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Abstract

Let Λ be an artin algebra over a commutative artinian ring, k. If M
is a finitely generated left Λ-module, we denote by Ω(M) the kernel of
ηM : PM → M a minimal projective cover. We prove that if M and N are
finitely generated left Λ-modules and Ext1Λ(M, M) = 0, Ext1Λ(N, N) = 0,
then M ∼= N if and only if M/radM ∼= N/radN and Ω(M) ∼= Ω(N).

Now if k is an algebraically closed field and (di)i∈Z is a sequence of
non negative integers almost all of them zero, then we prove that the
family of objects X ∈ D

b(Λ), the bounded derived category of Λ, with
HomDb(Λ)(X, X[1]) = 0 and dimkHi(X) = di for all i ∈ Z, has only a
finite number of isomorphism classes (see [9]).

1 Introduction

Let Λ be an artin algebra over a commutative artinian ring k. We denote by
Mod Λ the category of left Λ-modules, by mod Λ, projΛ we denote the full
subcategories of Mod Λ whose objects are respectively, the finitely generated Λ-
modules and the finitely generated projective Λ-modules. By Db(Λ) we denote
the bounded derived category of Λ.

For M ∈ mod Λ, consider P 0
M

ηM
→ M a minimal projective cover and Ω(M) =

ker(ηM ). Here we prove the following: if M, N are in mod Λ and Ext1Λ(M, M) ∼=
Ext1Λ(N, N) = 0, then M ∼= N if and only if M/radM ∼= N/radN and Ω(M) ∼=
Ω(N).

For M ∈ mod Λ with finite projective dimension consider a minimal projec-
tive resolution:

0 → P
−m(M)
M → P

−m(M)+1
M → .... → P 0

M

ηM
→ M → 0.

Suppose that M, N are in modΛ, Ext1Λ(M, M) ∼= Ext1Λ(N, N) = 0 and for all
j > 0, Extj

Λ(M, Ωj−1(M)) ∼= Extj
Λ(N, Ωj−1(N)) = 0, then we prove using the

result above that M ∼= N if and only if m(M) = m(N) and for all j, P−j
M

∼= P−j
N .
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Now let Λ be a finite-dimensional algebra over an algebraically closed field k
and d = (di)i∈Z be a collection of non-negative integers with almost all di = 0.
Then the family U(d) of objects X ∈ Db(Λ) such that dimkH i(X) = di for
all i ∈ Z and HomDb(Λ)(X, X [1]) = 0 has only a finite number of isomorphism

classes in Db(Λ). This result is closely related with Corollary 9 of [9].
For the proof of the above mentioned results we see that some problems

involving upper bounded complexes of finitely generated projective Λ-modules
with bounded homology can be reduced to problems involving complexes of
fixed size of finitely generated projective Λ-modules (see Proposition 4.7). Then
in this last case we can apply properties of lift categories introduced by W.W
Crawley-Boevey in [6].

2 Exact structures and exact subcategories

Here we recall the notion of exact category. For (A, E), an exact category,
B, C full subcategories of A closed under extensions we consider the category of
morphisms f : W → Z with W an object of B and W an object of C. Then we
introduce an exact structure on this category of morphisms.

Definition 2.1 Let A be an additive category. A pair of composable morphisms

i d

X → Y → Z

is called exact if i is kernel of d and d is cokernel of i.
Let E be a class of exact composable sequences (i, d) in A closed under

isomorphisms; we call (i, d) ∈ E a conflation, i an inflation and d a deflation.
E is an exact structure if it satisfies the following axioms:
K1) 10 is a deflation.
K2) Composition of deflations is a deflation.
K3) For every h ∈ A(Z, Z0) and all deflation d0 ∈ A(Y0, Z0) there exists a

pullback

d
Y → Z
g ↓ d0 ↓h

Y0 → Z0

where d is a deflation
K3op) For every f ∈ A(X, X0) and all inflation i ∈ A(Y, Z) there exists a

pushout

i

X → Y
f ↓ i0 ↓g

X0 → Y0

where i0 is an inflation
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K4) Retractions in A have kernels.

In this situation we say that (A, E) is an exact category. For simplicity, if E
is an exact structure we use extension instead of conflation.

Remark 2.2 It is known ([7]) that the above axioms imply their duals.
Moreover, in an exact category the next claims are true ([7]); if dd′ is a

deflation then d is a deflation, if i′i is an inflation then i is an inflation.
Also, K3 induces a diagram of extensions

X
i
→ Y

d
→ Z

‖ g ↓ ↓h

X0
i0→ Y0

d0→ Z0

where the right square is a pullback and a pushout, and K3op a diagram of
extensions

X
i
→ Y

d
→ Z

f ↓ g ↓ ‖

X0
i0→ Y0

d0→ Z0

where the left square is a pullback and a pushout.

