Imperial College London

EU ENRAGE Network Random Geometries

Can the supercomputer provide new insights into quantum gravity?

David Rideout

(in collaboration with S. Zohren; S. Major, S. Surya; J. Brunnemann; Cactus development team)

> Theoretical Physics Group Imperial College London

> > Loops '07, 30 June 2007

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

1 What is Cactus?

- 2 Entropy Bounds from Discrete Gravity
- 3 Emergence of Continuum Topology
- 4 Spectrum of Spatial Volume in LQG
- 5 Conclusions & Outlook

◆□ > ◆□ > ◆目 > ◆目 > □ ● ○ ○ ○

1 What is Cactus?

2 Entropy Bounds from Discrete Gravity

- 3 Emergence of Continuum Topology
- 4 Spectrum of Spatial Volume in LQG
- 5 Conclusions & Outlook

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

1 What is Cactus?

- 2 Entropy Bounds from Discrete Gravity
- 3 Emergence of Continuum Topology
- 4 Spectrum of Spatial Volume in LQG
- 5 Conclusions & Outlook

◆□ > ◆□ > ◆目 > ◆目 > □ ● ○ ○ ○

1 What is Cactus?

- 2 Entropy Bounds from Discrete Gravity
- 3 Emergence of Continuum Topology
- 4 Spectrum of Spatial Volume in LQG

◆□> ◆□> ◆目> ◆目> 「目」 のへで

1 What is Cactus?

- 2 Entropy Bounds from Discrete Gravity
- 3 Emergence of Continuum Topology
- 4 Spectrum of Spatial Volume in LQG

◆□> ◆□> ◆目> ◆目> 「目」 のへで

Outline

1 What is Cactus?

- 2 Entropy Bounds from Discrete Gravity
 - Review of Entropy Bounds
 - Causal Sets: Fundamentally Discrete Gravity
 - Proposal for Entropy Bound from Discrete Gravity
 - Results for Flat Balls
 - Spherically Symmetric Hyperboloidal Slices
- 3 Emergence of Continuum Topology
 - Emergence of Spatial Structures
 - Computing Spatial Homology
 - Results from Simulations
- 4 Spectrum of Spatial Volume in LQG
 - Kinematical Hilbert Space
 - Structure of Volume Operator
 - Numerical Results
- 5 Conclusions & Outlook

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

The Cactus Computational Framework

SCIENCE

PHYSICS

CACTUS is a generic, freely available, modular, portable and manageable environment for collaboratively developing parallel, highperformance multi-dimensional simulations

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence o Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Cactus Computational Framework

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in .QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

- Began as open source environment for numerical relativity
- Properly designed abstractions & interfaces
- Physics code unchanged as technologies change underneath
- Collaboration: passing parameter files, web interface to running codes
- Cooperation: inherit developments of others, including computer scientists
- Community: build up community code base for addressing difficult problems in QG
 - abstract 'ugly CS issues' away from physics

The Cactus Computational Framework

What features are useful for quantum gravity computations?

- Not just for solving PDEs on a fixed lattice...
- Modularity! ~→ collaboration & community building
 - Language independence
 - Separate computational details from physics
 - Code sharing \rightarrow develop community code base
 - Leverage developments of others, e.g. students, no continual reinventing the wheel
 - Pass around parameter files
 - Works well for numerical relativity, causal set QG: Do same for LQG, spin foams, CDTs?
- Portability
- Automatic parallelism
- Automatic detection and linking to numerical libraries

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Outline

1 What is Cactus?

- 2 Entropy Bounds from Discrete Gravity
 - Review of Entropy Bounds
 - Causal Sets: Fundamentally Discrete Gravity
 - Proposal for Entropy Bound from Discrete Gravity
 - Results for Flat Balls
 - Spherically Symmetric Hyperboloidal Slices
- 3 Emergence of Continuum Topology
 - Emergence of Spatial Structures
 - Computing Spatial Homology
 - Results from Simulations
- 4 Spectrum of Spatial Volume in LQG
 - Kinematical Hilbert Space
 - Structure of Volume Operator
 - Numerical Results
- 5 Conclusions & Outlook

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds

Proposal Results for Flat Ba

Curved surfaces

Emergence of Continuum Fopology

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Susskind Process

~ Susskind entropy bound

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity

Entropy Bounds Causal Sets Proposal Results for Flat Balls

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Covariant Entropy Bound

- Consider any spacelike co-dimension 2 surface *B*, of area *A*
- Consider congruence of null geodesics emanating from and orthogonal to B, which is everywhere non-expanding: a "light sheet"
- Covariant bound: entropy on light sheet $\leq \frac{A}{4}$

No known violations

Can recover other bounds under suitable conditions

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravitv

Entropy Bounds

Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

"Holographic Principle"

→ "holographic principle":

 \sim Region with boundary of area A described by no more than $\frac{A}{4}$ degrees of freedom

 \rightarrow \exists universal relation between geometry and entropy/information

Can we see this emerge from discrete quantum gravity?

