On Modules and Complexes without Self-extensions

Raymundo Bautista, Efrén Pérez

Abstract

Let Λ be an artin algebra over a commutative artinian ring, k. If M is a finitely generated left Λ -module, we denote by $\Omega(M)$ the kernel of $\eta_M : P_M \to M$ a minimal projective cover. We prove that if M and N are finitely generated left Λ -modules and $\operatorname{Ext}^1_{\Lambda}(M, M) = 0$, $\operatorname{Ext}^1_{\Lambda}(N, N) = 0$, then $M \cong N$ if and only if $M/\operatorname{rad} M \cong N/\operatorname{rad} N$ and $\Omega(M) \cong \Omega(N)$.

Now if k is an algebraically closed field and $(d_i)_{i\in\mathbb{Z}}$ is a sequence of non negative integers almost all of them zero, then we prove that the family of objects $X \in \mathcal{D}^b(\Lambda)$, the bounded derived category of Λ , with $\operatorname{Hom}_{\mathcal{D}^b(\Lambda)}(X, X[1]) = 0$ and $\dim_k H^i(X) = d_i$ for all $i \in \mathbb{Z}$, has only a finite number of isomorphism classes (see [9]).

1 Introduction

Let Λ be an artin algebra over a commutative artinian ring k. We denote by Mod Λ the category of left Λ -modules, by mod Λ , proj Λ we denote the full subcategories of Mod Λ whose objects are respectively, the finitely generated Λ -modules and the finitely generated projective Λ -modules. By $\mathcal{D}^b(\Lambda)$ we denote the bounded derived category of Λ .

For $M \in \text{mod } \Lambda$, consider $P_M^0 \xrightarrow{\eta_M} M$ a minimal projective cover and $\Omega(M) = \ker(\eta_M)$. Here we prove the following: if M, N are in mod Λ and $\operatorname{Ext}^1_{\Lambda}(M, M) \cong \operatorname{Ext}^1_{\Lambda}(N, N) = 0$, then $M \cong N$ if and only if $M/\operatorname{rad} M \cong N/\operatorname{rad} N$ and $\Omega(M) \cong \Omega(N)$.

For $M \in \text{mod} \Lambda$ with finite projective dimension consider a minimal projective resolution:

$$0 \to P_M^{-m(M)} \to P_M^{-m(M)+1} \to \dots \to P_M^0 \xrightarrow{\eta_M} M \to 0.$$

Suppose that M, N are in $\operatorname{mod} \Lambda$, $\operatorname{Ext}^{1}_{\Lambda}(M, M) \cong \operatorname{Ext}^{1}_{\Lambda}(N, N) = 0$ and for all j > 0, $\operatorname{Ext}^{j}_{\Lambda}(M, \Omega^{j-1}(M)) \cong \operatorname{Ext}^{j}_{\Lambda}(N, \Omega^{j-1}(N)) = 0$, then we prove using the result above that $M \cong N$ if and only if m(M) = m(N) and for all $j, P_{M}^{-j} \cong P_{N}^{-j}$.

¹2000 Mathematics subject classification: 16G60, 16G10, 16A46, 15A21.

 $Key\ words\ and\ phrases:$ Artin algebra, exact structure, extensions, lift category, projective resolution.

Now let Λ be a finite-dimensional algebra over an algebraically closed field kand $\mathbf{d} = (d_i)_{i \in \mathbb{Z}}$ be a collection of non-negative integers with almost all $d_i = 0$. Then the family $\mathcal{U}(\mathbf{d})$ of objects $X \in \mathcal{D}^b(\Lambda)$ such that $\dim_k H^i(X) = d_i$ for all $i \in \mathbb{Z}$ and $\operatorname{Hom}_{\mathcal{D}^b(\Lambda)}(X, X[1]) = 0$ has only a finite number of isomorphism classes in $\mathcal{D}^b(\Lambda)$. This result is closely related with Corollary 9 of [9].

For the proof of the above mentioned results we see that some problems involving upper bounded complexes of finitely generated projective Λ -modules with bounded homology can be reduced to problems involving complexes of fixed size of finitely generated projective Λ -modules (see Proposition 4.7). Then in this last case we can apply properties of lift categories introduced by W.W Crawley-Boevey in [6].

2 Exact structures and exact subcategories

Here we recall the notion of exact category. For $(\mathcal{A}, \mathcal{E})$, an exact category, \mathcal{B}, \mathcal{C} full subcategories of \mathcal{A} closed under extensions we consider the category of morphisms $f: W \to Z$ with W an object of \mathcal{B} and W an object of \mathcal{C} . Then we introduce an exact structure on this category of morphisms.

Definition 2.1 Let \mathcal{A} be an additive category. A pair of composable morphisms

is called exact if i is kernel of d and d is cokernel of i.

Let \mathcal{E} be a class of exact composable sequences (i, d) in \mathcal{A} closed under isomorphisms; we call $(i, d) \in \mathcal{E}$ a conflation, i an inflation and d a deflation.

 \mathcal{E} is an exact structure if it satisfies the following axioms:

K1) 1₀ is a deflation.

K2) Composition of deflations is a deflation.

K3) For every $h \in \mathcal{A}(Z, Z_0)$ and all deflation $d_0 \in \mathcal{A}(Y_0, Z_0)$ there exists a pullback

$$\begin{array}{ccccc}
 & d \\
Y & \to & Z \\
 {}^g \downarrow & {}_{d_0} & \downarrow^h \\
Y_0 & \to & Z_0
\end{array}$$

where d is a deflation

 $K3^{op}$) For every $f \in \mathcal{A}(X, X_0)$ and all inflation $i \in \mathcal{A}(Y, Z)$ there exists a pushout

$$\begin{array}{cccc} & i & \\ X & \to & Y \\ {}^{f} \downarrow & {}_{i_0} & \downarrow^{g} \\ X_0 & \to & Y_0 \end{array}$$

where i_0 is an inflation

K4) Retractions in \mathcal{A} have kernels.

In this situation we say that $(\mathcal{A}, \mathcal{E})$ is an exact category. For simplicity, if \mathcal{E} is an exact structure we use extension instead of conflation.

Remark 2.2 It is known ([7]) that the above axioms imply their duals.

Moreover, in an exact category the next claims are true ([7]); if dd' is a deflation then d is a deflation, if i'i is an inflation then i is an inflation.

Also, K3 induces a diagram of extensions

where the right square is a pullback and a pushout, and $K3^{op}$ a diagram of extensions

where the left square is a pullback and a pushout.

The following is a well known result.

Proposition 2.3 Let $(\mathcal{A}, \mathcal{E})$ be an exact category, and \mathcal{B} a full subcategory closed under direct summands and extensions. Then $(\mathcal{B}, \mathcal{E}_{\mathcal{B}})$ is an exact structure, where $\mathcal{E}_{\mathcal{B}}$ is the restriction of the class \mathcal{E} to \mathcal{B} .