The following is a well known result.

Proposition 2.3 Let (A, E) be an exact category, and B a full subcategory closed

under direct summands and extensions. Then (B, EB) is an exact structure,

where EB is the restriction of the class E to B.

Definition 2.4 Let A be a category, and B and C subcategories of A. We
define the category Morph (B, C) as follows: the objects are the morphisms
f : X → Y in A such that X ∈ B and Y ∈ C, and a morphism from f : X → Y
to f ′ : X ′ → Y ′ is a pair (u, v) of morphisms u : X → X ′ in B and v : Y → Y ′

in C such that f ′u = vf.

Proposition 2.5 Let (A, E) be an exact category, and B and C full subcategories

of A closed under direct summands and extensions. Then
(

Morph (B, C) , EB
C

)

is an exact category, where EB
C is the class of the pairs ((u0, v0) , (u1, v1)) such

that (u0, u1) ∈ EB and (v0, v1) ∈ EC .

Proof. Let f1 : X1 → Y1, f2 : X2 → Y2 and f3 : X3 → Y3 be objects in

Morph (B, C) and η : f1
(u1,v1)
−→ f2

(u2,v2)
−→ f3 an element of EB

C .
Clearly EB

C is closed under isomorphisms.
Now we check that η is an exact pair.
Suppose we have an object f : X → Y and a morphism (u, v) : f → f2 in

Morph (B, C) such that (u2, v2) (u, v) = 0. Then there exist unique morphisms
s : X → X1 and t : Y → Y1 in A such that u1s = u and v1t = v. We have
v1 (f1s − tf) = f2u1s−vf = 0, then f1s = tf following that (s, t) is a morphism.

The proof of (u2, v2) being cokernel is dual.
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K1, K2 and K4 are immediate from the proposition 2.3.
In order to prove K3, let f be as before, take (u, v) : f → f3 a morphism in

Morph (B, C) , and consider the pullback diagrams

X1
i
→ X0

d
→ X

‖ ↓s ↓u

X1
u1→ X2

u2→ X3

Y1
i′

→ Y0
d′

→ Y
‖ ↓t ↓v

Y1
v1→ Y2

v2→ Y3

for the property of the pullback, there exists a unique morphism f0 : X0 → Y0

such that d′f0 = fd and tf0 = f2s.
Suppose there is an object g : W → Z and morphisms (λ1, λ2) : g → f2 and

(µ1, µ2) : g → f3 in Morph (B, C) such that (u2, v2) (λ1, λ2) = (µ1, µ2) (u, v) .
Then, by the pullback property, there exist unique morphisms α : W → X0 and
β : Z → Y0 in A such that sα = λ1, dα = µ1, tβ = λ2 and d′β = µ2.

Now observe that d′ (f0α − βg) = fdα − µ2g = 0 and t (f0α − βg) =
f2sα−λ2g = f2λ1 − λ2g = 0. By the pullback property (α, β) is a morphism in
Morph (B, C) .

A dual argument proves K3op.
�

3 Lift categories

Here we recall the properties of lift categories needed in our work. Now suppose
A is a Krull-Schmidt category and X , Y are objects in A. We consider the
category of morphisms in A, f : W → Z, with W a finite direct sum of direct
summands of X and Z a finite direct sum of direct summands of Y . We see
that this category of morphisms can be seen as a lift category.

Definition 3.1 A lift pair (R, ξ) is given by a ring R and an exact sequence of
R−bimodules

ξ : 0 → M
i
→ E

π
→ R → 0

Definition 3.2 Given a lift pair (R, ξ) we define the lift category ξ (R) as
follows: the objects are pairs (P, e) where P is a projective R−module and
e : P → E ⊗R P is an R−morphism such that the composition

P
e
→ E ⊗R P

π⊗1
→ R ⊗R P

∼=
→ P

is 1P . A morphism f : (P, e) → (P ′, e′) is an R−morphism f : P → P ′ such
that the following diagram is commutative
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P
f
→ P ′

e ↓ ↓e′

E ⊗R P
1⊗f
→ E ⊗R P ′

An object (P, e) in ξ (R) is called finite if and only if P is a finitely generated
R−module.

