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Apologies

Unlike most other talks, this one focuses on ideas. Very
little mathematics in this talk. So, not even imprecise.

Many ideas you will find familiar or commonplace.
You might find this talk irrelevant to what you are doing.

Familiar, irrelevant or out of place
- like Marcel Duchamp’s Fountain

Actually this is our starting point  (Noise and nonlocality)
And one of the purposes of this talk:

Have we overlooked something elementary yet important ?



Quantum: micro (Quantum Field Theory)
Gravity: Macro (General Relativity)

 What is Quantum Gravity? - A theory of
the microscopic structure of spacetime

-- agreement
e But it is not necessarily a theory obtained by
guantizing general relativity. -- disagreement?

o |If it s, like electromagnetism, we are lucky / happy.
 I'm dwelling on the unhappy situation.  Sorry.



Quantizing macro variables may
not give micro structure

 Quantizing macro-variables is not a
guaranteed way to obtain micro-structure.

e Cases which work: EM = QED. Macro and micro
variables are the same. [linear theory] He 4

 But: Difference between He 4 and He 3.

For He 3 — to get the macroscopic co
behavior, need details at the atomic

lective

evel



Q-C versus m-M

Quantum - decoherence, robustness, stability > Classical
< Traditional effort: quantizing the metric or connection forms

QU&I]Z' um Gra VI.Z'Y (Strings Loops Simplices — micro constituents)

MICRO fluctuations
coarse-|-graining MNESO Kinetic theory
Y fmezgent hydrodynamics

MACRO spacetime (reneral Relativity

Issues: Coherence, Correlations, Fluctuations, Stochasticity;
Collectivity, Variability, Nonlinearity, Nonlocality



Top-down or Bottom-up?
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String Theory: “Replacing” points in spacetime by strings,
closed and open -- closed loop for gravitons.

« Great insight into the relation of spacetime and gauge fields
e But has difficulty producing spacetime itself

Loop Gravity: Quantizing the connection form or holonomy of General
Relativity In the Loop (Faraday’s) Representation

=» Spin Network / Foam as the Micro Structure of Spacetime

=» How to recover the semiclassical limit? “1want to Go Home!” -- ET

We need both — physics has always been like that



Happy and not -so- happy situations

If we are confronted with this unfortunate situation, we need
statistical mechanics, stochastic processes, probability

theory, etc..

If we are blessed with the happy situation we still need
statistical mechanics, even condensed matter physics unn

Issues all Top-Down models need to deal with:
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Emergence of Effective Theories

Collectivity and Emergence
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Need to Deal with Strongly
Interacting and Correlated Systems

For deductive emergent behavior, path could be tortuous,

- Usually encounters nonlinear interactions in strongly
correlated systems.

- Need to identify collective variables at successive levels
of structure. Cumbersome to deduce M- with pu-dynamics

(e.g., iIntermediate between p (molecular) and M (hydro)
are kinetic variables. Use maximal entropy laws at
stages — but how are they related to each other, becomes

maximal when?)

And, nonlocal properties can emerge. Very involved,
- requires not just hard work of deduction from one level,
but new ideas at each level. Interesting challenge.
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How to find our way up from the grass-root?
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Bottom-up: Macro to Micro

Il. Going the reverse way (quest from macro to micro
structure) is always difficult, if not impossible. BUT,

... that is how physics has progressed through centuries!
Rely on:

A.Topological structures:
More resilient to evolutionary or environmental changes.
See approaches of Volovik (He3 analog, Fermi surface)
Wen (string-nets, emergent light and fermions)

B.Noise-fluctuations: Fluctuations can reveal some
substructural contents and behavior (critical phenomena).

Information contained in remnants or leftovers. Yet, by
reconstructing from corrupted and degraded information
one could perhaps have a glimpse of the micro structure.



