Countable Fréchet Boolean groups:
An independence result

Jörg Brendle∗
Graduate School of Engineering
Kobe University
Rokko-dai 1-1, Nada-ku
Kobe 657-8501, Japan
email: brendle@kurt.scitec.kobe-u.ac.jp

and

Michael Hrušákov†
Instituto de Matemáticas
Universidad Nacional Autónoma de México (Morelia)
A.P. 61-3 Xangari
Morelia, Michoacán 58089, México
email: michael@matmor.unam.mx

May 21, 2008

Abstract

It is relatively consistent with ZFC that every countable FU_{fin} space of weight \aleph_1 is metrizable. This provides a partial answer to a question of G. Gruenhage and P. Szeptycki [GS1].

Introduction

Classical metrization theorem of Birkhoff and Kakutani states that a T_1 topological group is metrizable if and only if it is first countable. The results contained here are motivated by the following question:

Question 1. (V.I. Malykhin)[Ar, MT] Is there a countable Fréchet-Urysohn topological group that is not metrizable?

∗Partially supported by Grant-in-Aid for Scientific Research (C) 17540116 and (C) 19540127, Japan Society for the Promotion of Science.
†Partially supported by PAPIIT grant IN101608 and CONACYT grant 46337.
Recall that a topological space X is Fréchet-Urysohn (or just Fréchet) if whenever a point $x \in X$ is in the closure of a set A, there is a sequence of elements of A converging to x. In fact, the question can be reformulated by asking for the existence of a separable Fréchet-Urysohn topological group that is not metrizable. On the other hand there are non-separable, even σ-compact examples, for instance the direct sum of uncountably many copies of the circle.

It is well known (see [Ny1, Ny2, GN]) that the answer to Malykhin’s question is consistently positive, i.e. under either of the following assumptions: $p > \omega_1$, $b = p$ and the existence of an uncountable γ-set. In fact, either of the assumptions implies the existence of a simply described non-metrizable Fréchet-Urysohn group topology on the Boolean group $G = ([\omega]^\omega, \Delta)$ of finite subsets of ω with symmetric difference as the group operation.

Let F be a free filter on ω. Then $F^{<\omega} := \{ A \subseteq [\omega]^\omega : \text{there is } F \in F \text{ such that } [F]^{<\omega} \subseteq A \}$ is a filter on $[\omega]^{<\omega}$. By stipulating that $F^{<\omega}$ is a neighbourhood base at \emptyset, we introduce a group topology τ_F on G. Note that, by definition, $F^{<\omega}$ is generated by sets of the form $[F]^{<\omega}$, $F \in F$. Also, any set of the form $[F]^{<\omega}$ is a subgroup of G. So the $[F]^{<\omega}$, $F \in F$, are in fact open subgroups which generate the neighbourhood base at \emptyset.

Observation 1. The following are equivalent:
1. (G, τ_F) is first-countable (equivalently, metrizable);
2. $F^{<\omega}$ is countably generated;
3. F is countably generated.

A filter F such that the topological group (G, τ_F) is Fréchet is called an FU$_{\omega}$-filter, see [GS1, GS2, RS, Si]. This is conveniently expressed in the dual language of ideals. If $I = F^\ast$ is the dual ideal of F, $I^{<\omega} := \{ A \subseteq [\omega]^{<\omega} : \text{for some } I \in I, a \cap I \neq \emptyset \text{ for all } a \in A \}$ is the dual ideal of $F^{<\omega}$ and is generated by sets of the form $\{ a \in [\omega]^{<\omega} : a \cap I \neq \emptyset \}, I \in I$.

Let I be an ideal on ω. Define the orthogonal ideal $I^{\perp} := \{ A \subseteq [\omega]^{<\omega} : |I \cap A| < \omega \text{ for all } I \in I \}$. Clearly $I^{\perp \perp} \supseteq I$ and $I^{\perp \perp \perp} = I^{\perp}$. We call I Fréchet if $I^{\perp \perp} = I$. This is equivalent to saying that for all $X \in I^+$ there is $C \in [X]^{\omega}$ such that $C \in I^\perp$. I is said to be tall if for all $X \in [\omega]^{\omega}$ there is $C \in [X]^{\omega}$ such that $C \in I$.