Definition 3.3 Let ξ (R) be a lift category and F0 : ξ (R) → R−Proj the

forgetful functor. We define H as the class of sequences Y
i
→ Z

d
→ X in ξ (R)

such that the sequence 0 → F0 (Y ) → F0 (Z) → F0 (X) → 0 is exact. It is
known ([5]) that H is an exact structure, and we will always associate this
structure to any lift category.

Definition 3.4 Let A be an additive category. For X an object in the category
A and ΓX = EndA (X)

op
, we denote by GX : A → Mod ΓX the evaluation

functor HomA (X, ?) .

Proposition 3.5 (II.2.1 [1]) Let A be an additive Krull-Schmidt category with

splitting idempotents. Let X be in A, then:

1. GX : HomA (W, Z) → HomΓX
(GX (W ) , GX (Z)) is an isomorphism for

W in addX and Z in A.

2. If W is in addX then GX (W ) is in P (ΓX) .

3. GX |addX : addX → P (ΓX) is an equivalence of categories.

Remark 3.6 Let A be an additive Krull-Schmidt category with splitting idem-
potents and X, Y ∈ A.

Assume X = ⊕n
i Xi and Y = ⊕m

t Yt, where each summand is indecomposable
and the summands are pairwise non-isomorphic. It is clear that GX (Y ) is a
ΓX − ΓY −bimodule.

Let ei be the idempotent of ΓX determined by Xi and W ∼= ⊕n
i ciXi, then

qn
i ciΓXei

∼= GX (W ) as ΓX−modules.
Now let Z be in addY , there is a ΓX−isomorphism φZ : GX (Y ) ⊗ΓY

GY (Z) → GX (Z) given by u ⊗ v 7→ vu.
Moreover, if g : Z → Z ′ is a morphism in addY we have a commutative

diagram of ΓX−modules:

GX (Y ) ⊗ΓY
GY (Z)

φZ
→ GX (Z)

↓1⊗GY (g) ↓GX(g)

GX (Y ) ⊗ΓY
GY (Z ′)

φZ′

→ GX (Z ′)

This remark ends with the next convention: if A is an additive Krull-Schmidt
category with splitting idempotents, it always has the exact structure of the
trivial extensions; if it is not indicated in other way, we think in A as an exact
category with trivial extensions.
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Proposition 3.7 Let A be an additive Krull-Schmidt category with splitting

idempotents, X and Y in A where X = ⊕n
i Xi, Y = ⊕m

t Yt, and (X1, ..., Xn)
and (Y1, ..., Ym) are pairwise non-isomorphic indecomposable objects in A. Then

there is an equivalence of categories Θ : Morph (addX, addY ) → ξX
Y

(

RX
Y

)

,

where the lift category is determined by the splitting lift pair
(

RX
Y , ξX

Y

)

:

0 →

(

0 HomA (X, Y )
0 0

)

→

(

ΓX HomA (X, Y )
0 ΓY

)

→

(

ΓX 0
0 ΓY

)

→ 0

Moreover the functor Θ is an exact functor, i.e., it sends EaddX
addY -extensions

to H-extensions in ξX
Y

(

RX
Y

)

.

Proof. ξX
Y

(

RX
Y

)

is equivalent to the category of ΓX−morphisms t : PX →
HomA (X, Y )⊗ΓY

PY , where PX and PY are ΓX−projective and ΓY −projective
modules respectively.

For α ∈ HomA (W, Z) in Morph (addX, addY ) put Θ (α) = φ−1
Z GX (α) . Let

α′ ∈ HomA (W ′, Z ′) and (f, g) : α → α′ be in Morph (addX, addY ) we define
Θ (f, g) =

(

GX (f) , 1HomA(X,Y ) ⊗ GY (g)
)

.
The functor Θ is dense by proposition 3.5.3. By proposition 3.5.1 and remark

3.6 it follows that Θ is a full and faithful functor. The exactness is immediate.
�

4 Complexes and projective resolutions

In this section we see some relations between the homotopy category of upper
bounded complexes over ProjΛ with bounded homology and the complexes of
fixed size over ProjΛ (see proposition 4.7).

Notation 4.1 Let A be an additive category.

1. Denote by C(A) the category of complexes over A, a complex X ∈ C(A)
is a sequence

(

X i, di
X

)

i∈Z
with X i ∈ A and di

X : X i → X i+1 morphisms

in A such that di+1
X di

X = 0. If X =
(

X i, di
X

)

i∈Z
and Y =

(

Y i, di
Y

)

i∈Z
are

two complexes, a morphism f : X → Y is a sequence of morphisms in A,
(

f i : X i → Y i
)

i∈Z
such that f i+1di

X = di
Y f i.