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity

Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Causal Sets: Fundamentally Discrete Gravity

Based upon two main observations:

- Need for discreteness
- Richness of causal structure

Properties of discrete causal order \prec :

- irreflexive ($x \not\prec x$)
- transitive $(x \prec y \text{ and } y \prec z \Rightarrow x \prec z)$

locally finite (
$$|\{y|x \prec y \prec z| < \infty$$
)

Some definitions:

- maximal elements
- (inextendible) antichain

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Fopology Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Spacetime Manifold as Emergent Structure

Embedding – order preserving map $\phi : C \rightarrow (M, g)$

 $x \prec y \Leftrightarrow \phi(x) \prec \phi(y) \ \forall x, y \in \mathcal{C}$

- Faithful embedding ('Sprinkling'):
 - "preserves number volume correspondence"
 - scale of geometry ≫ mean spacing of emchange bedded points
- \exists faithful embedding \Rightarrow (*M*, *g*) approximates *C*

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curret surfaces

Emergence o Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

An entropy bound from causal sets

• Spherically symmetric spacelike hypersurface Σ of finite volume in strongly causal spacetime of dimension d_{Q} -replacements • Causet C faithfully embedded into $D^{+}(\Sigma)$. Σ

Proposal:

Maximum entropy associated to Σ given by |max(C)|

Claim:

Leads to Susskind's entropy bound in continuum limit

$$S_{\max} = \frac{A}{4}$$

QG Computing

D. Rideout

Cactus

 $H^+(\Sigma)$

 $\mathcal{B}(\Sigma)$

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Besuite for Elat Balle

Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Calculate number of maximal elements

Analytically: Use properties of Poisson distribution $\ln M^d$

$$< n > = \rho \int_{D^+(S)} dx^d exp\left(J^+(x) \cap D^+(S)\right)$$

Numerically:

Use CausalSets toolkit within Cactus framework:

- Sprinkle via Poisson distribition
- Deduce order relations
- Count maximal elements

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Ball in 2+1 dimensional Minkowski space

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls

Curved surfaces

Emergence o Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Ball in 3+1 dimensional Minkowski space

Number of maximal elements:

$$\langle n \rangle = N_{3}F_{3}\left(\frac{1}{2}, 1, 1; \frac{5}{4}, \frac{7}{4}, 2; -\frac{N}{8}\right)$$

Asymptotic behavior $N \gg 1$: $\langle n \rangle = 3\sqrt{2\pi N}$

1

Define Poisson embedding at unit density in fundamental units:

$$o = \frac{N}{V} = \frac{1}{l_f^4} \Rightarrow N = \frac{V}{l_f^4}$$

Volume of cone of radius R: $V = \frac{\pi R^4}{3} \Rightarrow \langle n \rangle = \frac{\sqrt{6}}{l_f^2} \frac{4\pi R^2}{4}$ Choose a fundamental scale $l_f = \sqrt[4]{6}l_p$ Then we have: $S_{max} = \frac{4\pi R^2}{4} = \frac{A}{4}$

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくべ

Ball in 3+1 dimensional Minkowski space

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ●

QG Computing

D. Rideout

Spherically Symmetric Hyperboloidal Slices Same boundary sphere

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls

Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Spherically Symmetric Hyperboloidal Slices Same boundary sphere

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ●

Spherically Symmetric Hyperboloidal Slices Same boundary sphere

QG Computing

D. Rideout

Cactus

Outline

- 1 What is Cactus
 - 2 Entropy Bounds from Discrete Gravity
 - Review of Entropy Bounds
 - Causal Sets: Fundamentally Discrete Gravity
 - Proposal for Entropy Bound from Discrete Gravity
 - Results for Flat Balls
 - Spherically Symmetric Hyperboloidal Slices
- 3 Emergence of Continuum Topology
 - Emergence of Spatial Structures
 - Computing Spatial Homology
 - Results from Simulations
- 4 Spectrum of Spatial Volume in LQG
 - Kinematical Hilbert Space
 - Structure of Volume Operator
 - Numerical Results
- 5 Conclusions & Outlook

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in -QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

- Temporal notions, such as proper time, are easy to extract from causet
- Spatial notions difficult, because of Lorentz invariance of lattice – has infinite 'valence' (nearest neighbors)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくべ

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topoloay

Emergence of Spatial Structures

Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

- Temporal notions, such as proper time, are easy to extract from causet
- Spatial notions difficult, because of Lorentz invariance of lattice – has infinite 'valence' (nearest neighbors)

■ Resolution → Make local selection of frame → inextendible antichain

'Edgeless' spacelike hypersurface: Every element related to some element of inextendible antichain

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology

Emergence of Spatial Structures

Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

- Resolution ~> Make local selection of frame --> inextendible antichain
 - 'Edgeless' spacelike hypersurface:

Every element related to some element of inextendible antichain

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology

Emergence of Spatial Structures

Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ●

512 Element Causet Faithfully Embedded into SxI 0.9 0.8 0.7 0.6 ime 0.5 0.4 0.3 0.2 0.1 0 ٥ 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 space

- Cauchy surface, but e.g. does not possess inital data...
 Only intrinsic information is cardinality
- Can we use neighboring causal structure to deduce which elements are spatial nearest neighbors?

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology

Emergence of Spatial Structures

Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

- Cauchy surface, but e.g. does not possess initial data...
 Only intrinsic information is cardinality
- Can we use neighboring causal structure to deduce which elements are spatial nearest neighbors?

'Thickened antichain'

 $A_v = \left\{ x | x \in \mathsf{fut}(A) \cup A \text{ and } |\mathsf{past}(x) \setminus \mathsf{past}(A)| \le v \right\},\$

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology

Emergence of Spatial Structures

Homolog Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ●

0

0.2

■ 'Thickened antichain' $A_v = \{x | x \in fut(A) \cup A \text{ and } |past(x) \setminus past(A)| \le v\},\$

Thickened Antichain in SxI Causal Set

0.9 0.8 0.7 0.6 ime 0.5 0.4 0.3 0.2 0.1

04

space

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology

Emergence of Spatial Structures

Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions 8 Outlook

0.8

3

(日)

0.6

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology

Emergence of Spatial Structures

Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Homology from Thickened Antichain

Can we deduce the continuum homology from the thickened antichain?

- maximal elements of thickened antichains 'cast shadows' on minimal elements
- provides cover of space
- nerve construction of simplicial complex → homology

QG Computing

D Rideout

Homology from Thickened Antichain

Nerve: Assign vertex to each set U_i in cover q sets in cover form a q - 1-simplex if they have non-vanishing intersection

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures

Homology

E

Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Simplicial homology

- $C_k = \text{vector space with} \\ \text{generator for each } k \text{-simplex} \\ \alpha$
- α_i = k 1-simplex obtained by deleting *i*th vertex of α
- boundary map $\partial_k : C_k \to C_{k-1} = \sum_{i=0}^k (-)^i \alpha_i$
- $\bullet \ \partial^2 = 0$
- $Z_k = \text{Ker}(\partial_k) = k$ -cycles
- $B_k = \text{Im}(\partial_{k+1}) = k$ -boundaries
- $\blacksquare H_k = Z_k/B_k$
- Betti numbers $b_k = \dim(H_k)$

Cover and thus homology will vary with thickness v

G

For example:

COVER

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures

Homology

Е

D

Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

G

Δ

 $b_0 = 1$ $b_1 = 1$ $b_i = 0$ i > 1

NERVE

C

Current Status: Theorem

- Causet C in globally hyperbolic spacetime with compact spatial slice Σ
- If \exists inextendible antichain A in C in Σ with appropriate separation of scales, then ...
- A thickened to vol n in this range has homology of space via nerve
- Can likely smooth out bad antichain to get good one, via smoothing (Ricci flow?)
- \Rightarrow Conditions on theorem minor. We explore this numerically.

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology

Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results
$S \times I$

N = 2000

'cosmic scale' at v = 433

 $T^2 \times I$

QG Computing

D. Rideout

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

$T^2 \times I$ 'Kaluza Klein'

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

QG Computing

Transitive Percolation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

QG Computing

Outline

- 1 What is Cactus
 - 2 Entropy Bounds from Discrete Gravity
 - Review of Entropy Bounds
 - Causal Sets: Fundamentally Discrete Gravity
 - Proposal for Entropy Bound from Discrete Gravity
 - Results for Flat Balls
 - Spherically Symmetric Hyperboloidal Slices
- 3 Emergence of Continuum Topology
 - Emergence of Spatial Structures
 - Computing Spatial Homology
 - Results from Simulations
- 4 Spectrum of Spatial Volume in LQG
 - Kinematical Hilbert Space
 - Structure of Volume Operator
 - Numerical Results

5 Conclusions & Outlook

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

LQG Kinematical Hilbert Space

• Kinematical Hilbert space $\mathcal{H}_{kin,\gamma} = L^2(\bar{\mathcal{A}}_{\gamma}, d\mu_{\gamma})$

