ALEY (B=))’

| £ 2y WWM |E*|E¥
CVIEFIET)(E?)  ALVIE® N x/WE "

2(E%)2 22 2E®

To simplify matters further, we will fix the spatial coordinate gauge. This
eliminates the diffeomorphism constraint, but still leaves a Gauss law and
a Hamiltonian constraint with a first class algebra of constraints with structure

functions, therefore still a challenging problem.

The choice is Ex=(x+a)?2, which in turn puts the horizon at x=0. The
variable a is a dynamical variable that is related to the mass of the space-time
a=M/2. One solves D=0 for A, and substituting in H one has an equation for the

pair ACP,ECP.



The Hamiltonian constraint becomes,

—_ !
E¥ A% (x +a) E¥ 3(x+a) [ 1Y
H = — Ll —_ : X 1) —— = L

(z + a)y? ( 8 2(x +a) T 2Ev¥ tl@ta) Ev 0

And the constraint algebra is,

Au(y)

-~

A, (y)
2 ’:r"

{H(x),H(y)} = ( H(:f;J) 8z —y) - H(y)8%, (x — y),

{G),H{y)} = 0,
{G(x),G(y)} = 0.

So the model, although simplified, is still quite challenging (has structure functions
in the constraint algebra). So in principle we cannot treat it with traditional techniques,
we could use the “uniform discretizations” or the “master constraint” treatment.

But it turns out that for this example one can introduce a trick that allows for
the traditional treatment. Dividing the constraint by E¢ turns the Hamiltonian
constraint Abelian! If one wishes to discretize things to regularize expressions,
one can do it in such a way that the constraints remains first class upon
discretization. Then one can quantize the discrete theory in the traditional
way. But first let us construct a suitable loop representation for these models.



Loop representation for the spherically symmetric case:

Manifold is a line. “Graph” is a set of edgesg = U, ¢i. The only variable that behaves
as a connnection on the line is A,. The variables  and A  are scalars, so in the loop

representation one uses “point holonomies” to represent them.

To avoid presenting too many equations, | will write the states for the “gauge
fixed” case we introduced. There the only variables in the bulk are Ev and 2yK =A_

H = L* (N RBonr, @ndpto) Ty ilKy) = H exp (2ipyy Ky (v))
vreVi(g)
E;l = _'EE%IHIWI': @I{_—A, Eﬁng‘_ﬁ = Z _l'ffm"‘lr"fémnpk(Sm-_ﬂ-{'i']Tg._ﬁ?
e VeV (g)
Volume of an interval | V(I) =47 Y |EZ|(@m + a),
mel

. o We will see that this
VT, ¢ = Z*’-lﬂ'ljh.“iﬁp + ) pranck L. ji- formula has

vel unexpected implications.



We can introduce a basis of loop states |g, i >,

(K7 g, ji) =T, ;[ K],

and the Bohr measure guarantees that,

(g, fllg" Ji') = 04,401 10

“Transverse point holonomies” and triads are well defined operators,

hy(v,p) = exp (ipAy(v)) = exp (2ipy K, (v)),

h‘f?(wi?p) o s Huys ey Hoy TP >y

Z H 'FPIanok(sm n{v)
veV(g)

gs i > .

And one can do the “Thiemann trick” (calculation omitted) for the non-polynomial
portion of the Hamiltonian constraint (as in the full theory and LQC), and that
the inverse of the triad is a bounded operator,

'-,g}n ke )

Py Py
g.fi >= Smn(wy (1o + £ = | = £1%)
En V'/_'FF"Im:u?l-:.i!r Z () ! 2 i 2

veEV(g)

g, > .



With this one can represent the Abelian Hamiltonian constraint in the loop representation.
We start from a classical discretization that is written in terms of quantities that

are easy to promote to operators in the loop representation (i.e. replace connections
by “small holonomies”, etc)

(:ﬁ -l-{’.l):.; F 1 PR
H = “Ep ) 1 — Pe ((r +a)A7) .

1 I + @)’ T, + a)’e 1 - L -
Hf, = p !(( JI[J-E,ﬁ }1 — ( ;EEI“' )g ) —f— ——~ (l[r w n,)*-,m (p;—'l.p‘_,,,_) — (1 + r.a:}fsl:u3 (pflw,,__l))

m—1

It turns out that it is relatively easy to solve the constraint in the connection
representation. One rewrites it as,

EY = (-ff:m + U,)E
mo - 1 — ,
\/1 T .-}-”_ + 1722 Sin-” (2)()/'};_{ m)

And imposing it as a quantum operator leads to states,

And f is an explicit function of
YK ]) elliptic integrals.

m

VK7, 7,0l = C(r,a)exp (

o
FPIan ck



The bottom line is that one recovers the same quantization as Kucha_, one has
a wave function that depends on the mass C(a,t), and imposing the constraint on

the boundary one gets,

C(r,a)= Cyla)exp (—ﬁ)
So one is left with only a function of the mass C,(a) as the wavefunction of the
theory, with no dynamics.