2. If X ∈ C(A) and s ∈ Z, the translation functors are defined by (X [s])i =

X i+s and
(

dX[s]

)i
= (−1)

s
(dX)

i+s
.

3. Recall that f, g ∈ HomC(A) (X, Y ) are homotopic if there are morphisms

hi : X i → Y i−1 such that f i − gi = hi+1 (dX)
i
+ (dY )

i−1
hi for all i ∈ Z.

For X and Y complexes in C(A), we denote by HomK(X, Y ) the homo-
morphisms in the homotopy category.

Definition 4.2
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1. We denote by C≤m(A) the full subcategory of complexes X ∈ C(A) such
that X i = 0 for i > m, and by C≥m(A) the full subcategory of complexes
X ∈ C(A) such that X i = 0 for i < m. For C [m,n](A) we mean the
intersection C≤n(A) ∩ C≥m(A).

2. Let us denote by tm : C(A) → C≤m(A) the “erase at right” functor, given
in objects as tm (X) = ((tm(X))i, di

tm(X)) :

(tm(X))
i
=

{

X i if m ≥ i
0 otherwise

}

,
(

dt(m)(X)

)i
=

{

di
X if i < m
0 otherwise

}

If f : X → Y is a morphism of complexes then tm (f) = ((tm(f)i) where

tm(f)i =

{

f i if m ≥ i
0 otherwise

}

Dually we define the functor lm : C(A) → C≥m(A) “erase at left”.

Now we denote by sm : C(A) → C≥m(A) the functor “erase and pull”,
given in objects as follows:

sm(X)i =

{

X i+1 if i ≥ m
0 otherwise

}

, di
sm(X) =

{

di+1
X if i ≥ m
0 otherwise

}

If f : X → Y is a morphism of complexes then:

(sm(f))
i
=

{

f i+1 if i ≥ m
0 otherwise

}

3. We define the m-bending functor

km : C(A) → Morph
(

C≤m(A), C≥m(A)
)

as follows: km (X) =
(

ui
)

: tm(X) → sm(X) where um = dm
X and

ui = 0 for i 6= m, and for a morphism f : X → Y we have km (f) =
(tm (f) , sm (f)) .

Remark 4.3 In C(A) there is a natural exact structure E given by composable

pairs f : X → Y, g : Y → Z such that 0 → X i f i

→ Y i gi

→ Zi → 0 are split
exact for all i ∈ Z. The exact category (C(A), E) has enough projectives and
enough injectives, moreover the projectives coincide with the injectives. The
stable category C(A), which is the category with the same objects as C(A) and
morphisms those in C(A) modulo the morphisms which are factorized through
projectives, coincides with K(A), the homotopy category of C(A).
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Remark 4.4 Observe that by proposition 2.3, there are canonical induced exact
structures on C≤n(A), C≥m(A) and on C≤n(A) ∩ C≥m(A).

The definitions introduced in this section allow us to describe in a short way
the next result.

Lemma 4.5 km : C(A) → Morph
(

C≤m(A), C≥m(A)
)

is an exact isomor-

phism of categories for any m ∈ Z.

Since (C(ProjΛ), E) is an exact category for X, Y in C(ProjΛ) and n a
positive integer we have the extension group Extn

C(ProjΛ)(X, Y ), see 12.3 of [8].

For n = 1, Ext1C(ProjΛ)(X, Y ) coincides, as in abelian categories, with the set
of equivalence classes of sequences in E , Y → E → X . For X, Y in U , a full
subcategory of C(ProjΛ) closed under extensions, we have the extension groups
Extj

U (X, Y ) corresponding to the induced exact structure on U . Through the
paper we say that W an object of U , is projective (respectively injective ) if for
all X ∈ U , Ext1U (W, X) = 0 (respectively Ext1U (X, W ) = 0).

For Y in the category C(ProjΛ) there is an exact sequence in E , Y → W →
Y [1] with W injective. Then for all X ∈ C(ProjΛ) we have Ext1C(ProjΛ)(X, Y ) ∼=
HomC(ProjΛ)(X, Y [1])/I(X, Y [1]) ∼= HomK(X, Y [1]), where I(X, Y [1]) is the
subspace of morphisms which are factorized through injectives. If u is any
integer and P a projective Λ-module we define the complex Ju(P ) in C(ProjΛ)
as follows: Ju(P )i = 0 for i 6= u, i 6= u + 1, Ju(P )u = Ju(P )u+1 = P , du