Common Physical Features of
Macroscopic Phenomena:
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General Relativity + Quantum Field Theory -
Quantum Field Theory in Curved Spacetime -
Semiclassical Gravity = Stochastic Gravity
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A (very modest) Bottom-Up route:
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Key ingredient: NOISE, FLUCTUATIONS
= PHASE TRANSITION, STRUCTURE FORMATION, ENTROPY GENERATION

Stochasticity: nonequilibrium statistical mechanics



Alternative (my) view towards Quantum Gravity
— some ideas leading to it: (from Sakharov 1968)

Cosmology as condensed matter’ Physics (1988):
Phase transition etc. also L. Smolin, W.H. Zurek

Semiclassical (mean field) Stochastic (fluctuations) Gravity
as Mesoscopic Physics (1994): noise and correlations

General Relativity as Hydrodynamics (1996): conservation laws help
decoherence of long wavelength modes; Quasiclassical domains

From Stochastic Gravity to Quantum Gravity (1999): Retrieve quantum
coherence information from fluctuations with C. Anastopoulos, E.Verdaguer

Kinetic Theory Approach to Quantum Gravity (2002): Correlations
find the micro-variables rather than quantize the macroscopic variables.

What can we learn about Quantum Gravity from BEC? (2003)
Spacetime as Condensates (2005) with A. Roura, See, Volovik: Universe as He3



1 Quantizing macro-variables =?/= micro theory
C -2 Q, M = u What is quantum gravity?

2. Emergent theories: u 2> M. Emergence vs Reduction;
Deductible vs Nondeductible.

3. Nonlocality in QM, QFT, spacetime and QG
Some familiar examples from statistical mechanics

4, Micro nonlocality =/= macro nonlocality
EX: micro weave state and nonlocality in macro-spacetime

5. Nonlocality and Stochasticity in statistical mechanics
- Open (Langevin) and Effectively open (Boltzmann) systems
- Coarse-graining and Backreaction

6. Nonlocality and Stochasticity in Quantum Gravity
Semiclassical and Stochastic gravity: non-Markovian dynamics
Nonlocality in time (Memory). Nonlocal dissipation and colored noise

7. Correlation: Another angle towards nonlocality and stochasticity
Strongly interacting and correlated systems: Condensed matter models

8. Summary and Tasks.



Nonlocality

Quantum Mechanics: EPR, Bell.  we know a little more now
Nonlocality =/= Entanglement (Unruh)
Entanglement measured by correlations (Cirac)
Quantum Field Theory: extended in space vs local observables
Spacetime: Nonlocality versus observance of causal structure

Noncommutative geometry, NC field theory: Nonlocality

Quantum Gravity: String theory, Loop QG, spin-nets ...
I micro locality (weave state) =/= macro locality (spacetime) !

Statistical Mechanics: Macro (collective variable) dynamics is
often very different from micro dynamics. Emergent phenomena



Some familiar examples

Micro: (Molecular) vs Macro (Hydro) dynamics:
individual molecules (x;, p,) fluid elements
Newton’s second law Euler equation.

Time scales: Dynamical scale of molecular motion >> Diffusion time
Length scales: Multi-scales appearing, as in Turbulence
Scales can also change drastically as at a Critical point

Molecular to Hydro- dynamics is probably the easiest
emergent phenomenon. There are more involved macroscopic
emergent phenomena which cannot be predicted, nor so easily
deductible, from micro dynamics. E.g. quantum Hall effect.

Macrostates are not just superpositions of microstates.
Emergence Is more than just repetitive coarse graining



Micro locality =/= Macro locality

A molecule will collide with many others at very high speed for a long time
before reaching a macroscopic observer. That molecule’s apparent locality
(with respect to other molecules arriving at about the same time) in a gas
element is very different from its nonlocal history after multiple collisions.

Though each collision is local (contact potential, short ranged, unlike Vlasov
dynamics of a long ranged interaction, or collisionless Boltzmann), however,
when viewed at the collective level, each particle has a highly nonlocal history.

[ Cause: divergent congruences in chaotic dynamics, Liapunov exponent ---
Distinction between chaotic system, mixing system and ergodic system]

« The smoothness and continuity of the fluid element’'s movement to a
macroscopic observer described by the Navier-Stoke equation (diffusion,
transport) belie the stochastic and nonlocal nature of molecular collisions.

Molecular to hydrodynamics is one example where one can deduce the
macro time scales from the micro. But many systems are NOT like that.



