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My current research interests are centered around various aspects of classical and quantum
gravitational physics. In quantum gravity, the approach I am most familiar with is the non-
perturbative canonical quantization program, also known as Loop Quantum Gravity (LQG)
(or Quantum Geometry) [1]. I also have interests in quantum field theory in curved space
and in geometrical and fundamental aspects of quantum theory. In classical gravity I have
interests in several aspects of black hole physics and in particular, I have been involved
in different studies of the framework known as Isolated Horizons [2], with different matter
couplings.
The main directions within these lines where I have centered my research are:

Quantum Aspects of Gravity, Cosmology and Black Holes.

I am very interested in the fundamental problem of making quantum theory and relativity
compatible in what is known as quantum gravity. One of the most conservative approaches
to this problem is the implementation of ‘conventional’ quantization methods to the gravi-
tational field. This non-perturbative canonical quantization program has become in recent
years a serious candidate for a quantum theory of geometry (with possibly other matter
field), thanks to the introduction of connection and loop variables by Ashtekar [3], Rovelli
and Smolin in the late 80’s [4].

One of the most remarkable results coming from this approach is the particular picture of
the geometry at the Planck scale. Excitations of geometry are one dimensional, polymer-like,
and the spectra of geometric operators turn out to be discrete [5]. Furthermore, the resulting
quantum geometry happens to be intrinsically non-commutative: the operators associated,
for instance, to the area of two intersecting surfaces do not commute [6]. This fact posses
very interesting challenges: How is one to recover a commutative, smooth geometry in
certain limit?, What are the implications of this non-commutativity in, say, the definition
of ‘coordinates’ on the manifold? Are space coordinates destined to be non-commutative?
Thus, part of my current research is in the direction of answering such questions, and to
understand the role that the non-commutativity plays in the whole formalism [7].

The other question I am interested in is the macroscopic/semi-classical limit of the theory.
Historically, the first attempts were the so called weave states, where the state was defined
over a complicated loop that was woven to reproduce a smooth geometry at certain scales [8].
In this direction, in collaboration with M. Reyes we proposed some simple and preliminary
“Gaussian” weaves, that might approximate flat space [9]. It is important to understand the
relation between this states and other proposals such as the coherent states of Thiemann
and Winkler and the Statistical Geometry approach of Bombelli. Still, the basic question of
what semi-classical states are and how one should construct them is open. New proposals,
in particular in the direction of linking non-perturbative states with Fock excitations have
recently appeared. It is important to understand its relevance and interconnection with the
other approaches. In particular it is very important to gain insight on how to address the
issue of constructing dynamical semi-classical states. I have been involved in the study of the
problem of constructing dynamical semi-classical states and comparing them to kinematical
‘coherent’ states, for simple systems [10, 11]. I plan to continue working on these problems in
the near future. Another interesting issue in the task of defining semi-classical states within
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the theory is how to connect the small scale geometry with a semi-classical large scale
geometry. With Bombelli and Winkler, we have proposed to employ a statistical geometry
framework for that purpose [12]. Further work is needed to have a complete framework to be
employed in phenomenological applications, and in relating microscopic discrete structures
with macroscopic geometries.

One of the main features of loop quantization is the use of a non-canonical algebra of
observables for the quantization procedure. This means that the holonomies, that are expo-
nentiated versions of the connection, are the fundamental variables that get promoted to well
defined operators. The quantization that respects diffeomorphism invariance, recently shown
to be unique, is such that the connection is not a well defined operator. A similar quantum
representation for an ordinary quantum mechanical system has been used with great success
in loop quantum cosmology. The formalism suffers, however, from a small drawback: the
dynamics can not be unambiguously implemented without introducing some “lattice like”
structure. This introduces an undesired element into the quantization. Recently, in collab-
oration with Vukašinac and Zapata, we have analyzed this type of quantization, sometimes
called “polymeric”, within a program tailored for defining the dynamics of loop quantized
theories via a –Wilson style– renormalization procedure. The system can indeed be success-
fully treated and the continuum limit happens to be equivalent to the standard Schrödinger
representation [13, 14]. In collaboration with Ashtekar and Singh, we continued this av-
enue and investigated the issue of the continuum limit in loop quantum cosmology. We
stablished that the standard ‘Schrödinger like’ quantization, known as the Wheeler-DeWitt
quantization is not recovered in any suitable limit. Thus, LQC is fundamentaly discrete [15].