Ju(P ) =

idP . The objects Ju(P ) are projectives and injectives in C(ProjΛ).
For integers m, n with n ≥ m + 1 and P a projective Λ-module we define

the following complexes in C [m,n](ProjΛ):
S(P ) given by S(P )i = 0 for i 6= m, S(P )m = P ; T (P ) defined by T (P )i = 0

for i 6= n, T (P )n = P . The projectives in C [m,n](ProjΛ) are the objects Ju(P ),
u ∈ [m, n − 1] and T (P ), the injectives in C [m,n](ProjΛ) are the complexes
Ju(P ), u ∈ [m, n−1] and S(P ) (see corollary 3.3 of [4]). For Y ∈ C [m,n](ProjΛ)
we have the E-sequence:

Y → ⊕m−1
u=n−1Ju(Y u+1) → Y [1],

Taking lm of the above sequence we obtain the E-sequence in C [m,n](ProjΛ):

Y → S(Y m) ⊕n−1
u=m Ju(Y u+1) → lm(Y [1]).

Observe that if W is an injective in C [m,n](ProjΛ), any morphism h :
Y → W is the sum of morphisms factorized through S(Y m) or through some
Ju(Y u+1), for u ∈ [m, n− 1]. For X, Y ∈ C [m,n](ProjΛ), we denote by I(X, Y )
the subspace of morphisms which are factorized through injectives. The space
I(X, Y ) is generated as k-module by the morphisms which are factorized through
objects of the form S(P ) or Ju(P ) for u ∈ [m, n − 1].

We denote by C [m,n](ProjΛ) the category with the same objects as those of
C [m,n](ProjΛ) and morphisms the morphisms in C [m,n](ProjΛ) modulo those
which are factorized through injectives. The homomorphisms from X to Y in
this category are denoted by HomC[m,n](ProjΛ)(X, Y ).
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Lemma 4.6 Let Y ∈ C [m,n](ProjΛ) with Hm+1(Y ) = 0. Take Y
u
→ W

v
→ Y [1]

be an E-sequence in C [m,n](ProjΛ) with W injective. Then we have:

Ext1C[m,n](ProjΛ)(X, Y ) ∼= HomC[m,n](Proj Λ)(X, Y [1]).

Proof. We have the exact sequence of k-modules: HomC[m,n](ProjΛ)(X, W )
Hom(1,v)
−→ HomC[m,n](ProjΛ)(X, Y [1]) → Ext1C[m,n](ProjΛ)(X, Y ) → 0.

For proving our claim we prove that ImHom(1, v) = I(X, Y [1]). For this we
only need to prove that a morphism h : X → Y [1] which factorizes through
S(P ) is in the image of Hom(1, v). But any morphism h1 : S(P ) → Y [1] is fac-
torized by v if Ext1C[m,n](ProjΛ)(S(P ), Y ) = 0. Now Ext1C[m,n](ProjΛ)(S(P ), Y ) ∼=

Ext1C(ProjΛ)(S(P ), Y ) ∼= HomK(S(P ), Y [1]). Take h : S(P ) → Y [1] a mor-

phism of complexes then hm : P → Y m+1 is such that dm+1
Y hm = 0. Since

Hm+1(Y ) = 0, there is a g : P → Y m with dm
Y g = hm. This implies that h is

homotopic to zero. Consequently HomK(S(P ), Y [1]) = 0, proving our claim.
�

Proposition 4.7 Let W and Z be complexes in C≤0(ProjΛ) with H i(W ) = 0
and H i(Z) = 0 for i ≤ −t for some positive integer number t. Then, for j > 0
and m ≥ 0

Extj

C(ProjΛ) (W, Z) ∼= Ext1C(ProjΛ)

(

l−(j+t+m)W, (l−(1+t+m)Z) [j − 1]
)

as EndC(ProjΛ) (Z) − EndC(ProjΛ) (W )−bimodules.

Proof. We denote by L[−s,0] the full subcategory of K≤0(ProjΛ), the ho-
motopy category of C≤0(ProjΛ), whose objects are those X such that H i(X) =
0 for i ≤ −s. We recall (see for instance Corollary 5.7 of [4]) that l−s induces
an equivalence:

l−s : L[−s,0] → C [−s,0](ProjΛ).