Similar situation in quantum gravity

Example: in loop quantum gravity, a weave state Is a
kinematical state designed to match a given slowly varying
classical spatial metric. [Ashtekar, Rovelli, Smolin 92]

The concept of quantum threads (spin-network) weaved into a
fabric (manifold) of classical spacetime already tacitly
assumes a particularly simple kind of u-M transition, where
there is a simple correspondence or even equivalence between
locality at the micro AND the macro levels.

This Is not the case for even simple examples of emergence like
molecular to hydro- dynamics.

Think about the sense of locality at the level of M theory for
string theory or simplices for dynamical triangulation versus
locality in our macroscopic spacetime, presumably emergent.



<< nonlocal weave states >>
leave marks on the fabrics of spacetime

« Bombelli [gr-gc/0101080]; Bombelli, Corichi and Winker, gr-
gc/ 0409006] use combinatorial methods to turn random weave
(micro) states into (macro) states of spacetime manifold.

« Markopoulou & Smolin [gr-gqc/0702044] recently pointed out:

- most weave states including Bombelli et al's assume that
these weave states all satisfy an unstated condition of locality
(edges connect two nodes of metric distance ~ Planck length)

- there are plenty of weave states which do not satisfy this
condition: existence of nonlocal weave states.

e Question: How does one weave from these nonlocal micro
states a fabric (manifold) with the familiar macroscopic locality?
Fotini & Lee’s answer : Disordered locality can be tolerated,

even useful in the production of dark energy.



My attitude:

Take this inequivalence of micro and macro locality seriously.
Need to depart, even radically, from familiar concepts in our
macro world. There is new physics to be uncovered!

A good example: Recent discoveries that basic laws of non-
equilibrium thermodynamics (like 2nd law) can be understood
or derived from chaotic dynamics. [Gaspard, Dorfman et al]

Our conception and construct of the macro world may not
bear any resemblance to the micro world.

e (Non) locality at one level may have little to do with (Non)
locality at other levels.

 The easy ways of uy=>M (weaving) or c2>Q (quantizing)
may not be the true ways.



Nonlocality and Stochasticity
from statistical mechanics

A simple way to see how nonlocality emerges in dynamics
[Zwanzig] :

One closed system divided into two subsystems A and B:
- Dynamics of each subsystem obeys 2" order ODE

-Can transform this set of coupled equations into an integral
differential equation governing only variables of A (or B)

- Nonlocal in time because it contains the natural time scales of
subsystem B’s dynamics. Information is subsumed (not erased)

-Back-reaction is the source of nonlocality in time (memory)



Coarse-Graining and Backreaction

If subsystem B has many degree of freedom
— call it environment E

 Coarse-graining of subsystem B (or the environment E) —
- can begin to talk in terms of mean field and fluctuations
- renders the combined system an open system
— information lost by choice (or limitations)

 Backreaction of coarse-grained environment on the system
engenders nonlocal dissipation in open system dynamics

* Nonlocal dissipation is accompanied by nonlocal fluctuations
(colored noise)
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Quantum Open System

Closed System: Density Matrix ~ 2(t) = J (¢, t:)p(ts).

J(z,q,z',q',t | zi,qi, zt, d’, t5) IS the (unitary)
evolutionary operator of the system from initial time t_| to time t.

OPEN SYSTEM: System (s) interacting with an Environment
(e) or Bath (b): Integrate out (coarse-graining) the bath dof renders
the system open. Its evolution is described by the Reduced Density
Matrix

+ oo + oo
o.(z,2') :/ dq/ dq'p(z,q;z',q')é(q — q')

/ — oo . oo ’ ! . ! ) ) ! )
— 00 — o0



Quantum Brownian Motion

System (S): quantum oscillator with time dependent natural frequency
Environment (E) : n-quantum oscillators

with time-dependent natural frequencies = Scalar Field
Coupling: c_nF (x) g_n.

Slz,q| = S|z] +_SE[q] + SintlT, q

= L ds %E\ﬁ'(s][m2 + B(s)xz — Q%(s)z?]