Spin Network Functions

$$T_{\gamma \vec{j} \vec{m} \vec{n}}(A) := \prod_{e \in E(\gamma)} \sqrt{2j_e + 1} [\pi_{j_e}(h(A))]_{m_e n_e}$$

Basis of $\mathcal{H}_{kin,\gamma}$ (Peter & Weyl): $\sqrt{2j+1} [\pi_j(h_e)]_{m-n} \sim \langle h_e \mid j \mid m_e; n_e \rangle \leftarrow \mathsf{SN}$

• Can replace
$$-\frac{\mathrm{i}}{2}E_{j}\mid j\;m_{e}$$
 ; $n_{e}
ightarrow = J_{j}\mid j\;m_{e}$; $n_{e}
ightarrow$

Action of operators only containing E_i can be expressed as action of usual angular momentum operators acting on a spin system

Volume Operator: Structure

► Classical Volume Expression

$$V(R) = \int_{R} d^{3}x \sqrt{\det q}(x) = \int_{R} d^{3}x \sqrt{|\det E|}(x)$$
$$= \int_{R} d^{3}x \sqrt{|\frac{1}{3!}} \varepsilon^{ijk} \varepsilon_{abc} E^{a}_{i}(x) E^{b}_{j}(x) E^{c}_{k}(x)|$$

Structure of the volume operator

$$\hat{V}_{\gamma}(R) \; f_{\gamma} \propto \ell_P^3 \sum_{v \in V(\gamma)} \sqrt{ \left| \sum_{IJK} - \epsilon(I,J,K) \; \hat{q}_{IJK}
ight|} \; f_{\gamma}$$

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ・ ○ へ (?)

Volume Operator: Structure

► Classical Volume Expression

$$V(R) = \int_{R} d^{3}x \sqrt{\det q}(x) = \int_{R} d^{3}x \sqrt{|\det E|}(x)$$
$$= \int_{R} d^{3}x \sqrt{|\frac{1}{3!}\varepsilon^{ijk}\varepsilon_{abc}E_{i}^{a}(x)E_{j}^{b}(x)E_{k}^{c}(x)|}$$

Structure of the volume operator

$$\hat{V}_{\gamma}(R) f_{\gamma} \propto \ell_P^3 \sum_{v \in V(\gamma)} \sqrt{\left|\sum_{IJK} \epsilon(I,J,K) \hat{q}_{IJK}\right|} f_{\gamma}$$

graph structure

$$\epsilon(I, J, K) = \operatorname{sgn}(\operatorname{det}(\dot{e}_I, \dot{e}_J, \dot{e}_K)(v))$$

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● □ ● ●

Volume Operator: Structure

► Classical Volume Expression

$$V(R) = \int_{R} d^{3}x \sqrt{\det q}(x) = \int_{R} d^{3}x \sqrt{|\det E|}(x)$$
$$= \int_{R} d^{3}x \sqrt{|\frac{1}{3!}} \varepsilon^{ijk} \varepsilon_{abc} E^{a}_{i}(x) E^{b}_{j}(x) E^{c}_{k}(x)|$$

► Structure of the volume operator

$$\hat{V}_{\gamma}(R) f_{\gamma} \propto \ell_P^3 \sum_{v \in V(\gamma)} \sqrt{\left|\sum_{IJK} \epsilon(I,J,K) \hat{q}_{IJK}\right|} f_{\gamma}$$

$$\hat{q}_{IJK} := \left[\underbrace{(J_{IJ})^2}_{(J_I+J_J)^2}, (J_{JK})^2 \right] \propto \varepsilon_{ijk} J_I^i J_J^j J_K^k$$

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology Emergence of Spatial Structures

Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology Emergence of Spatia Structures

Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Tensor Basis

$$T_{vec{j}ec{m}ec{n}}=igotimes_{k=1}^{N}\mid j_{k}\,m_{k}$$
 ; $n_{k}>0$

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

・ロト・(日)・(日)・(日)・(日)・

*j*7

jN

 j_1

12

*j*3

*j*4

ments

Decomposition

$$\pi_{j_1} \otimes \pi_{j_2} = \bigoplus_{j_{12} = |j_1 - j_2|}^{j_1 + j_2} \pi_{j_{12}}$$