For s ≥ j, l−t−sW, l−t−s(Z[j]) are in L[−t−s,0], then Extj

C(ProjΛ)(W, Z) ∼=

HomK(W, Z[j]) ∼= HomC[−t−s,0](ProjΛ)(l−t−sW, l−t−s(Z[j])). Observe we have
l−s−t(Z[j]) = (l−s−t+jZ)[j] = l−t−s[(l−t−s+j−1Z)[j]]. Thus:

Extj

C(ProjΛ)(W, Z) ∼= HomC[−t−s,0](ProjΛ)(l−t−sW, l−t−s[(l−t−s+j−1Z[j]])

Now (l−t−s+j−1Z)[j] = (l−t−s+j−1Z)[j − 1][1]. We have that the complex
(l−t−s+j−1Z)[j − 1] ∈ C [−t−s,0](ProjΛ). Moreover ((l−t−s+j−1Z)[j − 1])−t−s =
Z−t−s+j−1, and ((l−t−s+j−1Z)[j − 1])−t−s+1 = Z−t−s+j . Since s ≥ j, −t− s +
j = −t− (s− j) ≤ −t. Therefore H−t−s+1((l−t−s+j−1Z)[j − 1])) = 0. Then by
our previous lemma we have:

Extj

C(ProjΛ)(W, Z) ∼=

HomC[−t−s,0](Proj Λ)(l−t−sW, l−t−s[(l−t−s+j−1Z[j − 1][1]])
∼= Ext1C[−t−s,0](ProjΛ)(l−s−tW, (l−t−s+j−1Z)[j − 1])
∼= Ext1C(ProjΛ)(l−s−tW, (l−t−s+j−1Z)[j − 1]).
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Taking s = j + m we obtain our result.
�

For M ∈ mod Λ we choose a minimal projective resolution:

... → P−m
M

d
−m
M→ P−m+1

M

d
−m+1
M→ ...P−1

M

d
−1
M→ P 0

M

ηM
→ M → 0

We denote by PM the complex in C≤0(projΛ) :

... → P−m
M

d
−m
M→ P−m+1

M

d
−m+1
M→ ...P−1

M

d
−1
M→ P 0

M → 0 → 0...

Corollary 4.8 Let L and N be Λ−modules and PL, PN as above. Then, for
j ≥ 0 and m ≥ 0

Extj
Λ (M, N) ∼= ExtC(ProjΛ)

(

l−(1+j+m) (PM ) , l−(2+m) (PN ) [j − 1]
)

.

as EndΛ (M) − EndΛ (N)−bimodules.

Proof. We know that

Extj
Λ(M, N) ∼= HomK(PM , PN [j]) ∼= Extj

C(ProjΛ)(PM , PN ).

Now in proposition 4.7 put W = PM , Z = PN , then t = 1 and we obtain our
result.

�

We will need the following results.

Lemma 4.9 Suppose Y ∈ C [−m+1,0](Λ−proj) is such that Imdi
Y ⊂ radY i+1

for all i ∈ Z and dimkHj(Y ) ≤ c for all j and for some u ∈ [−m + 2, ..., 0],
dimkY u ≤ du, then dimkY u−1 ≤ (du + c)L, with L = dimkΛ.

Proof. We have dimkY u−1/Kerdu−1
Y = dimkImdu−1

Y ≤ du, moreover we
know that dimkKerdu−1

Y /Imdu−2
Y ≤ c. Therefore dimkY u−1/Imdu−2

Y ≤ c + du.
Here Imdu−2

Y ⊂ radY u−1, thus dimkY u−1/radY u−1 ≤ dimkY u−1/Imdu−2
Y .

Consequently, dimkY u−1 ≤ (c + du)L.
�

Lemma 4.10 Let Y ∈ C [−m+1,0](projΛ), with Imdi
Y ⊂ radY i+1 for all i ∈ Z,

such that for all j ∈ Z, we have the inequality dimkHj(Y ) ≤ c for some fixed c.
Then

dimkY ≤ c(mL + (m − 1)L2 + (m − 2)L3 + ... + 2Lm−1 + Lm).

Proof. Here Y 1 = 0, then by our previous lemma, dimkY 0 ≤ cL. Then
again by lemma 4.9 we have, dimkY −1 ≤ c(L+L2), dimkY −2 ≤ c(L+L2 +L3),
..., dimkY −m+1 ≤ c(L + L2 + ... + Lm). From here we obtain our result.

�

Theorem 4.11 (See corollary 9 in [9]) Let Λ be a finite-dimensional algebra over

an algebraically closed field k and d = (di)i∈Z be a collection of non-negative
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integers with almost all di = 0. Then the family U(d) of objects X ∈ Db(Λ)
such that dimkH i(X) = di for all i ∈ Z and HomDb(Λ)(X, X [1]) = 0 has only a

finite number of isomorphism classes in Db(Λ).