TL

4 3L ma(5)[d2 + ba()ndn — wE(5)a2] 4 Z(*CH(S)F("”‘?“)-




Influence Functional
Assume factorizable condition between the system (s) and the bath (b)
!n|t|ally p(t = t;) = ps(ts) X p(ti),
Evolutionary operator for the reduced density matrix is

J,-[If,il?},fiﬂ?,ﬁ,ii,fﬂ:f f.D:::/ "D’ exp (%{S[I]—S[I’]}) Flz,z')

Influence Functional +oo +oo 400 a -
Flz,z'] = f dq; f dq..:] dq; f Dq Dq"
—oo — 00 — 0o i q;
exp (%{Sb[Q] + Sint[z,q] — Sp[q] - Samlﬂ:',q’]}) x pb(Qi, g, )

t :
Influence Action = exp (EM[-T&E ])



Influence functional for a Paramp

Flz,z'] = E}-:]}{ ! f ds f ds’ 'F{If_s}) _ F(I‘{s]): u(s,s") :F{I{sr]} + F[I“[sr]}:

ds f ds' |F(a(s)) - F(c'(s))|v(s,5) | F(a(s)) - F(z'(s")] }
S(s) = 5 (F(a(s)) + F(a'(s))),
[T Dissipation p and Noise v Kernels

Flz,z'] =exp{;/:d8& s——/ ds/ ds' A(s)A(s")Cy(s, s)}
e — 02(5 3,-) hv (s, s')

Langevm Equation:
a—L- — i?—é — 28F($) / ﬂ(t,S)F(.’B(S))dS 8F( )’S_( )




Noise and Dissipation Kernels

Equation of Motion for the amplitude function of a Parametric Oscillator
bp =0andm=1 kn= Tnn_(ti}wﬂ(ti} X, +wi(t) X, =0,
uo,8) = 5 [ dwl(w,s,8) | X2 () Xals') ~ Xola) X205

v(s,s') = f dwl(w, s, s ) coth (Z:{t;) [msh 2r(w) [X:__(SJXW{S') + XN{S}X:,[E’]]

— sinh 2r(w) [E_E“b{”]}f;{s]x:,[s’} + ezié{“"}}:u(s]xm[a’}” .

IHw,s,s') = Z,ﬁ{w — wn]cn[*'ﬂﬂn(ﬂr]

2Kn

Spectral Density Function m
I(w) ~ wm n=1: Ohmic, n>1 Supra Ohmic;  n<1 Subohmic

S.(r(n 91 (7(n), d(n
Squeezed and Rotation parameters H (r(n), 6(n))pen Sy (r(n), 4(n))
e.g., for an |n|t|aI squeezed thermal bath



Stochastic Equations

Non- Markovian 3 )
Master Equation:  ifi—p.(t) = [Hren, A + iDppli, [#, 5)] + iDga [P, [, A

ot
Nonlocal dissipation + 1DgpZ, [P, p]] + tDpe [P, [T, p]] + Tz, {P, £},
Nonlocal fluctuations .
. : p B(t) M) 2
= e ren t .
(Colored noise) Hien M (D) (P + 2p) + — (t)z
Wigner Function: P Snt) - %fﬁ Eipa;n<z_% a5 4 %>d&,
Fokker-Planck or Wigner Equation: (Non-Markovian)
s, p 8 1 o a2
EFW{Etp': t) = _WE}E +5 M ren{:t) E op + r(t} P EDPP(” ap
HE
:z(ﬂ@ + 2( :l:p{t] + me{t}) azap]FW(E'Jprt}'



Closed system of n interacting molecules:
Molecular Dynamics Is unitary

N
Hamiltonian H= Zp—*‘+ ZIU Vi =V (% — x;5) (2.3.1)
i=1

2m

(We assume no self energies: V;; = 0) lE‘ﬁ.db to the Hamilton equations

dx’ _OH p"”" dp’ oH 51"}.;, o
— = _Z (2.3.2)

dt op; om  dt  ox;

ox;

Equivalently we may describe the state of the system through a 6N- dimensional distribution
function p = p ((x1,P1) 4 ..., (XN, PN ), ), Which satisfies the Liouville equation