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tensor Basis jN j_1 ments j_1 PSfrag replacements j2 jз j4 j3 iN *j*4 $T_{v\,\vec{i}\vec{m}\vec{n}} =$ $\bigotimes | j_k m_k; n_k >$ Recoupling Basis PSfrag replacements Decomposition $j_1 + j_2$ $\pi_{j_1} \otimes \pi_{j_2} =$ a_2 Ð $\pi_{j_{12}}$ a_3 Structure of Volume $i_{12} = |i_1 - i_2|$ Operator jз 18 $T_{v\ \vec{I}\ J\ M\ \vec{j}\ \vec{n}} = |\ \vec{a}\ J\ M\ ;\ \vec{j}\ \vec{n}\ >$ ・ ロット 本語 マネ 日マ キョン

QG Computing

D. Rideout

Edge Spins & Recoupling Theory

$$< \vec{a} | \hat{q}_{IJK} | \vec{a}' > = \frac{1}{4} (-1)^{j_K + j_I + a_{I-1} + a_K} (-1)^{a_I - a_I'} (-1)^{\sum_{n=I+1}^{J-1} j_n} (-1)^{-\sum_{p=J+1}^{K-1} j_p} \times \\ \times X(j_I, j_J)^{\frac{1}{2}} X(j_J, j_K)^{\frac{1}{2}} \sqrt{(2a_I + 1)(2a_I' + 1)} \sqrt{(2a_J + 1)(2a_J' + 1)} \times \\ \times \left\{ \frac{a_{I-1}}{1} \frac{j_I}{a_I'} \frac{a_I}{j_I} \right\} \left[\prod_{n=I+1}^{J-1} \sqrt{(2a_n' + 1)(2a_n + 1)} (-1)^{a_{n-1}' + a_{n-1} + 1} \left\{ \frac{j_n}{1} \frac{a_{n-1}'}{a_n} \frac{a_n'}{a_{n-1}} \right\} \right] \times \\ \times \left[\prod_{n=J+1}^{K-1} \sqrt{(2a_n' + 1)(2a_n + 1)} (-1)^{a_{n-1}' + a_{n-1} + 1} \left\{ \frac{j_n}{1} \frac{a_{n-1}'}{a_{n-1}} \frac{a_n'}{a_{n-1}} \right\} \right] \left\{ \frac{a_K}{1} \frac{j_K}{a_{K-1}'} \frac{a_{K-1}'}{j_K} \right\} \\ \times \left[(-1)^{a_J' + a_{J-1}'} \left\{ \frac{a_J}{1} \frac{j_J}{a_{J-1}} \frac{a_{J-1}'}{j_J} \right\} \left\{ \frac{a_{J-1}'}{1} \frac{j_J}{a_J} \frac{a_J'}{j_J} \right\} \\ - (-1)^{a_J + a_{J-1}} \left\{ \frac{a_J'}{1} \frac{j_J}{a_{J-1}'} \frac{a_{J-1}'}{j_J} \right\} \left\{ \frac{a_{J-1} j_J a_J'}{1} \frac{a_J j_J}{a_J} \frac{a_J'}{j_J} \right\} \\ \times \prod_{n=2}^{I-1} \delta_{a_n a_n'} \prod_{n=K}^{N} \delta_{a_n a_n'} \\ \text{where } X(a, b) = 2a(2a+1)(2a+2)2b(2b+1)(2b+2)$$

• N edges at vertex v

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology Emergence of Spatial Structures Homology

Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- N edges at vertex v
- with tangent vectors

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology Emergence of Spatial Structures

Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- N edges at vertex v
- with tangent vectors

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology Emergence of Spatial Structures

Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ●

- N edges at vertex v
- with tangent vectors
- edge triple e_1, e_3, e_5

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ●

- N edges at vertex v
- with tangent vectors
- edge triple e_1, e_3, e_5

 $\epsilon(1\,3\,5) := \operatorname{sgn}(\operatorname{det}(\vec{\dot{e}}_1\,,\,\vec{\dot{e}}_3\,,\,\vec{\dot{e}}_5))$

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Fopology Emergence of Spatial

Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

- N edges at vertex v
- with tangent vectors
- edge triple e_1, e_3, e_5

 $\epsilon(1\,3\,5) := \operatorname{sgn}(\operatorname{det}(\vec{\dot{e}}_1\,,\,\vec{\dot{e}}_3\,,\,\vec{\dot{e}}_5))$

• General: $\epsilon(L M N) := \operatorname{sgn}(\operatorname{det}(\vec{e}_L, \vec{e}_M, \vec{e}_N))$

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- N edges at vertex v
- with tangent vectors
- edge triple e_1, e_3, e_5

 $\epsilon(1\,3\,5) := \operatorname{sgn}(\operatorname{det}(\vec{\dot{e}}_1\,,\,\vec{\dot{e}}_3\,,\,\vec{\dot{e}}_5))$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