Observation 2.
1. Every countably generated ideal is Fréchet.
2. If I is tall, then I is not Fréchet.
3. I^{\perp} is always Fréchet.

The following is a reformulation of a result of [RS]. We include the simple proof for the sake of completeness.

Lemma 1. The topological group (G, τ_F) is Fréchet iff the ideal $I^{<\omega}$ is Fréchet where $I = F^\ast$.

Proof. (\Rightarrow) Let $X \in (I^{<\omega})^+$. This means that for all $I \in I$ there is $a \in X$ with $I \cap a = \emptyset$. Equivalently, for all $F \in F$ there is $a \in X$
First, some additional notions. However, we need a somewhat stronger result.

Assume a filter \(F \) on \(\omega \) and its dual ideal \(I = F^\perp \) are given. For \(a \in [\omega]^{\omega} \) define \(\text{cone}(a) = \{ b \in [\omega]^{\omega} : a \subseteq b \} \), the cone over \(a \).

Define the following families on \([\omega]^{\omega} \):

- \(G = G_I = \{ A \subseteq [\omega]^{\omega} : \forall I \exists a (a \cap I = \emptyset \land \text{cone}(a) \subseteq A) \} \)
- \(J = J_I = \{ A \subseteq [\omega]^{\omega} : \forall I \exists a (a \cap I = \emptyset) \} \)
- \(J^+ = \{ A \subseteq [\omega]^{\omega} : \exists I \forall a (a \cap I = \emptyset \rightarrow \text{cone}(a) \subseteq A \neq \emptyset) \} \)

Lemma 2. \(G \) is a filter, \(J = G^* \) is the dual ideal, and \(J^+ \) is the collection of \(J \)-positive sets. Furthermore, \(J \) is a Fréchet ideal.

Proof. Only the last assertion needs proof. Let \(A \in J^+ \) and let \(I \) witness this. Let \(\{ k_n : n \in \omega \} \) enumerate \(\omega \setminus I \), and set \(a_n = \{ k_i : i < n \} \). Then for each \(n \) there is \(b_n \supseteq a_n \) with \(b_n \in A \). Clearly \(B = \{ b_n : n \in \omega \} \in J^+ \).

Now consider \(L(G) \), Laver forcing with the filter \(G \). It is defined as the set of those trees \(T \subseteq ([\omega]^{\omega})^{\omega} \) for which there is an \(s \in T \) (called the stem of \(T \)) such that for all \(t \in T \), \(t \subseteq s \) or \(s \subseteq t \) and such that for all \(t \in T \), \(t \supseteq s \) the set \(\text{succ}_T(t) = \{ a \in [\omega]^{\omega} : t^- a \in T \} \in G \). It is ordered by inclusion.

The forcing \(L(G) \) is \(\sigma \)-centered and adds a dominating real \(\dot{\ell} : \omega \rightarrow [\omega]^{\omega} \). Let \(X = \text{ran}(\dot{\ell}) \) be the generic subset of \([\omega]^{\omega} \) added by \(L(G) \).

Lemma 3. \(\Vdash_{L(G)} X \in (\mathcal{I}^{<\omega})^+ \)

Proof. This is a straightforward genericity argument.

We next intend to prove that if \(I \) is not countably generated, then \(L(G) \) forces that \(X \in (\mathcal{I}^{<\omega})^{+1} \) (Lemma 4 below). For preservation purposes (see Lemmata 5 and 6), however, we need a somewhat stronger result. First, some additional notions.
Say an ideal K is \textit{countably tall} if given $(A_n : n \in \omega) \subseteq [\omega]^{<\omega}$ there is $I \in K$ such that $I \cap A_n$ is infinite for all n. Clearly every countably tall ideal is tall. For an ideal K and $X \subseteq K^+$, define the \textit{restriction ideal} by $K \upharpoonright X = \{ I \cup B : I \in K \text{ and } B \subseteq \omega \setminus X \}$.