Definition 2.4 Let \mathcal{A} be a category, and \mathcal{B} and \mathcal{C} subcategories of \mathcal{A} . We define the category $Morph(\mathcal{B},\mathcal{C})$ as follows: the objects are the morphisms $f: X \to Y$ in \mathcal{A} such that $X \in \mathcal{B}$ and $Y \in \mathcal{C}$, and a morphism from $f: X \to Y$ to $f': X' \to Y'$ is a pair (u, v) of morphisms $u: X \to X'$ in \mathcal{B} and $v: Y \to Y'$ in \mathcal{C} such that f'u = vf.

Proposition 2.5 Let $(\mathcal{A}, \mathcal{E})$ be an exact category, and \mathcal{B} and \mathcal{C} full subcategories of \mathcal{A} closed under direct summands and extensions. Then $(Morph(\mathcal{B},\mathcal{C}),\mathcal{E}_{\mathcal{C}}^{\mathcal{B}})$ is an exact category, where $\mathcal{E}_{\mathcal{C}}^{\mathcal{B}}$ is the class of the pairs $((u_0, v_0), (u_1, v_1))$ such that $(u_0, u_1) \in \mathcal{E}_{\mathcal{B}}$ and $(v_0, v_1) \in \mathcal{E}_{\mathcal{C}}$.

Proof. Let $f_1 : X_1 \to Y_1$, $f_2 : X_2 \to Y_2$ and $f_3 : X_3 \to Y_3$ be objects in $Morph(\mathcal{B}, \mathcal{C})$ and $\eta : f_1 \stackrel{(u_1, v_1)}{\longrightarrow} f_2 \stackrel{(u_2, v_2)}{\longrightarrow} f_3$ an element of $\mathcal{E}_{\mathcal{C}}^{\mathcal{B}}$. Clearly $\mathcal{E}_{\mathcal{C}}^{\mathcal{B}}$ is closed under isomorphisms.

Now we check that η is an exact pair.

Suppose we have an object $f: X \to Y$ and a morphism $(u, v): f \to f_2$ in $Morph(\mathcal{B},\mathcal{C})$ such that $(u_2,v_2)(u,v)=0$. Then there exist unique morphisms $s: X \to X_1$ and $t: Y \to Y_1$ in \mathcal{A} such that $u_1 s = u$ and $v_1 t = v$. We have $v_1(f_1s - tf) = f_2u_1s - vf = 0$, then $f_1s = tf$ following that (s, t) is a morphism. The proof of (u_2, v_2) being cokernel is dual.

K1, K2 and K4 are immediate from the proposition 2.3.

In order to prove K3, let f be as before, take $(u, v) : f \to f_3$ a morphism in $Morph(\mathcal{B}, \mathcal{C})$, and consider the pullback diagrams

for the property of the pullback, there exists a unique morphism $f_0: X_0 \to Y_0$ such that $d'f_0 = fd$ and $tf_0 = f_2 s$.

Suppose there is an object $g: W \to Z$ and morphisms $(\lambda_1, \lambda_2): g \to f_2$ and $(\mu_1, \mu_2): g \to f_3$ in $Morph(\mathcal{B}, \mathcal{C})$ such that $(u_2, v_2)(\lambda_1, \lambda_2) = (\mu_1, \mu_2)(u, v)$. Then, by the pullback property, there exist unique morphisms $\alpha: W \to X_0$ and $\beta: Z \to Y_0$ in \mathcal{A} such that $s\alpha = \lambda_1, d\alpha = \mu_1, t\beta = \lambda_2$ and $d'\beta = \mu_2$.

Now observe that $d'(f_0\alpha - \beta g) = f d\alpha - \mu_2 g = 0$ and $t(f_0\alpha - \beta g) = f_2 s\alpha - \lambda_2 g = f_2 \lambda_1 - \lambda_2 g = 0$. By the pullback property (α, β) is a morphism in $Morph(\mathcal{B}, \mathcal{C})$.

A dual argument proves $K3^{op}$.

3 Lift categories

Here we recall the properties of lift categories needed in our work. Now suppose \mathcal{A} is a Krull-Schmidt category and X, Y are objects in \mathcal{A} . We consider the category of morphisms in $\mathcal{A}, f: W \to Z$, with W a finite direct sum of direct summands of X and Z a finite direct sum of direct summands of Y. We see that this category of morphisms can be seen as a lift category.

Definition 3.1 A lift pair (R, ξ) is given by a ring R and an exact sequence of R-bimodules

$$\xi: 0 \to M \xrightarrow{i} E \xrightarrow{\pi} R \to 0$$

Definition 3.2 Given a lift pair (R,ξ) we define the lift category $\xi(R)$ as follows: the objects are pairs (P,e) where P is a projective R-module and $e: P \to E \otimes_R P$ is an R-morphism such that the composition

$$P \stackrel{e}{\to} E \otimes_R P \stackrel{\pi \otimes 1}{\to} R \otimes_R P \stackrel{\cong}{\to} P$$

is 1_P . A morphism $f: (P, e) \to (P', e')$ is an R-morphism $f: P \to P'$ such that the following diagram is commutative

$$\begin{array}{cccc} P & \stackrel{f}{\to} & P' \\ \stackrel{e}{\downarrow} & & \downarrow^{e'} \\ E \otimes_R P & \stackrel{1 \otimes f}{\to} & E \otimes_R P \end{array}$$

An object (P, e) in $\xi(R)$ is called *finite* if and only if P is a finitely generated R-module.

Definition 3.3 Let $\xi(R)$ be a lift category and $F_0 : \xi(R) \to R$ -Proj the forgetful functor. We define \mathcal{H} as the class of sequences $Y \xrightarrow{i} Z \xrightarrow{d} X$ in $\xi(R)$ such that the sequence $0 \to F_0(Y) \to F_0(Z) \to F_0(X) \to 0$ is exact. It is known ([5]) that \mathcal{H} is an exact structure, and we will always associate this structure to any lift category.

Definition 3.4 Let \mathcal{A} be an additive category. For X an object in the category \mathcal{A} and $\Gamma_X = \operatorname{End}_{\mathcal{A}}(X)^{op}$, we denote by $G_X : \mathcal{A} \to \operatorname{Mod}\Gamma_X$ the evaluation functor $\operatorname{Hom}_{\mathcal{A}}(X,?)$.

Proposition 3.5 (II.2.1 [1]) Let \mathcal{A} be an additive Krull-Schmidt category with splitting idempotents. Let X be in \mathcal{A} , then:

- 1. G_X : Hom_{\mathcal{A}} $(W, Z) \to$ Hom_{Γ_X} $(G_X(W), G_X(Z))$ is an isomorphism for W in addX and Z in \mathcal{A} .
- 2. If W is in addX then $G_X(W)$ is in $\mathcal{P}(\Gamma_X)$.
- 3. $G_X|_{addX}$: $addX \to \mathcal{P}(\Gamma_X)$ is an equivalence of categories.