- General: $\epsilon(L \ M \ N) := \operatorname{sgn}(\operatorname{det}(\vec{\dot{e}}_L \ , \ \vec{\dot{e}}_M \ , \ \vec{\dot{e}}_N))$
- System of $\binom{N}{3}$ inequalities (assume $\epsilon(LMN) = \pm 1$):

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

- N edges at vertex v
- with tangent vectors
- edge triple e_1, e_3, e_5

 $\epsilon(1\,3\,5) := \operatorname{sgn}(\operatorname{det}(\vec{\dot{e}}_1\,,\,\vec{\dot{e}}_3\,,\,\vec{\dot{e}}_5))$

• General: $\epsilon(L \ M \ N) := \operatorname{sgn}(\operatorname{det}(\vec{e}_L, \vec{e}_M, \vec{e}_N))$ • System of $\binom{N}{3}$ inequalities (assume $\epsilon(LMN) = \pm 1$):

$$0 < \epsilon (L \; M \; N) \; \cdot \; \mathsf{det}(ec{e}_L \;, \; ec{e}_M \;, \; ec{e}_N))$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

- N edges at vertex v
- with tangent vectors
- edge triple e_1, e_3, e_5

 $\epsilon(1\,3\,5) := \operatorname{sgn}(\operatorname{det}(\vec{\dot{e}}_1\,,\,\vec{\dot{e}}_3\,,\,\vec{\dot{e}}_5))$

• General: $\epsilon(L \ M \ N) := \operatorname{sgn}(\operatorname{det}(\vec{e}_L, \vec{e}_M, \vec{e}_N))$ • System of $\binom{N}{3}$ inequalities (assume $\epsilon(LMN) = \pm 1$): $0 < \epsilon(L \ M \ N) \cdot \operatorname{det}(\vec{e}_L, \vec{e}_M, \vec{e}_N))$

What sign combinations will occur at all?

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space

Structure of Volume Operator

Gauge Invariance: $J_N \stackrel{!}{=} -\sum_{L=1}^{N-1} J_L$

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved Europeon

Emergence of Continuum Topology Emergence of Spatia

Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

・ロト・西・・田・・田・・日・

Gauge Invariance: $J_N \stackrel{!}{=} -\sum_{L=1}^{N-1} J_L$

This implies for \hat{V}_{γ} acting on gauge invariant spin networks:

$$\hat{V}_{\gamma} \propto \sqrt{\Big|\sum_{I,J,K < N} \left[\epsilon(IJK) - \epsilon(JKN) + \epsilon(IKN) - \epsilon(IJN)\right] \hat{q}_{IJK}\Big|}$$

=: $\sqrt{\Big|\sum_{I,J,K < N} \sigma(IJK) \hat{q}_{IJK}\Big|}$ where $-4 \le \sigma(IJK) \le 4$

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Gauge Invariance: $J_N \stackrel{!}{=} -\sum_{L=1}^{N-1} J_L$

This implies for \hat{V}_{γ} acting on gauge invariant spin networks:

$$\hat{V}_{\gamma} \propto \sqrt{\Big|\sum_{I,J,K < N} \left[\epsilon(IJK) - \epsilon(JKN) + \epsilon(IKN) - \epsilon(IJN)\right] \hat{q}_{IJK}\Big|}$$

=: $\sqrt{\Big|\sum_{I,J,K < N} \sigma(IJK) \hat{q}_{IJK}\Big|}$ where $-4 \le \sigma(IJK) \le 4$

We have a sum of hermitian matrices with varying prefactors. What does that imply?

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Gauge Invariance: $J_N \stackrel{!}{=} -\sum_{L=1}^{N-1} J_L$

This implies for \hat{V}_{γ} acting on gauge invariant spin networks:

$$\hat{V}_{\gamma} \propto \sqrt{\Big|\sum_{I,J,K < N} \left[\epsilon(IJK) - \epsilon(JKN) + \epsilon(IKN) - \epsilon(IJN)\right] \hat{q}_{IJK}\Big|}$$

=: $\sqrt{\Big|\sum_{I,J,K < N} \sigma(IJK) \hat{q}_{IJK}\Big|}$ where $-4 \le \sigma(IJK) \le 4$

- We have a sum of hermitian matrices with varying prefactors. What does that imply?
 - ? What sign configurations can be realized at all?