Proof. We may assume di = 0 for all i ≤ t and i > 0. Consider now the
family V(d) of those P ∈ C≤0(projΛ) such that dimkH i(P ) = di for all i ∈ Z,
HomK(P, P [1]) = 0 and for all i ∈ Z, Imdi

P ⊂ radP i+1. For each X ∈ U(d) we
may choose a quasi-isomorphism PX → X with PX ∈ C≤0(proj Λ).

We have HomK(PX , PX [1]) ∼= HomDb(Λ)(X, X [1]). Clearly the assignament
X 7→ PX stablishes a bijection between the isomorphism classes of U(d) and
those of V(d). If P ∈ V(d), then P ∈ L[−t−1,0].

By proposition 4.7 for P ∈ V(d) we have: 0 = HomK(P, P [1]) ∼=
Ext1C(ProjΛ)(P, P ) ∼= Ext1C[−t−1,0](ProjΛ)(l−t−1P, l−t−1P ).

Using Lemma 4.10 one can prove that there is a number n(d), such that
if P ∈ V(d) then

∑

i∈Z
dimk(l−t−1P )i ≤ n(d). Therefore the functor l−t−1

induces a bijection between the isomorphism classes of V(d) and the isomor-
phism classes of a subfamily of the family F(n(d)) consisting of the complexes
Z ∈ C [−t−1,0](proj Λ) which have not injectives in this category as direct sum-
mands, Ext1C[−t−1,0](projΛ)(Z, Z) = 0, and

∑

i∈Z
dimk(Z)i ≤ n(d).

The category C [−t−1,0](Mod Λ) is an abelian category with enough pro-
jectives, the projectives in this category are the complexes T (P ), Ju(P ), u ∈
[−t − 1,−1] introduced before. Then taking H = ⊕−1

u=−t−1Ju(Λ) ⊕ T (Λ) and
Γ = EndC[−t−1,0](ModΛ)(H), the functor

F = HomC[−t−1,0](ModΛ)(H,−) : C [−t−1,0](Mod Λ) → Mod Γ

is an equivalence of abelian categories.
Now there is a number m(d) such that for all Z ∈ F(n(d)), dimkF (Z) ≤

m(d).
Since the category C [−t−1,0](projΛ) is a full subcategory of the category

C [−t−1,0](Mod Λ), closed under extensions, then for Z ∈ F(n(d)),
0 = Ext1C[−t−1,0](projΛ)(Z, Z) = Ext1C[−t−1,0](ModΛ)(Z, Z) ∼= Ext1Γ(F (Z), F (Z)).

Therefore F gives a bijection between the isomorphism classes of F(n(d)) and
the isomorphism classes of a family of Γ-modules M with dimkM ≤ m(d) and
ExtΓ(M, M) = 0. But by a result of D. Voigt ([10]), this last family has only
a finite number of isomorphism classes. This implies that our family U(d) has
only a finite number of isomorphism classes.

�

5 An application to modules

Let Λ be an artin algebra over a commutative artinian ring k. In this section we
study under which conditions two finitely generated Λ-modules M and N with
ExtΛ(M, M) = 0 and ExtΛ(N, N) = 0 are isomorphic. As before for M ∈ mod Λ
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we choose a minimal projective resolution:

... → P−m
M

d
−m
M→ P−m+1

M

d
−m+1
M→ ...P−1

M

d
−1
M→ P 0

M

ηM
→ M → 0.

We denote by PM the complex in C≤0(projΛ) :

... → P−m
M

d
−m

M→ P−m+1
M

d
−m+1
M→ ...P−1

M

d
−1
M→ P 0

M → 0 → 0...

For M ∈ mod Λ we put Ω(M) = Ker(ηM ).

Theorem 5.1 Let M and N be in mod Λ such that Ext1Λ (M, M) = 0 and

Ext1Λ (N, N) = 0. Then M ∼= N if and only if M/radM ∼= N/radN and Ω(M) ∼=
Ω(N).

Proof. Neccesity is obvious, let us to prove sufficiency.
Let P ′

M = l−2 (PM ) and P ′
N = l−2 (PN ) .

By lemma 4.5 we have an exact isomorphism of categories

k−1 : C (ProjΛ) → Morph
(

C≤−1 (ProjΛ) , C≥−1 (ProjΛ)
)

wich induces an exact isomorphism of categories

k : C [−2,0] (ProjΛ) → Morph
(

C [−2,−1] (ProjΛ) , C [−1,−1] (ProjΛ)
)

.

We denote by M2 the category Morph
(

C [−2,−1] (ProjΛ) , C [−1,−1](ProjΛ
)

).