Remark 3.6 Let \mathcal{A} be an additive Krull-Schmidt category with splitting idempotents and $X, Y \in \mathcal{A}$.

Assume $X = \bigoplus_{i}^{n} X_{i}$ and $Y = \bigoplus_{t}^{m} Y_{t}$, where each summand is indecomposable and the summands are pairwise non-isomorphic. It is clear that $G_{X}(Y)$ is a $\Gamma_{X} - \Gamma_{Y}$ -bimodule.

Let e_i be the idempotent of Γ_X determined by X_i and $W \cong \bigoplus_i^n c_i X_i$, then $\coprod_i^n c_i \Gamma_X e_i \cong G_X(W)$ as Γ_X -modules.

Now let Z be in addY, there is a Γ_X -isomorphism $\phi_Z : G_X(Y) \otimes_{\Gamma_Y} G_Y(Z) \to G_X(Z)$ given by $u \otimes v \mapsto vu$.

Moreover, if $g: Z \to Z'$ is a morphism in addY we have a commutative diagram of Γ_X -modules:

$$\begin{array}{ccc} G_X\left(Y\right) \otimes_{\Gamma_Y} G_Y\left(Z\right) & \stackrel{\phi_Z}{\to} & G_X\left(Z\right) \\ \downarrow^{1 \otimes G_Y(g)} & & \downarrow^{G_X(g)} \\ G_X\left(Y\right) \otimes_{\Gamma_Y} G_Y\left(Z'\right) & \stackrel{\phi_{Z'}}{\to} & G_X\left(Z'\right) \end{array}$$

This remark ends with the next convention: if \mathcal{A} is an additive Krull-Schmidt category with splitting idempotents, it always has the exact structure of the trivial extensions; if it is not indicated in other way, we think in \mathcal{A} as an exact category with trivial extensions.

Proposition 3.7 Let \mathcal{A} be an additive Krull-Schmidt category with splitting idempotents, X and Y in \mathcal{A} where $X = \bigoplus_{i=1}^{n} X_{i}$, $Y = \bigoplus_{t=1}^{m} Y_{t}$, and $(X_{1}, ..., X_{n})$ and $(Y_{1}, ..., Y_{m})$ are pairwise non-isomorphic indecomposable objects in \mathcal{A} . Then there is an equivalence of categories Θ : Morph (addX, addY) $\rightarrow \xi_{Y}^{X}(R_{Y}^{X})$, where the lift category is determined by the splitting lift pair (R_{Y}^{X}, ξ_{Y}^{X}) :

$$0 \to \begin{pmatrix} 0 & Hom_{\mathcal{A}}(X,Y) \\ 0 & 0 \end{pmatrix} \to \begin{pmatrix} \Gamma_X & Hom_{\mathcal{A}}(X,Y) \\ 0 & \Gamma_Y \end{pmatrix} \to \begin{pmatrix} \Gamma_X & 0 \\ 0 & \Gamma_Y \end{pmatrix} \to 0$$

Moreover the functor Θ is an exact functor, i.e., it sends $\mathcal{E}_{addY}^{addX}$ -extensions to \mathcal{H} -extensions in $\xi_Y^X(R_Y^X)$.

Proof. $\xi_Y^X(R_Y^X)$ is equivalent to the category of Γ_X -morphisms $t: P_X \to \operatorname{Hom}_{\mathcal{A}}(X,Y) \otimes_{\Gamma_Y} P_Y$, where P_X and P_Y are Γ_X -projective and Γ_Y -projective modules respectively.

For $\alpha \in \operatorname{Hom}_{\mathcal{A}}(W, Z)$ in Morph(addX, addY) put $\Theta(\alpha) = \phi_Z^{-1}G_X(\alpha)$. Let $\alpha' \in \operatorname{Hom}_{\mathcal{A}}(W', Z')$ and $(f, g) : \alpha \to \alpha'$ be in Morph(addX, addY) we define $\Theta(f, g) = (G_X(f), 1_{\operatorname{Hom}_{\mathcal{A}}(X,Y)} \otimes G_Y(g))$.

The functor Θ is dense by proposition 3.5.3. By proposition 3.5.1 and remark 3.6 it follows that Θ is a full and faithful functor. The exactness is immediate. \Box

4 Complexes and projective resolutions

In this section we see some relations between the homotopy category of upper bounded complexes over $\operatorname{Proj} \Lambda$ with bounded homology and the complexes of fixed size over $\operatorname{Proj} \Lambda$ (see proposition 4.7).

Notation 4.1 Let \mathcal{A} be an additive category.

- 1. Denote by $C(\mathcal{A})$ the category of complexes over \mathcal{A} , a complex $X \in C(\mathcal{A})$ is a sequence $(X^i, d_X^i)_{i \in \mathbb{Z}}$ with $X^i \in \mathcal{A}$ and $d_X^i : X^i \to X^{i+1}$ morphisms in \mathcal{A} such that $d_X^{i+1} d_X^i = 0$. If $X = (X^i, d_X^i)_{i \in \mathbb{Z}}$ and $Y = (Y^i, d_Y^i)_{i \in \mathbb{Z}}$ are two complexes, a morphism $f : X \to Y$ is a sequence of morphisms in \mathcal{A} , $(f^i : X^i \to Y^i)_{i \in \mathbb{Z}}$ such that $f^{i+1} d_X^i = d_Y^i f^i$.
- 2. If $X \in C(\mathcal{A})$ and $s \in \mathbb{Z}$, the translation functors are defined by $(X[s])^i = X^{i+s}$ and $(d_{X[s]})^i = (-1)^s (d_X)^{i+s}$.
- 3. Recall that $f, g \in \operatorname{Hom}_{C(\mathcal{A})}(X, Y)$ are homotopic if there are morphisms $h^i: X^i \to Y^{i-1}$ such that $f^i g^i = h^{i+1} (d_X)^i + (d_Y)^{i-1} h_i$ for all $i \in \mathbb{Z}$. For X and Y complexes in $C(\mathcal{A})$, we denote by $\operatorname{Hom}_K(X, Y)$ the homomorphisms in the homotopy category.