= =~ {H,p}, (2.3.3)



Expressed in terms of nth order correlation

functions: BBGKY hierarchy

contains full information of molecular gas

Truncation of hierarchy: keeping only the one particle
distribution function, Imposing the molecular chaos assumption

=2 Boltzmann equation with source (collision integral)
given by the two particle correlation function (initially factorizable)

describes an effectively open system

Nonlocality residing in the higher order correlation functions
manifest as nonlocal dissipation and colored noise



Dissipation in Boltzmann Egn:

dfr \ p1 0fi d J ... ‘ o o . ‘9 100
—_ — — . a5 | —=V 1 — X : . . 9. D- 23.12
5 (X1,P1) T, | o /dxgdlﬁz (leI (Jx1 —x2|)| fo((x1,p1),(x2,p2)). (2.3.12)

To obtain the dynamics for f; we need the dynamics for f;. This is obtained in an analogous
way

N

) o

% =-NW- ”/de;dli'; tH,p} (2.3.13)
=3

Nonlocal Dissipation



Fluctuations? Yes. Nonlocal

d > 1 P o
_f I_Tf - m _|_j(}1?p/] L2*352J
ot Wp

The I' matrix has an asymmetric part (coming from the spatial gradients term) and a symmetric
part (coming from the linearization of the collision integral). Only the latter contributes to the
noise auto-correlation. and so we obtain

e e 1 0l (X,p) 1014 (Y?Cl)}
(G (X. D)7 (Y.q) = — n el
UX,p)ilY,q)) {wp SF (Y, c j we OF (X, p)

-

- , oS 1 Of (.
Thermodynamic Force  F(z,p) = 567 " @ [1+f:; };f}ﬂ "

in terms of 1-particle distribution function:

Entropy current

_ /Dpp# 1+ f @)1+ f ()] - f (@) Infp)}.

Boltzmann-Langevin Equation



Nonlocality in time: Memory effects
and Stochasticity — colored noise

occur naturally in open systems
and effectively open systems



Nonlocality and Stochasticity
In Quantum Gravity

Ought to be able to demonstrate in various approaches in QG:

 string Interactions (duality?)

o Simplicial (can nonlocal simplices constitute quasilocal neighborhoods in
macroscopic spacetime with manifold structure)

e Loop (how does intertwining operators generate weave states)
e Spin-nets
 (Causal sets

| don’t understand enough about nonlocality in quantum gravity.
Will talk about something | understand, starting from semiclassical gravity



Semiclassical Gravity

Schematically:

(; L (9' Y '3) — !‘{I<.TIL'{' L > q

(w IS the Einstein tensor (plus covariant terms
associated with the renormalization of the quantum field -
details in a later slide)

k= 817G N and G 1s Newton'’s constant

Free massive scalar field (O —m? — gmgi — ().
1., 1s the stress-energy tensor operator

()4 denotes the expectation value



Semiclassical Einstein Equation |
Gu."?lﬁf] T *"JI'!l.Efcf."? — E{HAL-H'? T .nhl Bc.l."?H.E] = BT E‘j—tﬁa[g

e Matter: Quantum Scalar Field

] - P . = =
Sule. @1 = —5 [ a5V TRLVag Vi + (i + £ R)?)

; : — o Al oo . 1,7 PR ; g S |
T g, 0] = V4pVPh — 20 (VdV.h + m*p?) + E(¢*? O - VOVP + G)¢?,



Semiclassical Einstein Equation |
e Spacetime: Dvnamics from a semiclassical action

| I — | : he )
54 -El — W f.l_L.l'v — g TR — A+ “.,r?i.h.'l'::w'll'ti"I + ,HR' \
o7 Fd
| ] i) | ) L
rL{lu'.ll. — 1,Jf—l- V;'__Ef{*_ e ¢ cde]
N — 2 O8ab "
1t ~ede I J— ) e 7 o
_ %IEL.'J’?(_ |:'|'.|'I|:"__f"(— cdef ERL.':L.": RI‘I..{'H‘:-‘ + 4 R Rc-h . %RRJJ’.
—20R*" + &VV'R + 19" OR,
. | 4 )
Emh _ —- /Ll_L V.a'__IE R
W — 2 O0Lak

a 2 a . . 3 . - h
= 58’ R* —2RR" +2V*V"R — 2¢*"OR.