By corollary 4.8 we have Ext1C(ProjΛ)(P
′
M , P ′

M ) ∼= Ext1Λ(M, M) = 0. Then

(1) ExtM2(k(P ′
M ), k(P ′

M )) = 0.

In a similar way
(2) ExtM2(k(P ′

N ), k(P ′
N )) = 0.

The categories of bounded complexes over the finitely generated projective Λ-
modules are Krull-Schmidt categories, so using the functors ”erase at right”
and ”pull and erase” we get t−1 (P ′

M ) ∼= ⊕u
i=1aiXi and s−1 (P ′

M ) ∼= ⊕v
j=1bjYj ,

t−1 (P ′
N ) ∼= ⊕u

i=1ciXi s−1 (P ′
N ) ∼= ⊕v

j=1hjYj , where all decompositions are sums
of pairwise non-isomorphic indecomposable objects. Now t−1 (P ′

M ) and t−1 (P ′
N )

correspond to minimal projective resolutions of Ω(M) and Ω(N) respectively,
since Ω(M) ∼= Ω(N) then ai = ci for all i ∈ {1, ..., v}. On the other hand the
only non zero module in the complexes s−1 (P ′

M ) and s−1 (P ′
M ) are P 0

M and
P 0

N respectively, since M/radM ∼= N/radN, P 0
M

∼= P 0
N . Therefore s−1 (P ′

M ) ∼=
s−1 (P ′

N ) and this implies that bj = hj for j ∈ {1, ..., u}. Let X = ⊕u
i=1Xi and

Y = ⊕v
j=1Yj .

By proposition 3.7 we have an exact equivalence of categories

Θ : Morph (addX, addY ) → ξX
Y

(

RX
Y

)

Then by (1) and (2) we have:

12



Ext
ξX

Y (RX
Y ) (Θk (P ′

M ) , Θk (P ′
M )) = 0, Ext

ξX
Y (RX

Y ) (Θk (P ′
N ) , Θk (P ′

N )) = 0.

It follows by 5.1 of [5] that Θk (P ′
M ) ∼= Θk (P ′

N ) . Then P ′
M

∼= P ′
N and

consequently M ∼= N.
�

Theorem 5.2 Assume M, N in mod Λ have finite projective dimension and

Ext1Λ(M, M) ∼= Ext1Λ(N, N) = 0 and, for all j > 1 Extj
Λ(M, Ωj−1(M)) ∼=

Extj
Λ(N, Ωj−1(N)) = 0, then M ∼= N if and only for all j, P−j

M
∼= P−j

N .

Proof. Neccesity is obvious, let us to prove sufficiency by induction on
m = max (p(M), p(N)) , where p(M) and p(N) are the projective dimension of
M and N respectively. If m = 0 our claim is trivial. Suppose our claim proved
for m−1, we will prove it for m. But Ext1Λ(Ω(M), Ω(M)) ∼= Ext2Λ(M, Ω(M)) = 0
and for all j > 1, Extj

Λ(Ω(M), Ωj−1(Ω(M))) ∼= Extj+1
Λ (M, Ωj(M)) = 0. Thus

Ω(M) satisfies the hypothesis of our theorem, similarly Ω(N) also satisfies the
hypothesis of our theorem, since p(Ω(M)) = p(Ω(N)) = m−1 and P 1

M/radP 1
M

∼=
Ω(M)/radΩ(M) ∼= P 1

N/radP 1
N

∼= Ω(N)/radΩ(N), by the induction hypothesis,
Ω(M) ∼= Ω(N). Here P 0

M
∼= P 0

N , then by theorem 5.1, we obtain M ∼= N.
�

Example 5.3 We present an example of two non-isomorphic modules with both
having finite minimal projective resolution and the same projectives. Let Λ be
the k−algebra of the quiver

◦1

α1

⇒
α2

◦2

β1

⇒
β2

◦3

with the relation {β1α1, β2α2} . The representations

k
1

⇒
0

k
0

⇒
1

k k
0

⇒
1

k
1

⇒
0

k

have trivial selfextensions group but both have a minimal projective resolution
with data (..., 0, ..., 0, Λe3, Λe2, Λe1) .
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[7] Dräxler, P., Reiten, I., Smalø, S., Solberg, O. Exact categories and vector

space categories, Trans. Amer. Math. Soc. 351,(1999), 647-682.

[8] Gabriel, P., Roiter, A.V. Representations of finite dimensional algebras. En-
cyclopaedia of the Mathematical Sciences. 73, Kostrikin, A.I., Shafarevich,
I.V. (Eds.), Algebra VIII, Springer (1992).
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