Definition 4.2

- 1. We denote by $C^{\leq m}(\mathcal{A})$ the full subcategory of complexes $X \in C(\mathcal{A})$ such that $X^i = 0$ for i > m, and by $C^{\geq m}(\mathcal{A})$ the full subcategory of complexes $X \in C(\mathcal{A})$ such that $X^i = 0$ for i < m. For $C^{[m,n]}(\mathcal{A})$ we mean the intersection $C^{\leq n}(\mathcal{A}) \cap C^{\geq m}(\mathcal{A})$.
- 2. Let us denote by $t_m : C(\mathcal{A}) \to C^{\leq m}(\mathcal{A})$ the "erase at right" functor, given in objects as $t_m(X) = ((t_m(X))^i, d^i_{t_m(X)})$:

$$(t_m(X))^i = \left\{ \begin{array}{cc} X^i & \text{if } m \ge i \\ 0 & \text{otherwise} \end{array} \right\}, \quad \left(d_{t(m)(X)}\right)^i = \left\{ \begin{array}{cc} d_X^i & \text{if } i < m \\ 0 & \text{otherwise} \end{array} \right\}$$

If $f: X \to Y$ is a morphism of complexes then $t_m(f) = ((t_m(f)^i)$ where

$$t_m(f)^i = \left\{ \begin{array}{cc} f^i & \text{if } m \ge i \\ 0 & \text{otherwise} \end{array} \right\}$$

Dually we define the functor $l_m: C(\mathcal{A}) \to C^{\geq m}(\mathcal{A})$ "erase at left".

Now we denote by $s_m : C(\mathcal{A}) \to C^{\geq m}(\mathcal{A})$ the functor "erase and pull", given in objects as follows:

$$s_m(X)^i = \left\{ \begin{array}{cc} X^{i+1} & \text{if } i \ge m \\ 0 & \text{otherwise} \end{array} \right\}, \quad d^i_{s_m(X)} = \left\{ \begin{array}{cc} d^{i+1}_X & \text{if } i \ge m \\ 0 & \text{otherwise} \end{array} \right\}$$

If $f: X \to Y$ is a morphism of complexes then:

$$(s_m(f))^i = \left\{ \begin{array}{cc} f^{i+1} & \text{if } i \ge m \\ 0 & \text{otherwise} \end{array} \right\}$$

3. We define the m-bending functor

$$\exists_m : C(\mathcal{A}) \to Morph\left(C^{\leq m}(\mathcal{A}), C^{\geq m}(\mathcal{A})\right)$$

as follows: $\exists_m (X) = (u^i) : t_m(X) \to s_m(X)$ where $u^m = d_X^m$ and $u^i = 0$ for $i \neq m$, and for a morphism $f : X \to Y$ we have $\exists_m (f) = (t_m(f), s_m(f))$.

Remark 4.3 In $C(\mathcal{A})$ there is a natural exact structure \mathcal{E} given by composable pairs $f: X \to Y, g: Y \to Z$ such that $0 \to X^i \xrightarrow{f^i} Y^i \xrightarrow{g^i} Z^i \to 0$ are split exact for all $i \in \mathbb{Z}$. The exact category $(C(\mathcal{A}), \mathcal{E})$ has enough projectives and enough injectives, moreover the projectives coincide with the injectives. The stable category $\underline{C}(\mathcal{A})$, which is the category with the same objects as $C(\mathcal{A})$ and morphisms those in $C(\mathcal{A})$ modulo the morphisms which are factorized through projectives, coincides with $K(\mathcal{A})$, the homotopy category of $C(\mathcal{A})$. **Remark 4.4** Observe that by proposition 2.3, there are canonical induced exact structures on $C^{\leq n}(\mathcal{A})$, $C^{\geq m}(\mathcal{A})$ and on $C^{\leq n}(\mathcal{A}) \cap C^{\geq m}(\mathcal{A})$.

The definitions introduced in this section allow us to describe in a short way the next result.

Lemma 4.5 $\exists_m : C(\mathcal{A}) \to Morph(C^{\leq m}(\mathcal{A}), C^{\geq m}(\mathcal{A}))$ is an exact isomorphism of categories for any $m \in \mathbb{Z}$.

Since $(C(\operatorname{Proj}\Lambda), \mathcal{E})$ is an exact category for X, Y in $C(\operatorname{Proj}\Lambda)$ and n a positive integer we have the extension group $\operatorname{Ext}^n_{C(\operatorname{Proj}\Lambda)}(X,Y)$, see 12.3 of [8]. For n = 1, $\operatorname{Ext}^1_{C(\operatorname{Proj}\Lambda)}(X,Y)$ coincides, as in abelian categories, with the set of equivalence classes of sequences in $\mathcal{E}, Y \to E \to X$. For X, Y in \mathcal{U} , a full subcategory of $C(\operatorname{Proj}\Lambda)$ closed under extensions, we have the extension groups $\operatorname{Ext}^j_{\mathcal{U}}(X,Y)$ corresponding to the induced exact structure on \mathcal{U} . Through the paper we say that W an object of \mathcal{U} , is projective (respectively injective) if for all $X \in \mathcal{U}, \operatorname{Ext}^1_{\mathcal{U}}(W, X) = 0$ (respectively $\operatorname{Ext}^1_{\mathcal{U}}(X, W) = 0$).

For Y in the category $C(\operatorname{Proj} \Lambda)$ there is an exact sequence in $\mathcal{E}, Y \to W \to Y[1]$ with W injective. Then for all $X \in C(\operatorname{Proj} \Lambda)$ we have $\operatorname{Ext}^{1}_{C(\operatorname{Proj} \Lambda)}(X,Y) \cong \operatorname{Hom}_{C(\operatorname{Proj} \Lambda)}(X,Y[1])/I(X,Y[1]) \cong \operatorname{Hom}_{K}(X,Y[1])$, where I(X,Y[1]) is the subspace of morphisms which are factorized through injectives. If u is any integer and P a projective Λ -module we define the complex $J_{u}(P)$ in $C(\operatorname{Proj} \Lambda)$ as follows: $J_{u}(P)^{i} = 0$ for $i \neq u, i \neq u + 1, J_{u}(P)^{u} = J_{u}(P)^{u+1} = P, d^{u}_{J_{u}(P)} = id_{P}$. The objects $J_{u}(P)$ are projectives and injectives in $C(\operatorname{Proj} \Lambda)$.