\textbf{Observation 3.} Assume $K \upharpoonright X$ is tall. Then $X \subseteq K^{+\perp}$.

\textbf{Lemma 4.} Assume I is not countably generated. Then $\Vdash_{\mathbb{L}(\mathcal{G})} \text{“} I^{\subset \omega} \text{ is countably tall”}$. In particular, if I is tall, then $\Vdash_{\mathbb{L}(\mathcal{G})} \text{“} I^{\subset \omega} \text{ is countably tall”}$.

\textbf{Proof.} Let $(A_n : n \in \omega)$ be a sequence of names for infinite subsets of $[\omega]^{<\omega}$. We may suppose the A_n are forced to be subsets of X. Assume, by way of contradiction, that for all $I \in \mathcal{I}$ there are $p_I \in \mathbb{L}(\mathcal{G})$, and natural numbers n_I, m_I such that

$$p_I \Vdash \bigcup n_I \cap I \subseteq m_I. \quad (*)$$

Recall the standard rank analysis for Laver forcing [Br1][Br2]. For $s \in ([\omega]^{<\omega})^{\subset \omega}$, say s \textit{favors} $a \in A_n$ if there is no condition $p \in \mathbb{L}(\mathcal{G})$ with stem s such that $p \Vdash a \notin A_n$. Define the \textit{rank} $\rho_n(s)$ by recursion on the ordinals by

$$\rho_n(s) = 0 \quad \text{iff} \quad \exists B \in \mathcal{G}^+ \forall b \in B (s \smallfrown b \text{ favors } b \in A_n)$$

$$\rho_n(s) \leq \alpha \quad \text{iff} \quad \exists B \in \mathcal{G}^+ \forall b \in B (\rho_n(s \smallfrown b) < \alpha)$$

for $\alpha > 0$.

\textbf{Claim 1.} $\rho_n(s) < \infty$ for all s and n.

\textbf{Proof.} Fix n. Let $k \in \omega$. Define an \textit{auxiliary rank} $\rho_k(s)$ by recursion such that

$$\rho_k(s) = 0 \quad \text{iff} \quad \exists b \not\in k (s \smallfrown b \text{ favors } b \in A_n)$$

and $\rho_k(s) \leq \alpha$ is defined as for $\rho_n(s)$, for $\alpha > 0$. As A_n is forced to be infinite, it is straightforward to see that $\rho_k(s) < \infty$ for all k and s. Also note that since A_n is forced to be a subset of the generic X, any s can favor only elements of $\text{ran}(s)$.

If $\rho_k(s) = 1$, then there is a \mathcal{G}-positive set of b such that $s \smallfrown b$ favors $c \in A_n$ for some $c = c_0$ with $c \not\in k$. If on a \mathcal{G}-positive set, the same c works, we get $\rho_k(s) = 0$, a contradiction. Since $c_0 \in \text{ran}(s) \cup \{b\}$, it follows that on a \mathcal{G}-positive set, $c_0 = b$. This, however, means that $\rho_n(s) = 0$.

Now, let $k > \max(\bigcup \text{ran}(s))$. Then $\rho_k(s) \geq 1$. By the preceding paragraph and induction, we see that $\rho_n(s) < \infty$, as required.

We continue with the proof of the lemma. Let s_I be the stem of p_I. By strengthening the p_I, if necessary, we may assume that $\rho_n(s_I) = 0$ for all I.

Since the ideal I is not countably generated, there are s and n such that for no $J \in \mathcal{I}$, we have that for all I with $s_I = s$ and $n_I = n$ do we have $I \subseteq J$. Fix such s and n.

Let $B \in \mathcal{G}^+$ witness that $\rho_n(s) = 0$. Let $I_0 \in \mathcal{I}$ witness that $B \in \mathcal{G}^+$. Recall that this means that for all $a \in [\omega]^{<\omega}$ with $a \cap I_0 = \emptyset$, we have $\text{cone}(a) \cap B \neq \emptyset$.