It has generally been regarded that one of the main successes of the loop quantum gravity
program is the computation of the Bekenstein-Hawking entropy associated to the horizon
of a black hole [16]. I was involved in a project to do that with A. Ashtekar, J. Baez and
K. Krasnov [17], where a careful treatment of the boundary conditions was done. Later,
in collaboration with A. Ashtekar, the calculation was extended to include non-minimally
coupled scalar fields [18]. This later case posses special challenges to the formalism since
classically the entropy of a black hole depends also on the scalar field at the horizon, and
quantum mechanically the geometric operators need to be modified. It was shown that the
nontrivial consistency checks needed to have a coherent description for quantum horizons
continue to be met.

Furthermore, a careful treatment of the counting shows that there are several possibilities
for the choice of states that can be counted. In a recent study, in a collaboration with
students in Valencia, Spain, a direct counting of the number of states was done for small
Planck size horizons, using both possibilities [19, 20]. It has been shown that the counting is
consistent with an asymptotic linear relation between entropy and area (with a logarithmic
correction), but also that the relation shows some oscillatory behavior for small black holes
[21]. Furthermore, the spectrum of the quantum black hole was studied and found to possess
an unexpected feature: the entropy seems to take only a discrete set of values, becoming
equidistant for large black holes, making it compatible with the expectations of Bekenstein
for black hole entropy (in the large area limit). This phenomenon of ‘entropy quantization’
is robust and independent of the counting method employed [22]. This intriguing behavior
certainly calls for some explanation. Preliminary proposals in this direction have been put
forward in the literature [23], but a deeper understanding is still missing.

In order to gain a full understanding of the conceptual problems that are common to the
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quantum theory of gravity, it is sometimes useful to consider simpler models, with the hope
of learning important lessons for the complete theory. Usually, this implies performing a
symmetry reduction or considering theories in less than four dimensions. In this spirit, I
have been involved in the study of the aplication of loop quantization techniques to cosmo-
logical models, known as loop quantum cosmology, and in the midi-superspace quantization
of Gowdy models . The Gowdy model is the simplest, inhomogeneous, closed cosmological
model and has been extensively studied at the quantum level. Even when the symmetry
reduction makes the model ‘solvable’, one is still treating a field theory system with an infi-
nite number of degrees of freedom. We have shown, in collaboration with J. Cortez and H.
Quevedo that a very natural quantization, involving a choice of internal time for the evolu-
tion does not admit time evolution as a unitary process [24]. This results opened up the way
to the study of the physical implications of choosing different representations of the CCR.
Within these studies, in collaboration with Cortez and Mena-Marugán we have shown that,
by performing a canonical transformation on the original system before quantization, the
resulting description does admit time evolution as a unitary process [25]. Furthermore, in
collaboration with Velhinho, we have shown that the requirement of unitary time evolution
is sufficient to prove uniqueness of the quantum representation [26]. This result is, to the
best of my knowledge, the first one involving uniqueness of a quantum representation on
time dependent backgrounds.

For the simplest case of homogeneous and isotropic models, within the approach known as
loop quantum cosmology, there have been very impressive recent results. It has been shown
that, for a massless-scalar field with and without a cosmological constant, the big bang gets
replaced by a Big Bounce. The singularity is resolved [27]. For the case of a flat FRW, we
showed analytically that this bounce is generic and the matter density is bounded for all
states of the theory [15]. Furthermore, we showed that a semiclassical state at late times
had to come from a semiclassical states [28]. These results are encouraging and one should
try to apply them to more general systems. But before that, it is important to critically
analyze the lessons from the isotropic models [29].

The study of the Gowdy model was a motivation to study the formulation of the
Schrödinger representation on a curved spacetime. We have constructed such representation
—that had not been done before— and found that the resulting quantum theory had some
unexpected features [30]. This in turn has lead to an example of a quantization ambiguity in
field theory [31]. An application of the quantization procedure for a self-dual decomposition
of an Abelian gauge theory yields the Kodama state as the vacuum of the theory, and in
particular, for the free Maxwell field [32]. This result has put in proper perspective previous
results that involved self-duality and link invariants. Still to be understood are the more
mathematical aspects of the Schrödinger representation on curved space such as the nature
of the quantum configurations space in the general case. An understanding in the case of
Gowdy was reported in [33].