For integers m, n with $n \ge m + 1$ and P a projective Λ -module we define the following complexes in $C^{[m,n]}(\operatorname{Proj} \Lambda)$:

S(P) given by $S(P)^i = 0$ for $i \neq m$, $S(P)^m = P$; T(P) defined by $T(P)^i = 0$ for $i \neq n$, $T(P)^n = P$. The projectives in $C^{[m,n]}(\operatorname{Proj}\Lambda)$ are the objects $J_u(P)$, $u \in [m, n - 1]$ and T(P), the injectives in $C^{[m,n]}(\operatorname{Proj}\Lambda)$ are the complexes $J_u(P), u \in [m, n - 1]$ and S(P) (see corollary 3.3 of [4]). For $Y \in C^{[m,n]}(\operatorname{Proj}\Lambda)$ we have the \mathcal{E} -sequence:

$$Y \to \oplus_{u=n-1}^{m-1} J_u(Y^{u+1}) \to Y[1],$$

Taking l_m of the above sequence we obtain the \mathcal{E} -sequence in $C^{[m,n]}(\operatorname{Proj} \Lambda)$:

$$Y \to S(Y^m) \oplus_{u=m}^{n-1} J_u(Y^{u+1}) \to l_m(Y[1]).$$

Observe that if W is an injective in $C^{[m,n]}(\operatorname{Proj} \Lambda)$, any morphism $h : Y \to W$ is the sum of morphisms factorized through $S(Y^m)$ or through some $J_u(Y^{u+1})$, for $u \in [m, n-1]$. For $X, Y \in C^{[m,n]}(\operatorname{Proj} \Lambda)$, we denote by I(X,Y) the subspace of morphisms which are factorized through injectives. The space I(X,Y) is generated as k-module by the morphisms which are factorized through objects of the form S(P) or $J_u(P)$ for $u \in [m, n-1]$.

We denote by $\overline{C^{[m,n]}}(\operatorname{Proj} \Lambda)$ the category with the same objects as those of $C^{[m,n]}(\operatorname{Proj} \Lambda)$ and morphisms the morphisms in $C^{[m,n]}(\operatorname{Proj} \Lambda)$ modulo those which are factorized through injectives. The homomorphisms from X to Y in this category are denoted by $\overline{\operatorname{Hom}}_{C^{[m,n]}(\operatorname{Proj} \Lambda)}(X,Y)$.

Lemma 4.6 Let $Y \in C^{[m,n]}(\operatorname{Proj} \Lambda)$ with $H^{m+1}(Y) = 0$. Take $Y \xrightarrow{u} W \xrightarrow{v} Y[1]$ be an \mathcal{E} -sequence in $C^{[m,n]}(\operatorname{Proj} \Lambda)$ with W injective. Then we have:

$$\operatorname{Ext}^{1}_{C^{[m,n]}(\operatorname{Proj}\Lambda)}(X,Y) \cong \overline{\operatorname{Hom}}_{C^{[m,n]}(\operatorname{Proj}\Lambda)}(X,Y[1]).$$

Proof. We have the exact sequence of k-modules: $\operatorname{Hom}_{C^{[m,n]}(\operatorname{Proj}\Lambda)}(X,W) \xrightarrow{\operatorname{Hom}(1,v)} \operatorname{Hom}_{C^{[m,n]}(\operatorname{Proj}\Lambda)}(X,Y[1]) \to \operatorname{Ext}_{C^{[m,n]}(\operatorname{Proj}\Lambda)}^{1}(X,Y) \to 0.$

For proving our claim we prove that $\operatorname{ImHom}(1, v) = I(X, Y[1])$. For this we only need to prove that a morphism $h: X \to Y[1]$ which factorizes through S(P) is in the image of $\operatorname{Hom}(1, v)$. But any morphism $h_1: S(P) \to Y[1]$ is factorized by v if $\operatorname{Ext}^{1}_{C(\operatorname{Proj}\Lambda)}(S(P), Y) = 0$. Now $\operatorname{Ext}^{1}_{C(\operatorname{Proj}\Lambda)}(S(P), Y) \cong$ $\operatorname{Ext}^{1}_{C(\operatorname{Proj}\Lambda)}(S(P), Y) \cong \operatorname{Hom}_{K}(S(P), Y[1])$. Take $h: S(P) \to Y[1]$ a morphism of complexes then $h^m: P \to Y^{m+1}$ is such that $d_Y^{m+1}h^m = 0$. Since $H^{m+1}(Y) = 0$, there is a $g: P \to Y^m$ with $d_Y^m g = h^m$. This implies that h is homotopic to zero. Consequently $\operatorname{Hom}_{K}(S(P), Y[1]) = 0$, proving our claim.

Proposition 4.7 Let W and Z be complexes in $C^{\leq 0}(\operatorname{Proj} \Lambda)$ with $H^i(W) = 0$ and $H^i(Z) = 0$ for $i \leq -t$ for some positive integer number t. Then, for j > 0and $m \geq 0$

$$\operatorname{Ext}_{C(\operatorname{Proj}\Lambda)}^{j}(W,Z) \cong \operatorname{Ext}_{C(\operatorname{Proj}\Lambda)}^{1}\left(l_{-(j+t+m)}W, (l_{-(1+t+m)}Z)[j-1]\right)$$

as $\operatorname{End}_{C(\operatorname{Proj}\Lambda)}(Z) - \operatorname{End}_{C(\operatorname{Proj}\Lambda)}(W) - bimodules.$

Proof. We denote by $\mathcal{L}^{[-s,0]}$ the full subcategory of $K^{\leq 0}(\operatorname{Proj} \Lambda)$, the homotopy category of $C^{\leq 0}(\operatorname{Proj} \Lambda)$, whose objects are those X such that $H^i(X) = 0$ for $i \leq -s$. We recall (see for instance Corollary 5.7 of [4]) that l_{-s} induces an equivalence:

$$l_{-s}: \mathcal{L}^{[-s,0]} \to \overline{C^{[-s,0]}}(\operatorname{Proj}\Lambda).$$

For $s \geq j$, $l_{-t-s}W$, $l_{-t-s}(Z[j])$ are in $\mathcal{L}^{[-t-s,0]}$, then $\operatorname{Ext}^{j}_{C(\operatorname{Proj}\Lambda)}(W,Z) \cong \operatorname{Hom}_{K}(W,Z[j]) \cong \operatorname{Hom}_{C^{[-t-s,0]}(\operatorname{Proj}\Lambda)}(l_{-t-s}W, l_{-t-s}(Z[j]))$. Observe we have $l_{-s-t}(Z[j]) = (l_{-s-t+j}Z)[j] = l_{-t-s}[(l_{-t-s+j-1}Z)[j]]$. Thus:

$$\operatorname{Ext}^{j}_{C(\operatorname{Proj}\Lambda)}(W,Z) \cong \overline{\operatorname{Hom}}_{C^{[-t-s,0]}(\operatorname{Proj}\Lambda)}(l_{-t-s}W, l_{-t-s}[(l_{-t-s+j-1}Z[j]])$$