4
Find $I \in \mathcal{I}$ such that $s_I = s$, $n_I = n$, and $I \setminus I_0$ is infinite. By definition of \mathcal{G}, there is a with $a \cap I_0 = \emptyset$ such that $\text{cone}(a) \subseteq \text{succ}_{p_I}(s)$. Since $I \setminus I_0$ is infinite, we may assume that $(a \cap I) \setminus m_I \neq \emptyset$. Find $b \in \text{cone}(a) \cap B$. So $b \in B \cap \text{succ}_{p_I}(s)$, and $s \not\vdash b$ favors $b \in \dot{A}_n$ by definition of B. Thus we can construct a condition $q \leq p_I$ whose stem extends $s \not\vdash b$ such that $q \upharpoonright b \in \dot{A}_n$. Since $(b \cap I) \setminus m_I \neq \emptyset$, this is a contradiction to the initial assumption (⋆). Thus, for some $I \in \mathcal{I}$,

$$\models \bigcup \dot{A}_n \cap I \text{ is infinite for all } n.$$

This immediately implies countable tallness of the restriction ideal in the generic extension.

We turn to the preservation of countable tallness in iterations.

Lemma 5. Assume \mathcal{K} is a Fréchet ideal, $\mathcal{H} = \mathcal{K}^*$ is the dual filter, and \mathcal{L} is a countably tall ideal. Then $\models {}^{\mathcal{L}(\mathcal{K})} \mathcal{L}$ is countably tall.

Proof. Let $(\dot{A}_n : n \in \omega)$ be names for countable subsets of ω. Assume that for each $I \in \mathcal{L}$ we can find a condition p_I and natural numbers n_I, m_I such that

$$p_I \upharpoonright I \cap \dot{A}_{n_I} \subseteq m_I.$$

Define a new rank function rank_n (cf. the proof of Lemma 4) by recursion on the ordinals as follows:

\[
\text{rank}_n(s) = 0 \quad \text{iff} \quad \exists Z \in [\omega]^\omega \forall k \in Z (s \text{ favors } k \in \dot{A}_n) \\
\text{or } \exists X \in \mathcal{H}^+, f : X \rightarrow \omega \forall \ell \in A (s \not\vdash \ell \text{ favors } f(\ell) \in \dot{A}_n) \\
\text{and } \forall k \in \omega (f^{-1}(k) \in \mathcal{K})
\]

and $\text{rank}_n(s) \leq \alpha$ is defined as for rk_n, for $\alpha > 0$.

Claim 2. $\text{rank}_n(s) < \infty$ for all s and n.

Proof. Fix n. Assume $\text{rank}_n(s) = \infty$. So $Z := \{k : s \text{ favors } k \in \dot{A}_n\}$ is finite. Recursively build $p \in \mathcal{L}$ with stem s such that for all $t \in p$ extending s,

- $\text{rank}_n(t) = \infty$, and
- $\{k : t \text{ favors } k \in \dot{A}_n\} \subseteq Z$.

Let such t be given. First, there is $X_0 \in \mathcal{H}$ such that $\text{rank}_n(t \not\vdash \ell) = \infty$ for all $\ell \in X_0$. Let $X_1 = \{\ell \in X_0 : \exists k \notin Z (t \not\vdash \ell \text{ favors } k \in \dot{A}_n)\}$. If $X_1 \in \mathcal{H}^+$, then we can define a function as in the definition of rank_n, and so $\text{rank}_n(t) = 0$, a contradiction. Thus $X_1 \in \mathcal{K}$ and $X_0 \setminus X_1 \in \mathcal{H}$. For $t \not\vdash \ell$ with $\ell \in X_0 \setminus X_1$, both clauses above are satisfied, and the construction proceeds.

Now find $q \leq p$ and $k \notin Z$ such that $q \upharpoonright k \in \dot{A}_n$. Then the stem of q in particular favors $k \in \dot{A}_n$, a contradiction.