Back-reaction of guantum field processes
(e.q., particle creation) engenders nonlocal
dissipation in the spacetime dynamics:

Anisotropy Damping: Bianchi | + conformal scalar field (Hartle-Hu 79, Calzetta-Hu 86)

0 Y — . 2
5&; (b‘ﬂ + rf)|ji:j~;5 _ZI’“LE({I 'Iji:_}
]. d} J_ d {].f \ H-H
_}Hl . - a 9 a’ 3}'
+3 304 )gd?g[ n(pa)] + QU{J;T)Ed-r;[({ .31) +— )35
1 - L / ! J_ .
_30(%-}:3 /_m dn' Bi(n ) Rs(n—1n') — 30(4n)? /_ dn' Bi;(n)ily(n — ')
= —Ji;(n)

Dissipation kernel R is nonlocal: contains effect of particles created in the whole history



Another angle towards nonlocality:
Correlations related to Fluctuations

Strongly correlated (mesoscopic) systems.

Plenty of condensed matter physics models --

- Ising model (2D) [wan o6}, Quantum Graphity [Konopka, FM, Smolin 06]
- cluster states (built-in correlation in system)

- star states (equal mutual interaction)

Start from microscopic entities, examine the conditions for the
hydrodynamic / thermodynamic states to emerge.

If no such conditions, why?

Correlation functions measure nonlocality and can be related
to fluctuations [Fluctuation-dissipation theorem can be
phrased In terms of correlations]

Can add interaction with environment to examine

Decoherence and Q - C transition. An important factor in
guantum information processing with many qubits.

E.g., Decoherence of strongly correlated spin systems



Stochastic Gravity

Schematically:

é,‘dﬂif (9@;3) — K (TC + 'TCIS

[Lv L )

17, 1s due to classical matter or fields

7S — : i
T,u.f.f — <TMF>C1 + [

1> 1s a new stochastic term

related to the quantum fluctuations ot 7,



Noise Kernel

A physical observable that describes these
fluctuations to the lowest order iIs the noise
kernel which is the vacuum expectation value of
the two-point correlation function of the stress-
energy operator

Navealgs X, ¥) = 5 ({Fanlg: X). Fealgs ¥)}).

ot

fn'h[g; X) = Tn'h[g; X) — <T”h[._f;'; k)}



Noise assoclated with the

fluctuations of a guantum field

* The noise kernel is real and positive semi-definite
as a consequence of stress energy tensor being
self-adjoint ,,

the ultraviolet behaviour of {T 4(x) T 4l V) 1S

- -

the same as that of (T 4 (x)}{T .4 (¥)).
e Classical Gaussian stochastic tensor field:
{E;.-.u'.«[ﬁf: -1.}}3 =0, {Eu."r[.sf: -l'ﬁ-l".f:':."[.sf: 11}% — J'III"'r;.'.l'r:'r.."I.Ef: X, 1‘}

(- )
denotes statistical average wrt this noise distribution



Classical Stochastic Field
assoc.with a Quantum Field

 Stochastic tensor Is covariantly conserved in the
background spacetime (which is a solution of
the semiclassical Einstein equation).

?“éuh[,g: -l') = ().

e For a conformal fie 5ab is traceless:
{e'l'r?

gEples x) = 0;

Thus there 1s no stochastic correction
to the trace anomaly



Einstein-Langevin Equation

e Consider a weak gravitational perturbation h off
a background g g.. =g\ + /.. The ELE is
given by (The ELE is Gauge invariant)

Gaplg +h]+ A(gap + hap) —2(aAup + PBup)| g + 1]
=87 G((Th,[g+hl)+Euwlgl).

= Nonlocal dissipation and colored noise
Nonlocality manifests with stochasticity
because this Is an open system



Correlations: Kinetic Theory Approach
to the Microscopic Spacetime Structure

GR is a theory of macrostructure of spacetime. QG is a theory of
microstructure of ST

Quantizing macroscopic variables of ST unlikely to produce
microstructure or QG.