Now $(l_{-t-s+j-1}Z)[j] = (l_{-t-s+j-1}Z)[j-1][1]$. We have that the complex $(l_{-t-s+j-1}Z)[j-1] \in C^{[-t-s,0]}(\operatorname{Proj}\Lambda)$. Moreover $((l_{-t-s+j-1}Z)[j-1])^{-t-s} = Z^{-t-s+j-1}$, and $((l_{-t-s+j-1}Z)[j-1])^{-t-s+1} = Z^{-t-s+j}$. Since $s \ge j, -t-s+j = -t - (s-j) \le -t$. Therefore $H^{-t-s+1}((l_{-t-s+j-1}Z)[j-1])) = 0$. Then by our previous lemma we have:

$$\frac{\operatorname{Ext}_{C}(\operatorname{Proj}\Lambda)(W, Z) =}{\operatorname{Hom}_{C[-t-s,0]}(\operatorname{Proj}\Lambda)(l_{-t-s}W, l_{-t-s}[(l_{-t-s+j-1}Z[j-1][1]]))} \cong \operatorname{Ext}_{C[-t-s,0]}(\operatorname{Proj}\Lambda)(l_{-s-t}W, (l_{-t-s+j-1}Z)[j-1])) \cong \operatorname{Ext}_{C}(\operatorname{Proj}\Lambda)(l_{-s-t}W, (l_{-t-s+j-1}Z)[j-1]).$$

Taking s = j + m we obtain our result. \square

For $M \in \text{mod } \Lambda$ we choose a minimal projective resolution:

$$\dots \to P_M^{-m} \stackrel{d_M^{-m}}{\to} P_M^{-m+1} \stackrel{d_M^{-m+1}}{\to} \dots P_M^{-1} \stackrel{d_M^{-1}}{\to} P_M^0 \stackrel{\eta_M}{\to} M \to 0$$

We denote by P_M the complex in $C^{\leq 0}(\operatorname{proj} \Lambda)$:

$$\dots \to P_M^{-m} \stackrel{d_M^{-m}}{\to} P_M^{-m+1} \stackrel{d_M^{-m+1}}{\to} \dots P_M^{-1} \stackrel{d_M^{-1}}{\to} P_M^0 \to 0 \to 0...$$

Corollary 4.8 Let L and N be Λ -modules and P_L, P_N as above. Then, for $j \geq 0$ and $m \geq 0$

$$\operatorname{Ext}_{\Lambda}^{j}(M,N) \cong \operatorname{Ext}_{C(\operatorname{Proj}\Lambda)}\left(l_{-(1+j+m)}(P_{M}), l_{-(2+m)}(P_{N})[j-1]\right).$$

as $\operatorname{End}_{\Lambda}(M) - \operatorname{End}_{\Lambda}(N) - \operatorname{bimodules}$.

Proof. We know that

$$\operatorname{Ext}^{\mathcal{J}}_{\Lambda}(M,N) \cong \operatorname{Hom}_{K}(P_{M},P_{N}[j]) \cong \operatorname{Ext}^{\mathcal{J}}_{C(\operatorname{Proj}\Lambda)}(P_{M},P_{N}).$$

Now in proposition 4.7 put $W = P_M, Z = P_N$, then t = 1 and we obtain our result.

We will need the following results.

Lemma 4.9 Suppose $Y \in C^{[-m+1,0]}(\Lambda - \operatorname{proj})$ is such that $\operatorname{Im} d_Y^i \subset \operatorname{rad} Y^{i+1}$ for all $i \in \mathbb{Z}$ and $\dim_k H^j(Y) \leq c$ for all j and for some $u \in [-m+2,...,0]$, $\dim_k Y^u \leq d_u$, then $\dim_k Y^{u-1} \leq (d_u+c)L$, with $L = \dim_k \Lambda$. **Proof.** We have $\dim_k Y^{u-1}/\operatorname{Kerd}_Y^{u-1} = \dim_k \operatorname{Imd}_Y^{u-1} \leq d_u$, moreover we know that $\dim_k \operatorname{Kerd}_Y^{u-1}/\operatorname{Imd}_Y^{u-2} \leq c$. Therefore $\dim_k Y^{u-1}/\operatorname{Imd}_Y^{u-2} \leq c + d_u$. Here $\operatorname{Imd}_Y^{u-2} \subset \operatorname{rad} Y^{u-1}$, thus $\dim_k Y^{u-1}/\operatorname{rad} Y^{u-1} \leq \dim_k Y^{u-1}/\operatorname{Imd}_Y^{u-2}$.

Consequently, $\dim_k Y^{u-1} \leq (c+d_u)L$.

Lemma 4.10 Let $Y \in C^{[-m+1,0]}(\operatorname{proj} \Lambda)$, with $\operatorname{Im} d_Y^i \subset \operatorname{rad} Y^{i+1}$ for all $i \in \mathbb{Z}$, such that for all $j \in \mathbb{Z}$, we have the inequality $\dim_k H^j(Y) < c$ for some fixed c. Then

$$\dim_k Y \le c(mL + (m-1)L^2 + (m-2)L^3 + \dots + 2L^{m-1} + L^m).$$

Proof. Here $Y^1 = 0$, then by our previous lemma, $\dim_k Y^0 \leq cL$. Then again by lemma 4.9 we have, $\dim_k Y^{-1} \leq c(L+L^2)$, $\dim_k Y^{-2} \leq c(L+L^2+L^3)$, ..., $\dim_k Y^{-m+1} \leq c(L+L^2+\ldots+L^m)$. From here we obtain our result.

Theorem 4.11 (See corollary 9 in [9]) Let Λ be a finite-dimensional algebra over an algebraically closed field k and $\mathbf{d} = (d_i)_{i \in \mathbb{Z}}$ be a collection of non-negative integers with almost all $d_i = 0$. Then the family $\mathcal{U}(\mathbf{d})$ of objects $X \in \mathcal{D}^b(\Lambda)$ such that $\dim_k H^i(X) = d_i$ for all $i \in \mathbb{Z}$ and $\operatorname{Hom}_{\mathcal{D}^b(\Lambda)}(X, X[1]) = 0$ has only a finite number of isomorphism classes in $\mathcal{D}^b(\Lambda)$.

Proof. We may assume $d_i = 0$ for all $i \leq t$ and i > 0. Consider now the family $\mathcal{V}(\mathbf{d})$ of those $P \in C^{\leq 0}(\operatorname{proj} \Lambda)$ such that $\dim_k H^i(P) = d_i$ for all $i \in \mathbb{Z}$, $\operatorname{Hom}_K(P, P[1]) = 0$ and for all $i \in \mathbb{Z}$, $\operatorname{Im} d_P^i \subset \operatorname{rad} P^{i+1}$. For each $X \in \mathcal{U}(\mathbf{d})$ we may choose a quasi-isomorphism $P_X \to X$ with $P_X \in C^{\leq 0}(\operatorname{proj} \Lambda)$.

We have $\operatorname{Hom}_{K}(P_{X}, P_{X}[1]) \cong \operatorname{Hom}_{\mathcal{D}^{b}(\Lambda)}(X, X[1])$. Clearly the assignament $X \mapsto P_{X}$ stablishes a bijection between the isomorphism classes of $\mathcal{U}(\mathbf{d})$ and those of $\mathcal{V}(\mathbf{d})$. If $P \in \mathcal{V}(\mathbf{d})$, then $P \in \mathcal{L}^{[-t-1,0]}$.

