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The Cactus Computational Framework

Began as open source environment for numerical relativity
Properly designed abstractions & interfaces
Physics code unchanged as technologies change
underneath

Collaboration: passing parameter files, web interface to
running codes
Cooperation: inherit developments of others, including
computer scientists
Community: build up community code base for
addressing difficult problems in QG

abstract ‘ugly CS issues’ away from physics
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The Cactus Computational Framework
What features are useful for quantum gravity
computations?

Not just for solving PDEs on a fixed lattice...
Modularity!  collaboration & community building

Language independence
Separate computational details from physics
Code sharing→ develop community code base

Leverage developments of others, e.g. students, no
continual reinventing the wheel
Pass around parameter files
Works well for numerical relativity, causal set QG:
Do same for LQG, spin foams, CDTs?

Portability
Automatic parallelism
Automatic detection and linking to numerical libraries
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Susskind Process

Circumscribing
sphere, area A

Shell mass

Isolated matter system
mass E, entropy Smatter

PSfrag replacements
Smatter

√
A

16π − E

Matter system stable on
time scale >

√
A

Collapse shell onto sys-
tem to form black hole

S initial
tot = Smatter + Sshell

Sfinal
tot = SBH = A

4

}

GSL⇒ Smatter ≤
A

4

 Susskind entropy bound
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Covariant Entropy Bound
Consider any spacelike co-dimension 2 surface B, of area A

Consider congruence of null geodesics emanating from and
orthogonal to B, which is everywhere non-expanding: a “light
sheet”
Covariant bound: entropy on light sheet ≤ A

4

infalling
matter

No known violations
Can recover other bounds under suitable conditions
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“Holographic Principle”

 “holographic principle”:

∼ Region with boundary of area A described by no more
than A

4 degrees of freedom

→ ∃ universal relation between geometry and
entropy/information

Can we see this emerge from discrete quantum
gravity?
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Causal Sets: Fundamentally Discrete Gravity
Based upon two main observations:

Need for discreteness
Richness of causal structure

Properties of discrete causal order ≺:

irreflexive (x 6≺ x)
transitive (x ≺ y and y ≺ z ⇒ x ≺ z)
locally finite (|{y|x ≺ y ≺ z| <∞)

x

y

Some definitions:
maximal elements
(inextendible) antichain
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Spacetime Manifold as Emergent Structure
Embedding – order preserving map φ : C → (M, g)

x ≺ y ⇔ φ(x) ≺ φ(y) ∀x, y ∈ C
Faithful embedding (‘Sprinkling’):

“preserves number – volume correspondence”
scale of geometry
change

� mean spacing of em-
bedded points

∃ faithful embedding⇒ (M, g) approximates C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

tim
e

space

PSfrag replacements  0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.8  0.82  0.84  0.86  0.88  0.9  0.92  0.94  0.96  0.98  1

tim
e

space



QG Computing

D. Rideout

Cactus

Entropy Bounds
from Discrete
Gravity
Entropy Bounds
Causal Sets
Proposal
Results for Flat Balls
Curved surfaces

Emergence of
Continuum
Topology
Emergence of Spatial
Structures
Homology
Results

Spectrum of
Spatial Volume in
LQG
Kinematical Hilbert Space
Structure of Volume
Operator
Numerical Results

Conclusions &
Outlook

An entropy bound from causal sets

• Spherically symmetric space-
like hypersurface Σ of finite vol-
ume in strongly causal space-
time of dimension d ≥ 3.
• Causet C faithfully embeded
into D+(Σ).

PSfrag replacements

Σ

D+(Σ)

B(Σ)

H+(Σ)

Proposal:
Maximum entropy associated to Σ given by |max(C)|

Claim:
Leads to Susskind’s entropy bound in continuum limit

Smax = A
4
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Calculate number of maximal elements

Analytically:
Use properties of Poisson distribution
In �

d

< n >= ρ

∫

D+(S)

dxdexp
(
J+(x) ∩D+(S)

)

Numerically:
Use CausalSets toolkit within Cactus framework:

Sprinkle via Poisson distribition
Deduce order relations
Count maximal elements
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Ball in 2+1 dimensional Minkowski space

!