How does the constraint look like in the loop representation? Start from classically
rewriting the constraints T (T + a)e
" \/1 — 4 1 _sin? (2pK))

T i | 4= p=

as O, =1. Then the quantum version of O is,

. _ 1 . N\ Ef
Om = (1 = —"— 4 - sin? (K ——
T +a A2 p? (2 +a)e
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This can be immediately represented in the loop representation as,

¥ & o > 2 a2 £ A
1 — a + 1 .t"*'f;nﬂ.':ufﬂlglmmk U (g ) — P Y CPlanck + 21”fﬂr1ﬁ."'Fjﬁlg'lﬂ,rmlc U (pm + 4p)
Tmt+a  8yp) (x, +a)e " (2 +a)2e?  (z, +a)?e 16+vp

_ I’F’fnﬁfgfilglmwk _ 21”‘ﬂ’1ﬁ-’:falg‘l.-q,r.t‘PI': lI'(Ju'm B 41”) — ‘I’(;I )
(T + a)?e?  (xy, + a)e? 16~p "

Notice the parallels with the expression that arises the Loop Quantum Cosmology
case.

This is suggestive, since it might imply a similar resolution for the Schwarzschild
singularity as one had for the cosmological one. However, detailed calculations
in horizon penetrating coordinates would be needed to confirm this.

The above recursion relation can be explicitly solved and one can show that
the solution is the “loop transform” of the solution we found in the connection
representation,

7 /(pY) X X
W (e ) = f AdK ¥ (K )exp (20K~ (1)) .
0

r identifies super-selection sector.



Use of uniform discretizations:

What if we had not made use of the trick of Abelianizing the constraints? Then
the only approach we know is to use the “uniform discretizations”.

Briefly recalling, the uniform discretizations are defined by the following
canonical transformation between instants n and n+1

Apg = el (A = A, + {A,, H} + = {{4” H),H}+--

Where A is any dynamical .ariable and H is a "Hamiltonian”. It is constructed
as a function of the constraints of the continuum theory. An example could be,

H(g,p) = 1/23i0, 6i(q,p)’

(More generally, any positive definite function of the constraints that vanishes
when the constraints vanish and has non-vanishing second derivatives at the
origin would do) Notice also that parallels arise with the “master constraint
program”.

These discretizations have desirable properties. For instance H is automatically
a constant of the motion. So if we choose initial data such that H<g, such

statement would be preserved upon evolution.



The main challenge is to implement H as a quantum operator and checking that zero
is in the spectrum. One can make use of the ambiguity of discretization to either
have zero in the spectrum or to minimize the eigenvalue of the fundamental state.
We use this as criterion for choosing the best discretization possible.

In this model the best discretization would be the Abelian one we presented. One
could then construct H and show that zero is an eigenvalue. Since the method
coincides with the Dirac method for Abelian constraints, there is no need to do this.

In order to illustrate what is expected to happen in more general models where one
cannot find a vanishing eigenvalue for H, one can construct H for a different
discretization and evaluate its expectation value on the eigenstates for the Abelian
model. One generically gets,

3 = 2n
: € {2 /
(‘I’|H‘H|‘I’) = (4 — + Oy Pla;‘mk + Oy Plar;rk + E (:H— Pliflk,
a a e
n=3

The operator therefore does not have a quantum continuum limit,
e->0, |5,k finite. On the other hand it does have a classical continuum limit,
e->0, IPlanck'>0'



Solving the eigenvalue problem becomes a (hard) problem in quantum mechanics,

akin to those in solid state physics. It is encouraging that there exist established
methods to deal with these problems.
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Variational Monte Carlo

From Wikipedia, the free encyclopedia

Variational Monte Carlo(VMC) is a quantum Monte Carlo method that applies the variational method to approximate the ground state of
the system.

The expectation value necessary can be written in the x representation as
(U(a)|H|V(a)) [ ¥(X,a)’ HOOCo) ix
(¥(a)|¥(a)) TU(X, a)2dX

U(X, a)?
Following the Mante Carlo method for evaluating integrals, we can interpret — [: r! ) — as a probability distribution function, sample
JU(X, a)dX
HY(X,a)
it, and evaluate the energy expectation value E(g) as the average of the local function W and minimize E(g).
L
1

Although an obvious over-kill for the vacuum problem, the complexity of the situation
changes little if one couples gravity to matter.

One could envisage in the near future solving the “quantum Choptuik problem” of
the gravitational collapse of a scalar field or the CGHS black hole using variational

Monte Carlo.



The interior problem:

The interior of Schwarzschild is isometric to a Kantowski-Sachs universe. The
ansatz for the three geometry we considered is general enough to include this
metric, so we can also use it for the interior. The Gauss and diffeomorphism
constraints read as before,

G = P"+ (E*Y

D = Py + E¥Al — (E*) A,.