By proposition 4.7 for $P \in \mathcal{V}(\mathbf{d})$ we have: $0 = \operatorname{Hom}_{K}(P, P[1]) \cong \operatorname{Ext}^{1}_{C(\operatorname{Proj}\Lambda)}(P, P) \cong \operatorname{Ext}^{1}_{C[-t-1,0]}(\operatorname{Proj}\Lambda)(l_{-t-1}P, l_{-t-1}P).$

Using Lemma 4.10 one can prove that there is a number $n(\mathbf{d})$, such that if $P \in \mathcal{V}(\mathbf{d})$ then $\sum_{i \in \mathbb{Z}} \dim_k (l_{-t-1}P)^i \leq n(\mathbf{d})$. Therefore the functor l_{-t-1} induces a bijection between the isomorphism classes of $\mathcal{V}(\mathbf{d})$ and the isomorphism classes of a subfamily of the family $\mathcal{F}(n(\mathbf{d}))$ consisting of the complexes $Z \in C^{[-t-1,0]}(\operatorname{proj}\Lambda)$ which have not injectives in this category as direct summands, $\operatorname{Ext}^1_{C^{[-t-1,0]}(\operatorname{proj}\Lambda)}(Z,Z) = 0$, and $\sum_{i\in\mathbb{Z}} \dim_k(Z)^i \leq n(\mathbf{d})$.

The category $C^{[-t-1,0]}(\operatorname{Mod} \Lambda)$ is an abelian category with enough projectives, the projectives in this category are the complexes $T(P), J_u(P), u \in [-t-1, -1]$ introduced before. Then taking $H = \bigoplus_{u=-t-1}^{-1} J_u(\Lambda) \oplus T(\Lambda)$ and $\Gamma = \operatorname{End}_{C^{[-t-1,0]}(\operatorname{Mod} \Lambda)}(H)$, the functor

$$F = \operatorname{Hom}_{C^{[-t-1,0]}(\operatorname{Mod}\Lambda)}(H, -) : C^{[-t-1,0]}(\operatorname{Mod}\Lambda) \to \operatorname{Mod}\Gamma$$

is an equivalence of abelian categories.

Now there is a number $m(\mathbf{d})$ such that for all $Z \in \mathcal{F}(n(\mathbf{d}))$, $\dim_k F(Z) \leq m(\mathbf{d})$.

Since the category $C^{[-t-1,0]}(\text{proj }\Lambda)$ is a full subcategory of the category $C^{[-t-1,0]}(\text{Mod }\Lambda)$, closed under extensions, then for $Z \in \mathcal{F}(n(\mathbf{d}))$,

 $0 = \operatorname{Ext}_{C^{[-t-1,0]}(\operatorname{proj}\Lambda)}^{1}(Z,Z) = \operatorname{Ext}_{C^{[-t-1,0]}(\operatorname{Mod}\Lambda)}^{1}(Z,Z) \cong \operatorname{Ext}_{\Gamma}^{1}(F(Z),F(Z)).$ Therefore F gives a bijection between the isomorphism classes of $\mathcal{F}(n(\mathbf{d}))$ and the isomorphism classes of a family of Γ -modules M with $\dim_k M \leq m(\mathbf{d})$ and $\operatorname{Ext}_{\Gamma}(M,M) = 0$. But by a result of D. Voigt ([10]), this last family has only a finite number of isomorphism classes. This implies that our family $\mathcal{U}(\mathbf{d})$ has only a finite number of isomorphism classes.

5 An application to modules

Let Λ be an artin algebra over a commutative artinian ring k. In this section we study under which conditions two finitely generated Λ -modules M and N with $\operatorname{Ext}_{\Lambda}(M, M) = 0$ and $\operatorname{Ext}_{\Lambda}(N, N) = 0$ are isomorphic. As before for $M \in \operatorname{mod} \Lambda$

we choose a minimal projective resolution:

$$\dots \to P_M^{-m} \xrightarrow{d_M^{-m}} P_M^{-m+1} \xrightarrow{d_M^{-m+1}} \dots P_M^{-1} \xrightarrow{d_M^{-1}} P_M^0 \xrightarrow{\eta_M} M \to 0.$$

We denote by P_M the complex in $C^{\leq 0}(\operatorname{proj} \Lambda)$:

$$\dots \to P_M^{-m} \stackrel{d_M^{-m}}{\to} P_M^{-m+1} \stackrel{d_M^{-m+1}}{\to} \dots P_M^{-1} \stackrel{d_M^{-1}}{\to} P_M^0 \to 0 \to 0...$$

For $M \in \text{mod } \Lambda$ we put $\Omega(M) = \text{Ker}(\eta_M)$.

Theorem 5.1 Let M and N be in mod Λ such that $\operatorname{Ext}^{1}_{\Lambda}(M, M) = 0$ and $\operatorname{Ext}^{1}_{\Lambda}(N, N) = 0$. Then $M \cong N$ if and only if $M/\operatorname{rad} M \cong N/\operatorname{rad} N$ and $\Omega(M) \cong \Omega(N)$.

Proof. Neccesity is obvious, let us to prove sufficiency.

Let $P'_{M} = l_{-2}(P_{M})$ and $P'_{N} = l_{-2}(P_{N})$.

By lemma 4.5 we have an exact isomorphism of categories

$$\exists_{-1}: C\left(\operatorname{Proj} \Lambda\right) \to Morph\left(C^{\leq -1}\left(\operatorname{Proj} \Lambda\right), C^{\geq -1}\left(\operatorname{Proj} \Lambda\right)\right)$$

wich induces an exact isomorphism of categories

$$\exists : C^{[-2,0]}\left(\operatorname{Proj}\Lambda\right) \to Morph\left(C^{[-2,-1]}\left(\operatorname{Proj}\Lambda\right), C^{[-1,-1]}\left(\operatorname{Proj}\Lambda\right)\right).$$

We denote by \mathcal{M}_2 the category $Morph\left(C^{[-2,-1]}\left(\operatorname{Proj}\Lambda\right), C^{[-1,-1]}\left(\operatorname{Proj}\Lambda\right)\right)$. By corollary 4.8 we have $\operatorname{Ext}^1_{C\left(\operatorname{Proj}\Lambda\right)}(P'_M, P'_M) \cong \operatorname{Ext}^1_{\Lambda}(M, M) = 0$. Then