"

#
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Ball in 3+1 dimensional Minkowski space

Number of maximal elements:

〈n〉 = N 3F3

(
1

2
, 1, 1;

5

4
,
7

4
, 2;−N

8

)

Asymptotic behavior N � 1: 〈n〉 = 3
√

2πN
Define Poisson embedding at unit density in fundamental units:

ρ =
N

V
=

1

l4f
⇒ N =

V

l4f

Volume of cone of radius R: V = πR4

3 ⇒ 〈n〉 =
√

6
l2
f

4πR2

4

Choose a fundamental scale lf = 4
√

6lp

Then we have: Smax = 4πR2

4 = A
4



QG Computing

D. Rideout

Cactus

Entropy Bounds
from Discrete
Gravity
Entropy Bounds
Causal Sets
Proposal
Results for Flat Balls
Curved surfaces

Emergence of
Continuum
Topology
Emergence of Spatial
Structures
Homology
Results

Spectrum of
Spatial Volume in
LQG
Kinematical Hilbert Space
Structure of Volume
Operator
Numerical Results

Conclusions &
Outlook

Ball in 3+1 dimensional Minkowski space

PSfrag replacements
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Spherically Symmetric Hyperboloidal Slices
Same boundary sphere

−R

r

t

aR

R

Σ
D

+(Σ)
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Spherically Symmetric Hyperboloidal Slices
Same boundary sphere

All give same asymptotic form Smax = 4πR
4 , with same lf !
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Emergence of Spatial Structure
from Discrete Causal Order

x

y

w

z

Temporal notions, such as
proper time, are easy to extract
from causet
Spatial notions difficult, because
of Lorentz invariance of lattice –
has infinite ‘valence’ (nearest
neighbors)
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Emergence of Spatial Structure
from Discrete Causal Order

x

y

w

z

Temporal notions, such as
proper time, are easy to extract
from causet
Spatial notions difficult, because
of Lorentz invariance of lattice –
has infinite ‘valence’ (nearest
neighbors)

Resolution Make local selection of frame
−→ inextendible antichain
‘Edgeless’ spacelike hypersurface:

Every element related to some element of inextendible an-
tichain
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Emergence of Spatial Structure
from Discrete Causal Order

Resolution Make local selection of frame
−→ inextendible antichain
‘Edgeless’ spacelike hypersurface:

Every element related to some element of inextendible antichain
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512 Element Causet Faithfully Embedded into SxI
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Emergence of Spatial Structure
from Discrete Causal Order
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∼ Cauchy surface, but e.g. does not possess inital data...
Only intrinsic information is cardinality
Can we use neighboring causal structure to deduce which
elements are spatial nearest neighbors?
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Emergence of Spatial Structure
from Discrete Causal Order

∼ Cauchy surface, but e.g. does not possess inital data...
Only intrinsic information is cardinality
Can we use neighboring causal structure to deduce which
elements are spatial nearest neighbors?

‘Thickened antichain’
Av = {x|x ∈ fut(A) ∪A and |past(x) \ past(A)| ≤ v} ,
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Emergence of Spatial Structure
from Discrete Causal Order

‘Thickened antichain’
Av = {x|x ∈ fut(A) ∪A and |past(x) \ past(A)| ≤ v} ,
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Thickened Antichain in SxI Causal Set
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Emergence of Spatial Structure
from Discrete Causal Order

‘Thickened antichain’
Av = {x|x ∈ fut(A) ∪A and |past(x) \ past(A)| ≤ v} ,
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Homology from Thickened Antichain

Can we deduce the continuum homology from the
thickened antichain?

maximal elements of thick-
ened antichains ‘cast shad-
ows’ on minimal elements
provides cover of space
nerve construction of simpli-
cial complex −→ homology
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Homology from Thickened Antichain

Nerve: Assign vertex to each set Ui in cover
q sets in cover form a q − 1-simplex if they have non-vanishing
intersection
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Simplicial homology

Ck = vector space with
generator for each k-simplex
α

αi = k − 1-simplex obtained
by deleting ith vertex of α

boundary map
∂k : Ck → Ck−1 =
Pk

i=0(−)iαi

∂2 = 0

Zk = Ker(∂k) = k-cycles
Bk = Im(∂k+1) =
k-boundaries
Hk = Zk/Bk

Betti numbers bk = dim(Hk)

For example:
COVER
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b0 = 1 b1 = 1 bi = 0 i > 1

Cover and thus homology will vary with thickness v
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Current Status: Theorem

Causet C in globally hyperbolic spacetime with
compact spatial slice Σ

If ∃ inextendible antichain A in C in Σ with
appropriate separation of scales, then ...
A thickened to vol n in this range has homology of
space via nerve

Can likely smooth out bad antichain to get good one,
via smoothing (Ricci flow?)