On a more speculative front, I have proposed together with Sudarsky and Ryan an outline
of several problems that current approaches to quantum gravity possess, and possible avenues
for its resolution [34]. This outline needs, of course, of further work in order to make
concrete proposals. We have also proposed a possible new approach to quantum gravity
phenomenology, outside the current paradigms of Lorentz invariance violations and DSR
[35]. These, in particular imply new couplings between polarized matter and gravity that
are absent in Minkowski space. This proposal was recently extended in Ref.[36]. Concrete
experiments could be devised in order to put bounds on these couplings.
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Classical General Relativity

In the search for a quantum of a black hole within the loop approach, it was necessary to
restrict attention to the ‘black hole’ sector of phase space. This lead to what has become
known as the Isolated Horizons formalism [37]. The idea is to give geometrically motivated
boundary conditions on the theory which allow for a well defined action principle and a
Hamiltonian description. This formalism has in particular, generalized the laws of black
hole mechanics to situations in which the horizon is isolated, but the exterior region is
allowed to be dynamical. I have been particularly interested in the formalism when non-
linear matter fields are considered. The application of the formalism to stationary situations
has lead to an understanding of the rich interplay between the solitons in, say, the Einstein
Yang Mills system and the colored black holes [38]. The formalism is also well suited for
posing uniqueness (‘no-hair’) conjectures for the existence of solutions [39], where the charges
defining the solution would be defined at the horizon and not at infinity. More recently, we
have considered isolated horizons for theories where the matter is non-minimally coupled to
gravity, where the treatment based on Noether charges tells us that the Black Hole entropy
is not proportional to the area but it also depends on the matter fields at the horizon [40].
The IH formalism is able to incorporate these situations. I have also been involved in the
study of the isolated horizons formalism when there are two horizons present such as in a
Schwarzschild-de Sitter spacetime where there are both a BH and a cosmological horizons
[41]. The IH formalism is well defined and gives rise to new mass formulae and entropy
bounds that can be compared with the Bekenstein and the D-bound.

One of the potential applications of dynamical and isolated horizons formalisms is given
by the numerical simulations of collapsing systems. In this regard I have begun numerical
investigations of the collapse of a minimally coupled scalar soliton into a black hole [42],
and the dynamical horizon that forms. Numerical simulations indicate that the theoretical
formula for the flux of matter through the horizon matches well with the finite mass difference
of the horizon [43] at different stages of its growth. The next step is to start with a hairy
black hole slightly perturbed as initial state and evolve to see what the final configuration is.
Certain conjectures suggest that the final state might look like a AdS black hole surrounded
by a moving domain wall. Second, I have been involved in developing gauge conditions for
both lapse and shift functions that, when coupled to some version of the Einstein equations’s
render a hyperbolic system [44].

Open problems I am interested in include a precise definition of what are called ‘horizon
charges’ and of the uniqueness and completeness conjectures. This has important conse-
quences in the IH formalism, within the context of the recently introduced multipoles, and
should be explored.

Quantum Theory and Geometry

I am also interested in other related problems involving geometry and quantum theory, and
in particular in geometric phases (including gravity [45]) and the geometrical formulation
of quantum mechanics. More precisely, the incorporation of the superposition principle and
constraints into the geometric formalism [46]. This is, in my view, a very important issue
since the superposition principle lies at the forefront of the quantum theory but is normally
excluded from the geometric formulation of the theory, where the space of states is a non-
linear manifold [47]. In this direction I have proposed to view the standard superposition
principle as consisting of two different principles, depending on the properties of the phys-
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ical system under consideration. More recently, I have proposed the first step to analyze
quantum constrained systems from the geometric perspective. Interestingly, an unforseen
connection with the so called Master constraint program arises [48]. Further work is needed
to generalize these results to systems where the physical Hilbert space is not a subspace of
the kinematical one, and to study the geometry of the group average procedure. Another
particular feature of quantum theory that interests me is the application of the geomet-
ric formulation to entanglement, and in particular in a possible (geometrical) definition of
distance for entangled states.
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