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Motivation for the model.

|. Emergence of near-flat geometry in low-energy limit of background
independent quantum gravity: long-standing challenge.  cf. Ambjorn talk

2. Locality: underutilized.
* combinatorial quantum geometry — classical geometry

. A, V:quantum geometry ocal
& spin foam vertex properties ocal statements
N nodes = N2 one-edge perturbations locality is unstable

&< P y

Z 5i) = locality? FM&L.Smolin, gr-qc/0702044
)



Motivation for the model.

2. Locality, cont.

* Phase transition + background independence =-
micro-locality # macro-locality

L spins
A

1 | 1 phase transition 2 4 >
’ l ‘ > 2 | %
__ XN
HSpin chain — (C2) Hspin waves = @ H, ®"
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background independence means dynamics determines locality.
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* Phase transition + background independence =-
micro-locality # macro-locality

L spins
A
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background independence means dynamics determines locality.

O.Dreyer, hep-th/0409048
FM&D.Kribs, gr-qc/0510052
FM, gr-qc/0703097

e Lots of other hints: AdS/CFT, black holes, causets,...
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Motivation for the model.

3. Background independence vs emergent gravity

Geometry and gravity are only Background independence:
classical, emergent concepts. dynamical nature of
- condensed matter approaches spacetime geometry
(e.g.Volovik)
- string theory What is the role of the lattice/geometry

and the symmetries of the lattice?

Background independence is normally implemented by a superposition

of quantum geometries: - loop quantum gravity
- dynamical triangulations
- causal sets
Reconcile:

e Background independence: no fundamental geometric degrees of freedom

* Today: background independent condensed matter models. Dreyer 04,06, Lloyd 05,
FM&Kribs 05, FMO7.



Motivation for the model.

4. Matter vs Geometry.
New results on emergent matter are suitable for a background independent

treatment: L L M.Levin & X-G.Wen, hep-th/05071 18
< )
| H |7 8 , gauge theory -like
; B excitations
® ° I and fermions
L 4 .

5. No fundamental locality = large-scale observational consequences of
quantum gravity.



The model: kinematics.

Complete graph K,,: n vertices, n(n2— 1) edges.
one-edge state space: H1 = span|j, m)
o o 0,0) edge off
o—o 1,—-1) )
,m) o o 1,+1) 5 edge on
*r—e 1,0)

n(n—1)
®—
total state space: 'H ="H; °*

Il m) = jlj,m) M*[1,0) = |1,1)
M|j,m) = m|j, m) M~11,0) =|1,—-1)

J|0,0) = M10,0) = M*|0,0) =0
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The model: dynamics.

Complete graph K,,: n vertices,

H =

n(n—1)

edges.

2

Hiinks

t Hyertices T H loops

want ground state @

2
—~ a,b=1,.... N
Hyjnks = VZ <”0 ~ Zbi Jab) V>0

H)ipks turns off edges and has minimum when all edges have degree vy .

m values:
strings

E.g., for vg = 3,




The model: dynamics.

n(n—1)
2

Complete graph K,,: n vertices, edges.

H = Hyipks +|Hvertices [T Hloops

want ground state @

2
Hyertices = C Y (Y Mab) +D Z J\7§b

ab

does not like

open strings tension

wants all m = 0

+1
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The model: dynamics.

n(n—1)
2

Complete graph K,,: n vertices, edges.

H = Hyjipks + Hyertices T Hloops

want ground state @

L
1 1
Hloops - Z L,B(L) HMz
minimal loops 1=1
L = length of loop
L
1] M7 = Mmoo M, cf. kinetic energy

Let B(L) = By B". There is a preferred loop length L.,

BL* BL’
>

L,! L' VL' # L.




The model: dynamics.

n(n —1)
2

Complete graph K,,: n vertices, edges.

H = Hyjjpg +H

vertices T loops

:
Hlinks :VZ (’Uo - Z @)
' ’ 2
ytions =Y (L0 ) + DY 32,
o =
Hiops = — > EB(L) 7,1:[1 M

minimal loops

V>C : 1) erases edges to give lattice with extension

(' > D By > 1) makes lattice regular and gives macro-matter



Matter.

Hortices and Hlpops are generalizations of the rotor model of string-net

condensation of Levin and Wen to a dynamical lattice.
M.Levin & X-G.Wen, hep-th/05071 18

e tension> K.E.: ground state has almost no strings
e tension < K.E.: ground state is a superposition of many closed strings,

i.e., string-net condensed:
(RIS
R KRNI R

5

P
>/*§ &
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high-energy charged excitations: open strings

| 7
——

emergent U (1) gauge theory.



Ground state geometry plus matter.
N>1, V>1, C>D, B> D

In our model: the balance between tension and K.E. controls both the
loop size when the lattice is dynamical and gives the matter.

Local lattice: large average distance (d;;).
Small vertex degree ~ vg
Loops of average size L..
Possibly also regular?

For vy = 3, L, = 6 number of minimal loops N7

is maximized by the honeycomb lattice: \ '\'/' /
TKonopka, FM N \ (/N Z e
& S.Severini s ‘\ " } ‘ 5

RIS
Plus string condensation on the ground state Q}-\Qg‘-_‘
lattice, as in string nets. 4 7"’,‘\ )



summary of quantum graphity.

geometrogenesis
phase transition

>
High- T Low-T
* Permutation symmetry * Translations
* No locality * Local
e Relational * Relational
° <d’63> =1 o <dz]> Iarge
* ~ oc-dimensional * low-dimensional
* no subsystems * subsystems
e external time e external and internal time
® micro-matter * macro-matter and dynamical
geometry

Model has 4 couplings (V, C, D, Bg) and 3 parameters (N, L., vg).
Some obey generic conditions: N > 1, V> 1, C > D, By > D
Some have to be adjusted: vg = 3,4, L, =4,6



Cosmology of emergent space.
t

Horizon problem to ) L, > 1y
, | \ This is an extrapolation
x of our causal and local
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u structure to the initial time
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Cosmology of emergent space.
t

Horizon problem

In our model:

to
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lp>>lf

This is an extrapolation
of our causal and local
structure to the initial time

inflation

t, 0
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Cosmology of emergent space.
t
l lp > lf
\ / This is an extrapolation
r of our causal and local
/lg/_/ structure to the initial time
/ inflation

Horizon problem to

In our model: (dy;)

\ 3

Are the CMB correlations a consequence of pre-geometry?
Compare, e.g., to the phenomenology of O (Ip)) discretization. S
A geometrogenesis scenario has the potential of large-scale effects. ———



Comments.

|. Time, temperature!
Emergent space or emergent spacetime!

* Time-reparametrization invariance as the noiseless sector of a
theory with time: T. Konopka and FM, gr-qc/0601028.

* Does the temperature imply a bath?

* Internal vs external time and geometry.
Internal: subsystems observing subsystems. Our emergent space
gives emergent spacecetime internally.

2. The terms that give rise to matter are also responsible for the geometry
of the lattice: we don’t just erase edges, we also order them.
This is a new use for unification.



To do.

* Understand the ground state
* Graph theory analysis of the terms in the Hamiltonian

e Cosmology: perturbations

Pyin(z,y)
 Effective disordered locality description L
T— =S
x

* Understand the role of the temperature