More challenging and urgent task: find the micro-variables.

A ladder from hydrodynamics to microdynamics: First two rungs
above classical GR, semiclassical (mean field theory) and
stochastic (including fluctuations) gravity.

“A Kinetic Theory Approach to Quantum Gravity”
Int. J. Theor. Phys. 41 (2002) 2111-2138 [gr-qc/0204069]



Fluctuation as a useful probe Into
universality of microscopic structure

|. Wave propagation in a stochastic spacetime

B. L. Hu and K. Shiokawa, Phys. Rev. D 57, 3474 (1998)

II.  Universal conductance’ fluctuations as a signature of microscopic structure

PHYSICAL REVIEW D, VOLUME 62, 024002

Mesoscopic fluctuations in stochastic spacetime

K. Shiokawa*
Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2J1
(Received 18 January 2000; published 1 June 2000)

Mesoscopic effects associated with wave propagation in spacetime with metric stochasticity are studied. We
show that the scalar and spinor waves 1n a stochastic spacetime behave similarly to the electrons in a disor-
dered system. Viewing this as the quantum transport problem, mesoscopic fluctuations in such a spacetime are
discussed. The conductance and 1ts fluctuations are expressed in terms of a nonlinear sigma model in the closed
time path formalism. We show that the conductance fluctuations are universal, independent of the volume of

the stochastic region and the amount of stochasticity.



5.

6.

Summary and Tasks

. Nonlocality at one level, locality at another: How connected?

. Nonlocality and Stochasticity in Statistical Mechanics

- Open (Langevin) and Effectively open (Boltzmann) systems
- Coarse-graining =2 Noise; Backreaction - Dissipation

Nonlocality and Stochasticity in Quantum Gravity: examples from
Semiclassical and Stochastic gravity: non-Markovian dynamics

Nonlocality in time (Memory). Nonlocal dissipation and colored noise

Correlation: another angle towards nonlocality and stochasticity
Strongly interacting and correlated systems: Condensed matter models

Kinetic Theory Approach to QG — Correlation Hierarchy
Mesoscopic spacetime physics: Universal conductance’ fluctuations

Tasks: understand how these issues play out in known physical models,
then apply to spacetime, incorporating its special features: Time / Diff inv.






Stochastic Gravity in relation to Quantum and Semiclassical

(w. Enric Verdaguer, Peyresq 98?)
As an example, let’s consider

gravitational perturbations 7, in a FLRW universe with background metric g,

P

The Semiclassical Einstein Equation is Oh = (T)

where < > denotes the quantum vacuum expectation value

With solutions }1: /(;(j—'% h’lh’z = / /(11(12 T T>

The Quantum (Heisenberg) Equation is —

With solutions h — / Gj\“? fz fz //0192 b,

Where the average is taken with respect to the quantum fluctuations of both the
gravitational and matter fields



For stochastic gravity, the Einstein Langevin equation
Is of he form

Oh = (T ) + 7
With solutions
= [c@y+ [Gr mba= [ [ GG + (D74 r(D) + 7o
We now take the noise average e ‘
Recall - . ; ;
oLl b () = Ty (2) — (T (2)) ]
Hence

(The =0, (mim)e = (T1T2) — (T1) (1)
We get’ hlhg g —//G1G2 TT

Note this has the same form as in quantum gravity except that the
Average Is taken with respect to matter field fluctuations only.



Semiclassical Gravity includes only the mean value of the
Stress-Energy Tensor of the matter field

Stochastic Gravity includes the two point function of Tmn in the
Einstein-Langevin equation

It is the lowest order in the hierarchy of correlation functions.
The full hierarchy gives full information about the matter field.

At each level of the hierarchy there is a linkage with the gravity sector.
The lowest level is the Einstein equation relating the Tmn itself to the
Einstein tensor Gmn

Quantum Fluctuations :: Quantum Correlation :: Quantum Coherence

Thus stochastic gravity recovers partial guantum coherence in the
gravity sector via the metric fluctuations induced by matter fields
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