We continue with the proof of the lemma. Let s_I be the stem of p_I. By strengthening the p_I, if necessary, we may assume that $\text{rank}_{n_I}(s_I) = 0$ for all I.

5
Since L is countably tall, there are s and n such that $\{ I \in L : s = s_I \text{ and } n = n_I \}$ is already countably tall. Fix such s and n.

We consider two cases, according to the definition of rank n.

Case 1. $\exists Z \in [\omega]^\omega \, \forall k \in Z \, (s \text{ favors } k \in A_n)$. Let $I \in L$ be such that $s_I = s$, $n_I = n$, and $I \cap Z$ is infinite. So there is $k > n$ such that $k \in I \cap Z$. Thus there is $q \leq p_I$ with $q \forces k \in A_n$, a contradiction.

Case 2. $\exists X \in \mathcal{H}^+, f : X \rightarrow \omega \, \forall \ell \in A \, (s \thicksim \ell \text{ favors } f(\ell)) \in A_n$ and $\forall k \in \omega \, (f^{-1}(k) \in K)$. Since K is Fréchet, we may assume by shrinking X, if necessary, that $X \in K^\omega$. This means that $f^{-1}(k)$ is finite for all k. By countable tallness, there is $I \in L$ with $s_I = s$, $n_I = n$, and $I \cap \text{ran}(f)$ is infinite. Since $X \in K^\omega$, we must have $X \subseteq^* \text{succ}_{p_I}(s)$. So there is $k \in I \cap \text{ran}(f)$, $k > m_I$, such that $f^{-1}(k) \cap \text{succ}_{p_I}(s) \neq \emptyset$. Say $\ell \in f^{-1}(k) \cap \text{succ}_{p_I}(s)$. Thus $s \thicksim \ell$ favors $k \in A_n$. Hence there is $q \leq p_I$ whose stem extends $s \thicksim \ell$ such that $q \forces k \in A_n$, again a contradiction. \square

Lemma 6. Countable tallness is preserved in limit stages of finite support iterations.

Proof. This is a standard argument. We provide the details for the sake of completeness. Obviously, it suffices to consider limit stages of cofinality ω.

Let $(P_k, \dot{Q}_k : k \in \omega)$ be a finite support iteration of ccc forcing such that each P_k preserves countable tallness. Also assume K is a countably tall ideal. We need to prove $\forces_{\dot{P}_\omega} \text{"}K \text{ is countably tall"}.$

Let $(A_n : n \in \omega)$ be a sequence of P_ω-names for infinite subsets of ω. In the intermediate extension $V[G_k]$ find a decreasing sequence of conditions $(p_{n,k} : n \in \omega)$ and infinite subsets $A_{m,k}$ of ω such that

$$p_{n,k} \forces_{\dot{\tau}(k,\omega)} \text{"the first } n \text{ elements of } A_{n,k} \text{ and } \dot{A}_m \text{ agree for } m \leq n".$$

The $A_{n,k}$ are approximations to \dot{A}_n.

Assume, by way of contradiction, that for all $I \in K$ we can find $p_I \in P_\omega$ and $n_I, m_I \in \omega$ such that

$$p_I \forces_{\dot{P}_\omega} I \cap \dot{A}_{n_I} \subseteq m_I.$$

Clearly there are k and n such that $\mathcal{L}_0 = \{ I \in K : p_I \in P_k \text{ and } n_I = n \}$ is already countably tall. Next notice there is a condition $q \in P_k$ such that

$$q \forces_{\dot{P}_k} \text{"}\dot{\mathcal{L}} = \{ I \in \mathcal{L}_0 : p_I \in G_k \}\text{ is countably tall in } V[\dot{G}_k]".$$

For assume this was not the case. Then we could build a maximal antichain $(q_i : i \in \omega)$ in P_k and P_k-names $(\dot{B}_{j,i} : j, i \in \omega)$ such that

$$q_i \forces_{\dot{P}_k} \text{"}\dot{B}_{j,i} : j \in \omega\text{ witnesses } \{ I \in \mathcal{L}_0 : p_I \in G_k \}\text{ is not countably tall"}.$$

However, the trivial condition in P_k would then force that $(\dot{B}_{j,i} : j, i \in \omega)$ witnesses that \mathcal{L}_0 is not countably tall in $V[\dot{G}_k]$. This contradicts the assumption that P_k preserves countable tallness.