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Fopology Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Gauge Invariance: $J_N \stackrel{!}{=} -\sum_{L=1}^{N-1} J_L$

This implies for \hat{V}_{γ} acting on gauge invariant spin networks:

$$\hat{V}_{\gamma} \propto \sqrt{\Big|\sum_{I,J,K < N} \left[\epsilon(IJK) - \epsilon(JKN) + \epsilon(IKN) - \epsilon(IJN)\right] \hat{q}_{IJK}\Big|}$$

=: $\sqrt{\Big|\sum_{I,J,K < N} \sigma(IJK) \hat{q}_{IJK}\Big|}$ where $-4 \le \sigma(IJK) \le 4$

- We have a sum of hermitian matrices with varying prefactors. What does that imply?
 - ? What sign configurations can be realized at all?
 - ? What consequences does gauge invariance have?

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Fopology Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Gauge Invariance: $J_N \stackrel{!}{=} -\sum_{L=1}^{N-1} J_L$

This implies for \hat{V}_{γ} acting on gauge invariant spin networks:

$$\begin{split} \hat{V}_{\gamma} \propto \sqrt{\Big|\sum_{I,J,K < N} \left[\epsilon(IJK) - \epsilon(JKN) + \epsilon(IKN) - \epsilon(IJN)\right] \hat{q}_{IJK}} \\ =: \sqrt{\Big|\sum_{I,J,K < N} \sigma(IJK) \hat{q}_{IJK}\Big|} \quad \text{where } -4 \leq \sigma(IJK) \leq 4 \end{split}$$

We have a sum of hermitian matrices with varying prefactors. What does that imply?

- ? What sign configurations can be realized at all?
- ? What consequences does gauge invariance have?

 \rightsquigarrow Contact: recoupling of spins \leftrightarrow properties of space

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Fopology Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Gauge Invariance: $J_N \stackrel{!}{=} -\sum_{L=1}^{N-1} J_L$

This implies for \hat{V}_{γ} acting on gauge invariant spin networks:

$$\begin{split} \hat{V}_{\gamma} \propto \sqrt{\Big| \sum_{I,J,K < N} \left[\epsilon(IJK) - \epsilon(JKN) + \epsilon(IKN) - \epsilon(IJN) \right] \hat{q}_{IJK} \Big|} \\ =: \sqrt{\Big| \sum_{I,J,K < N} \sigma(IJK) \hat{q}_{IJK} \Big|} \quad \text{where } -4 \le \sigma(IJK) \le 4 \end{split}$$

Ν	$\binom{N}{3}$	$N_{\vec{\epsilon}}^{(max)}$	$N_{\vec{\epsilon}}$	$\frac{N_{\vec{\epsilon}}}{N_{\vec{\epsilon}}^{(max)}}$	$N_{\vec{\sigma}}$	$N_{\vec{\sigma}=0}$
4	4	16	16	1	5	6
5	10	1024	384	0.375	171	24
6	20	2 ²⁰	23,808	0.023	8,207	120
7	35	2 ³⁵	2,324,832	$6.766 \cdot 10^{-5}$	1,912,373	108

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Gauge Invariance: $J_N \stackrel{!}{=} -\sum_{L=1}^{N-1} J_L$

5

6

10

20

1024

 2^{20}

This implies for \hat{V}_{γ} acting on gauge invariant spin networks:

$$\hat{V}_{\gamma} \propto \sqrt{\left| \sum_{I,J,K < N} \left[\epsilon(IJK) - \epsilon(JKN) + \epsilon(IKN) - \epsilon(IJN) \right] \hat{q}_{IJK} \right| }$$

$$=: \sqrt{\left| \sum_{I,J,K < N} \sigma(IJK) \hat{q}_{IJK} \right| } \quad \text{where} \quad -4 \le \sigma(IJK) \le 4$$

$$\boxed{\frac{\mathsf{N}\left(\frac{N}{3}\right) |N_{\vec{\epsilon}}^{(max)}| \quad N_{\vec{\epsilon}} \quad \frac{N_{\vec{\epsilon}}}{N_{\vec{\epsilon}}^{(max)}} \quad N_{\vec{\sigma}} \quad N_{\vec{\sigma}=0} }$$

Zero Volume states \rightarrow property independent from spins

0.375

0.023

384

23,808

171

8.207

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum Topology Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space

Structure of Volume Operator

Numerical Results

Conclusions & Outlook

24

120

► Largest Eigenvalue

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$\#\sigma$	$\sigma(123)$	$\sigma(124)$	$\sigma(134)$	σ (234)			
109	-2	2	2	-2			
110	2	-2	-2	2			
111–114 have same absolute values							
115	-4	-4	-2	0			
119	0	-2	-2	2			
120	0	2	2	-2			
125	-2	4	2	0			
129	-2	0	2	-2			
135	-4	-2	-2	0			
118	-2	2	0	-2			
170	2	0	0	0			