⇒ Conditions on theorem minor.
We explore this numerically.
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T 2 × I ‘Kaluza Klein’
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Transitive Percolation

N = 2000; p = .03
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What sign combinations will occur at all?
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∣ where − 4 ≤ σ(IJK) ≤ 4
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prefactors. What does that imply?
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 Contact: recoupling of spins↔ properties of space



QG Computing

D. Rideout

Cactus

Entropy Bounds
from Discrete
Gravity
Entropy Bounds
Causal Sets
Proposal
Results for Flat Balls
Curved surfaces

Emergence of
Continuum
Topology
Emergence of Spatial
Structures
Homology
Results

Spectrum of
Spatial Volume in
LQG
Kinematical Hilbert Space
Structure of Volume
Operator
Numerical Results

Conclusions &
Outlook

Graph Structure↔ Edge Spins
Gauge Invariance: JN

!
= −

N−1∑

L=1

JL

This implies for V̂γ acting on gauge invariant spin networks:

V̂γ ∝
√∣

∣
∣

∑

I,J,K<N

[
ε(IJK)− ε(JKN) + ε(IKN)− ε(IJN)

]
q̂IJK

∣
∣
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Gauge Invariant 5-Vertex: Numerical Results
I Largest Eigenvalue
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Gauge Invariant 5-Vertex: Numerical Results

I Largest Eigenvalue: σ-dependence
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Gauge Invariant 5-Vertex: Numerical Results
I Smallest Eigenvalue

 0
 20

 40
 60

 80
 100

 0
 5

 10
 15

 20
 25

 30
 35

 40

 0
 1
 2
 3
 4
 5
 6

PSfrag replacements

λ

σ

2 jmax

 110
 120

 130
 140

 150
 160

 170

 0
 5

 10
 15

 20
 25

 30
 35

 40

 0
 2
 4
 6
 8

 10
 12

PSfrag replacements

λ

σ

2 jmax



Gauge Invariant 5-Vertex: Numerical Results

I Smallest Eigenvalue: σ-dependence
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Gauge Invariant 5-Vertex: Numerical Results
I Histograms for each sigma config

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  50  100  150  200  250  300  350  400

fre
qu

en
cy

5-vertex; sigmas = -2  0  4  4

2/2
3/2
4/2
5/2
6/2
7/2
8/2
9/2

10/2
11/2
12/2
13/2
14/2
15/2
16/2
17/2
18/2
19/2

20/2
21/2
22/2
23/2
24/2
25/2
26/2
27/2
28/2
29/2
30/2
31/2
32/2
33/2
34/2
35/2
36/2

PSfrag replacements
λ



Gauge Invariant 5-Vertex: Numerical Results
I Histograms for each sigma config
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Gauge Invariant 5-Vertex: Numerical Results
I Histograms for each sigma config
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Gauge Invariant 5-Vertex: Numerical Results
I Histograms for each sigma config
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Gauge Invariant 5-Vertex: Numerical Results
I Histograms for each sigma config
I Histograms for all sigma configs together
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Gauge Invariant 5-Vertex: ‘Full Spectrum’
I Cumlative histogram for each jmax
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Gauge Invariant 5-Vertex: ‘Full Spectrum’
I Cumlative histogram for each jmax
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Gauge Invariant 5-Vertex: ‘Full Spectrum’
I Cumlative histogram for each jmax

Expand region with λ<11
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Gauge Invariant 5-Vertex: ‘Full Spectrum’
I Cumlative histogram for each jmax — for λ < 11
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Gauge Invariant 6-Vertex: Numerical Results
I Largest Eigenvalue
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Gauge Invariant 6-Vertex: Numerical Results
I Smallest Eigenvalue
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Gauge Invariant 6-Vertex: ‘Full Spectrum’
I Cumlative histogram for each jmax
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Conclusions & Outlook
Entropy Bounds from Discrete Gravity:

Discrete QG may lead to explanation for origin of entropy bounds
Susskind bound may arise via counting maximal elements

Emergence of Continuum Topology:
Can extract spatial homology from causal set — useful tool for
identifying ‘manifoldlike’ orders
−→ Build suite of tools to extract macroscopic properties

Spectrum of Spatial Volume in LQG:
Important interplay: graph embedding←→ spin recoupling
Spatial discreteness of LQG not completely decided:
6 ∃ smallest non-zero eigenvalue
Volume operator accessible to full computational analysis −→
Start to performing computations in full Loop Quantum Gravity

QG Supercomputing & Cactus:
Numerical computing useful for gaining insight into QG
Cactus is excellent tool to facilitate this
 Develop community code base to address problems in QG
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