6
Let G_k be a \mathbb{P}_k-generic such that $q \in G_k$. Thus there is $I \in \mathcal{L}$ such that $I \cap A_{n,k}$ is infinite. Find $\ell \geq m_I$ with $\ell \in I \cap A_{n,k}$. For large enough m, $p_{m,k} \Vdash [\mathbb{P}_k, \omega] \ell \in \dot{A}_n$.

Since $p_I \in G_k$, this contradicts the initial assumption about p_I.

The proof of Theorem 2 is now immediate. By taking care of all ω_1-generated ideals I via book-keeping, we iterate forcing notions of the type $L(G)$ for ω_2 steps with finite support. By Lemmata 3 and 4, we add $X \in (I^{<\omega})^+$ such that $I^{<\omega} | X$ is countably tall (and so $I^{<\omega}$ is not Fréchet). By Lemmata 2, 5 and 6, the countable tallness of $I^{<\omega} | X$ is preserved along the iteration, and we are done.

2 Final remarks and questions

Obviously, the question of Gruenhage and Szeptycki remains open. Even though, we do not know whether in the model of ZFC just constructed there are any FU_{fin}-filters of uncountable character (necessarily of character \aleph_2). It should also be noted that there are (consistently) topologies on $(\omega^{<\omega}, \Delta)$ which are not of the form τ_f, yet make $(\omega^{<\omega}, \Delta)$ a non-metrizable Fréchet-Urysohn group. An easy example can be described as follows:

Let $X \subseteq \mathcal{P}(\omega)$ be such that X separates points of $[\omega]^{<\omega}$, i.e. for every $a \in [\omega]^{<\omega} \setminus \{\emptyset\}$ there is an $x \in X$ such that $|a \setminus x|$ is odd. Let

$$F_X = \{A \subseteq [\omega]^{<\omega} : (\exists F \in [X]^{<\omega})(\forall a \in A)(\forall x \in F) \ |a \setminus x| \text{ is even} \}.$$

By declaring F_X the neighbourhood base at \emptyset, we introduce a Hausdorff group topology τ_X on G. To see this, consider the function $\varphi : [\omega]^{<\omega} \rightarrow 2^X$ defined by $\varphi(a)(x) = 0$ if and only if $|a \setminus x|$ is even. Then φ is a group homomorphism and as X separates points of $[\omega]^{<\omega}$, it is an embedding. It is easily seen that the topology τ_X is just the subspace topology induced by φ (viewing $[\omega]^{<\omega}$ as a subgroup of 2^X).

Now, it is easy to verify that if X is a γ-set then the topology τ_X on $([\omega]^{<\omega}, \Delta)$ is Fréchet-Urysohn. Indeed, let for $a \in [\omega]^{<\omega}$

$$U_a = \{x \in \mathcal{P}(\omega) : |a \setminus x| \text{ is even} \}$$

and for $A \subseteq [\omega]^{<\omega}$ let $U_A = \{U_a : a \in A\}$. Note that U_a is a clopen subset of $\mathcal{P}(\omega)$ for every $a \in [\omega]^{<\omega}$. It is now immediate from the definition of F_X that the topology τ_X is Fréchet-Urysohn at 0 (and hence Fréchet-Urysohn) if and only if for every infinite $A \subseteq [\omega]^{<\omega}$ if U_A is an ω-cover of X then there is an infinite $B \subseteq A$ such that U_B is a γ-cover of X (see either of [GN, GS1, Ny2] for the definitions of γ-sets and corresponding covers).

References