► Largest Eigenvalue: σ -dependence

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

► Smallest Eigenvalue

Smallest Eigenvalue: σ -dependence

$\#\sigma$	<i>σ</i> (123)	<i>σ</i> (124)	$\sigma(134)$	<i>σ</i> (234)				
0	-2	-2	-4	-4				
1–3 have same absolute values								
4	0	-2	4	4				
8	-2	0	4	4				
12	-2	4	2	-4				
16	0	-4	2	4				
20	-4	2	2	-4				
24	-2	-4	0	4				
28	-4	0	2	-4				
32	0	-2	-2	4				
36	-4	2	0	-4				

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●
► Histograms for each sigma config

► Histograms for each sigma config

5-vertex; sigmas = -2 -2 0 -4

► Histograms for each sigma config

► Histograms for each sigma config

- ► Histograms for each sigma config
- Histograms for all sigma configs together

▲口▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 … 釣A@

▶ Cumlative histogram for each j_{max}

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

▶ Cumlative histogram for each j_{max}

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

▶ Cumlative histogram for each j_{max}

nts

Expand region with $\lambda < 11$

11

◆□> ◆□> ◆□> ◆□> ◆□> ● のへの

▶ Cumlative histogram for each j_{max} — for $\lambda < 11$

► Largest Eigenvalue

nts

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

► Smallest Eigenvalue

nts

・ロト ・四ト ・ヨト ・ヨー うへぐ

▶ Cumlative histogram for each j_{max}

Outline

- 1 What is Cactus
 - 2 Entropy Bounds from Discrete Gravity
 - Review of Entropy Bounds
 - Causal Sets: Fundamentally Discrete Gravity
 - Proposal for Entropy Bound from Discrete Gravity
 - Results for Flat Balls
 - Spherically Symmetric Hyperboloidal Slices
- 3 Emergence of Continuum Topology
 - Emergence of Spatial Structures
 - Computing Spatial Homology
 - Results from Simulations
- 4 Spectrum of Spatial Volume in LQG
 - Kinematical Hilbert Space
 - Structure of Volume Operator
 - Numerical Results

5 Conclusions & Outlook

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in _QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

Entropy Bounds from Discrete Gravity:

- Discrete QG may lead to explanation for origin of entropy bounds
- Susskind bound may arise via counting maximal elements

QG Computing

D. Rideout

Cactus

Entropy Bound from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Counced eutropes

Emergence of Continuum Topology

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

▲□▶▲□▶▲□▶▲□▶ □□ - つへぐ

Entropy Bounds from Discrete Gravity:

- Discrete QG may lead to explanation for origin of entropy bounds
- Susskind bound may arise via counting maximal elements

Emergence of Continuum Topology:

- Can extract spatial homology from causal set useful tool for identifying 'manifoldlike' orders
- —→ Build suite of tools to extract macroscopic properties

QG Computing

D. Rideout

Cactus

Entropy Bounds from Discrete Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in LQG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Entropy Bounds from Discrete Gravity:

- Discrete QG may lead to explanation for origin of entropy bounds
- Susskind bound may arise via counting maximal elements

Emergence of Continuum Topology:

- Can extract spatial homology from causal set useful tool for identifying 'manifoldlike' orders
- → Build suite of tools to extract macroscopic properties

Spectrum of Spatial Volume in LQG:

- $\blacksquare \text{ Important interplay: graph embedding} \longleftrightarrow \text{spin recoupling}$
- Volume operator accessible to full computational analysis → Start to performing computations in *full* Loop Quantum Gravity

QG Computing

D. Rideout

Cactus

Entropy Bounds Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in .QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook

Entropy Bounds from Discrete Gravity:

- Discrete QG may lead to explanation for origin of entropy bounds
- Susskind bound may arise via counting maximal elements

Emergence of Continuum Topology:

- Can extract spatial homology from causal set useful tool for identifying 'manifoldlike' orders
- ----> Build suite of tools to extract macroscopic properties

Spectrum of Spatial Volume in LQG:

- Important interplay: graph embedding ←→ spin recoupling
- Spatial discreteness of LQG not completely decided:

 ∄ smallest non-zero eigenvalue
- Volume operator accessible to full computational analysis → Start to performing computations in *full* Loop Quantum Gravity

QG Supercomputing & Cactus:

- Numerical computing useful for gaining insight into QG
- Cactus is excellent tool to facilitate this
- Develop community code base to address problems in QG

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● ● ●

QG Computing

D. Rideout

Cactus

Entropy Bounds Gravity Entropy Bounds Causal Sets Proposal Results for Flat Balls Curved surfaces

Emergence of Continuum

Emergence of Spatial Structures Homology Results

Spectrum of Spatial Volume in .QG

Kinematical Hilbert Space Structure of Volume Operator Numerical Results

Conclusions & Outlook