We now rewrite things in terms of gauge invariant combinations of variables K, and
Kx=(Ax+n’)/y that guarantee that Gauss’ law is satisfied. The diffeo and Hamiltonian
constraint take the form,

D = E"PI{;— (E")K,

E¥ KZE?  ((E*))
H = - — 2K, K BT - —— +
Y o B W MV 2 T
CVIEFE) (B VIETIE)
2(E%)? 2E¢

And are first class. We now fix a gauge (EX)'=0, which in turn determines the
lapse N'=0. One is left with a super-Hamiltonian,

[ E¥ KZE? o
H = [ dzN + 2K, K ,\/|E*| + — — 2yN"E¥K],
2\/|E*| 2\/|E"] 7



And the diffeomorphism constraint becomes E¥K’, = 0 which implies that K is
independent of r and is determined by the ODE, together with the form of N that
preserves that (EX)'=0,

; - 2M
‘ 12N (1+ K2 : : o= — —
K,={K,H}=_ ( *'}, with solution e ¢

2 {

The usual form of the Kantowski-Sachs metric arises with the additional gauge
condition (E¥) =0, which implies the shift is a function of t only yielding an ODE
for the triad with solution,

£ \/t(Qﬂ-f —t)k (E;p)j _ M -

k Gz = Er ; 1.




Starting from a rescaled version of the the Hamiltonian constraint we had,

E 1
H= —= 20|\ K, + =K, FE
21{@+ |E*| a+2 oLy

We proceed to “holonomize” it (it is slightly easier to implement its square),

b

E =10

]
o

4(E*)? sin? (pK,) 1sin(pK,) i 1 P ’
PE 9 p 2sin(pk )

Quantizing, one would have have, for a symmetric factor ordering,

b

¥ ¥

A(K, ) + A(K, ) (E) +B(K,)* (E "“?) 4+ (E "“?) H

(#)

B(f{ﬁ)"?] (K, K,)=0.

|l I

And one can try a solution of the form ¥ = Cexp (_5 (K, K-ﬁ}) ,

72
EP lanck

Assuming (¢ = >, Cr (E%‘Imwk)k one is led to a solution scheme in powers of
Planck’s length. -



To zeroth order, L (OSK,. K.) \2 L (OSIK, K.)\2
A(Kr}“( [afi4. "’}}) —B(H-;}“( [@K‘_ﬁ "’}}) =0

To first order

N B(K,)? 0S(K, K/, 0C,(K,,K,) 0B(K,) 0S(K, K..)
B(K ) S(K,, K,)+ 2 ? i 4 ik £ kel
(o) OK? e, Kop) + Co(K., K,) 0K, oK , * 0K, oK,
FAK,Y PS(K,, K,) e P 0S(K,,K,)0C (K, K,) 0A(K,)dS(K, K,) 0
S OK2 Co(K. K;) 0K, 0K, 0K, oK,

The zeroth order is (the product) of quasilinear equations for S. The first
order is a quasilinear equation for C,. Similar equations arise for the C,'s at higher
orders.

One can solve exactly for S,

k(1 — cos(pK,))

sin(pk, )exp ( Vﬁtﬂmh_l (“_“5 {11”4_ 1"";:] ) )

SK,, K,)=

This technique can be used to provide a zeroth order approximation for the
variational Monte Carlo techniques we mentioned.



It is interesting to study the classical solutions of the action we obtained.
One can see that indeed they are singularity free, but they require careful
tuning of boundary conditions for the tunneling through the singularity to be
symmetric.
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This requires further study, but it might be a sign of the instabilities that have
been observed in the recursion relations that appear in the loop quantization

by Cartin, Khanna, Bojowald, etc.

It would be interesting to connect this quantization with the more traditional
loop approach, Ashtekar & Bojowald, Modesto, etc.



One last intriguing observation: holography?!

As in LQC, one expects the value of the parameter of the “transverse point

holonomy”, p, to take a finite minimum value, ho (v, p) = exp (ipAo(v)) = exp (2ipy K, (v))

If one acts with this holonomy on a spin network state, one adds an element
of volume, AV =4nrpy(x, + a)l2Planck Ng, Lloyd, etc

Therefore for any model based on this kinematical structure, the volume grows
in discrete increments that take as minimum value the element of volume
mentioned. This statement is independent of the details of the dynamics of the
model considered (e.g. it would survive coupling the theory to a scalar field, for
instance).

If one considers the volume of a shell of width Ax asymptotically one has N
elements of volume per shell,

2 2
=V=x Azx , so for a finite shell sz2 ¢
AV 2ypl Planck I Planck

Where we used the usual valuesy = ¢, /(m~/3) withc, ~1and p =+/3/2

Bekenstein bound ?

Notice that it makes sense that one obtains the (spatial) Bekenstein bound in
spherical symmetry, since it is known not to hold if one is in a more general
situation.



Summary:

One can study spherically symmetric space-times using loop
quantum gravity.

One needs to use special features of spherical symmetry to apply
the traditional Dirac quantization technique.

The setup is ready, we need to extend it to horizon penetrating
coordinates to make better statements about the singularity.

Without using special tricks the problem is hard, and it offers a
promising arena to test new ideas for handling the problem of
dynamics in canonical quantum gravity, like the “uniform
discretization” or the “master constraint” approaches.

Holography and the Bekenstein bound can be connected
with the basic elements of loop quantum gravity, irrespective of the
details of the dynamics.