(1)
$$\operatorname{Ext}_{\mathcal{M}_2}(\exists (P'_M), \exists (P'_M)) = 0.$$

In a similar way

(2)
$$\operatorname{Ext}_{\mathcal{M}_2}(\exists (P'_N), \exists (P'_N)) = 0$$

The categories of bounded complexes over the finitely generated projective Λ -modules are Krull-Schmidt categories, so using the functors "erase at right" and "pull and erase" we get $t_{-1}(P'_M) \cong \bigoplus_{i=1}^u a_i X_i$ and $s_{-1}(P'_M) \cong \bigoplus_{j=1}^v b_j Y_j$, $t_{-1}(P'_N) \cong \bigoplus_{i=1}^u c_i X_i \ s_{-1}(P'_N) \cong \bigoplus_{j=1}^v h_j Y_j$, where all decompositions are sums of pairwise non-isomorphic indecomposable objects. Now $t_{-1}(P'_M)$ and $t_{-1}(P'_N)$ correspond to minimal projective resolutions of $\Omega(M)$ and $\Omega(N)$ respectively, since $\Omega(M) \cong \Omega(N)$ then $a_i = c_i$ for all $i \in \{1, ..., v\}$. On the other hand the only non zero module in the complexes $s_{-1}(P'_M)$ and $s_{-1}(P'_M)$ are P^0_M and P^0_N respectively, since $M/\text{rad}M \cong N/\text{rad}N$, $P^0_M \cong P^0_N$. Therefore $s_{-1}(P'_M) \cong s_{-1}(P'_M)$ and this implies that $b_j = h_j$ for $j \in \{1, ..., u\}$. Let $X = \bigoplus_{i=1}^u X_i$ and $Y = \bigoplus_{j=1}^v Y_j$.

By proposition 3.7 we have an exact equivalence of categories

 $\Theta: Morph\left(addX, addY\right) \to \xi_Y^X\left(R_Y^X\right)$

Then by (1) and (2) we have:

 $\operatorname{Ext}_{\xi_Y^X\left(R_Y^X\right)}\left(\Theta \exists \left(P_M'\right), \Theta \exists \left(P_M'\right)\right) = 0, \quad \operatorname{Ext}_{\xi_Y^X\left(R_Y^X\right)}\left(\Theta \exists \left(P_N'\right), \Theta \exists \left(P_N'\right)\right) = 0.$

It follows by 5.1 of [5] that $\Theta \exists (P'_M) \cong \Theta \exists (P'_N)$. Then $P'_M \cong P'_N$ and consequently $M \cong N$.

Theorem 5.2 Assume M, N in mod Λ have finite projective dimension and $\operatorname{Ext}^{1}_{\Lambda}(M, M) \cong \operatorname{Ext}^{1}_{\Lambda}(N, N) = 0$ and, for all $j > 1 \operatorname{Ext}^{j}_{\Lambda}(M, \Omega^{j-1}(M)) \cong \operatorname{Ext}^{j}_{\Lambda}(N, \Omega^{j-1}(N)) = 0$, then $M \cong N$ if and only for all $j, P_{M}^{-j} \cong P_{N}^{-j}$.

Proof. Neccesity is obvious, let us to prove sufficiency by induction on m = max (p(M), p(N)), where p(M) and p(N) are the projective dimension of M and N respectively. If m = 0 our claim is trivial. Suppose our claim proved for m-1, we will prove it for m. But $\operatorname{Ext}_{\Lambda}^{1}(\Omega(M), \Omega(M)) \cong \operatorname{Ext}_{\Lambda}^{2}(M, \Omega(M)) = 0$ and for all j > 1, $\operatorname{Ext}_{\Lambda}^{j}(\Omega(M), \Omega^{j-1}(\Omega(M))) \cong \operatorname{Ext}_{\Lambda}^{j+1}(M, \Omega^{j}(M)) = 0$. Thus $\Omega(M)$ satisfies the hypothesis of our theorem, similarly $\Omega(N)$ also satisfies the hypothesis of our theorem, similarly $\Omega(N)$ also satisfies the hypothesis of our theorem, similarly $\Omega(N) = m-1$ and $P_{M}^{1}/\operatorname{rad} P_{M}^{1} \cong \Omega(M)/\operatorname{rad} \Omega(M) \cong P_{N}^{1}/\operatorname{rad} P_{N}^{1} \cong \Omega(N)/\operatorname{rad} \Omega(N)$, by the induction hypothesis, $\Omega(M) \cong \Omega(N)$. Here $P_{M}^{0} \cong P_{N}^{0}$, then by theorem 5.1, we obtain $M \cong N$. \Box

Example 5.3 We present an example of two non-isomorphic modules with both having finite minimal projective resolution and the same projectives. Let Λ be the k-algebra of the quiver

with the relation $\{\beta_1\alpha_1, \beta_2\alpha_2\}$. The representations

have trivial selfextensions group but both have a minimal projective resolution with data $(..., 0, ..., 0, \Lambda e_3, \Lambda e_2, \Lambda e_1)$.

Acknowledgements Both authors thank the support of project "43374F" of Fondo Sectorial SEP-Conacyt.

References

 Auslander, M., Reiten, I., Smalø, S. Representation theory of artin algebras (Cambridge studies in advanced mathematics: 36), Cambridge University Press, Cambridge, 1995.

- [2] Bautista, R. The category of morphisms between projectives, Communications in Algebra (11) vol. 32, (2004), 4303-4332.
- [3] Bautista, R., Salmerón, L. On discrete and inductive algebras, Preprint (2002). To appear in Fields Institute Communications Series.
- [4] Bautista, R., Souto, M.J., Zuazua, R. Almost split sequences for complexes of fixed size, Journal of Algebra (1) vol. 287 (2005), 140-168.
- [5] Bautista, R., Zuazua, R. Exact structures for lift categories, Preprint (2002). To appear in Fields Institute Communications Series.
- [6] Crawley-Boevey, W.W. Matrix reductions for artinian rings and an application to rings of finite representation type, Journal of Algebra 157, (1993), 1-25.
- [7] Dräxler, P., Reiten, I., Smalø, S., Solberg, O. Exact categories and vector space categories, Trans. Amer. Math. Soc. 351,(1999), 647-682.
- [8] Gabriel, P., Roiter, A.V. Representations of finite dimensional algebras. Encyclopaedia of the Mathematical Sciences. 73, Kostrikin, A.I., Shafarevich, I.V. (Eds.), Algebra VIII, Springer (1992).
- [9] Huisgen-Zimmermann, B., Saorín, M. Geometry of chain complexes and outer automorphisms under derived equivalence, Trans. Amer. Math. Soc. 353 (2001), 4757-4777.
- [10] Voigt, D. Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen, Lecture Notes in Math. 592, Springer-Verlag, Berlin, 1977. MR 58:5949

R. Bautista Instituto de Matemticas, UNAM, Campus Morelia Xangari raymundo@matmor.unam.mx

E. Pérez efren_math@yahoo.com.mx efren_mathe@yahoo.com