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Abstract

We study an extensive connection between quotient forcings of Borel
subsets of Polish spaces modulo a σ-ideal and quotient forcings of subsets
of countable sets modulo an ideal.

1 Introduction

In recent years there has been a wave of interest in partial orders given as
quotients. We will discuss two kinds of them: a σ-ideal I on a Polish space
X comes with the quotient poset of I-positive Borel sets ordered by inclusion,
denoted by PI ; and an ideal J on some countable set Y comes with the quotient
poset of all J-positive sets ordered by inclusion, denoted by QJ or Power(X)/J
for an ideal J on a countable set X. The former turned out to be very close
to traditional forcings adding a real, and they allow of a comprehensive theory
[21]. From the forcing point of view, the latter are harder to understand [5].
In this paper we describe a close relationship between the two classes of posets.
The connecting link is the following definition due to Brendle [3]:

Definition 1.1. For a σ-ideal I on ωω the trace ideal tr(I) on ω<ω is defined
by a ∈ tr(I) ↔ {r ∈ ωω : ∃∞n r ¹ n ∈ a} ∈ I. Similarly for the Cantor space.

First we show that the quotient forcings PI and Qtr(I) are very close for a
large class of σ-ideals I described in the following definition:
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Definition 1.2. Let I be a σ-ideal on a Polish space such that the forcing
PI is proper. The forcing PI has the continuous reading of names if for every
I-positive Borel set B and a Borel function f : B → 2ω there is an I-positive
Borel set C ⊂ B such that the function f ¹ C is continuous.

Theorem 1.3. Suppose that I is a σ-ideal on X = ωω. If PI is a proper forcing
with continuous reading of names, then Qtr(I) is a proper forcing as well and in
fact Q is naturally isomorphic to a two step iteration of P and an ℵ0-distributive
forcing.

This result makes it easy to generate and understand a large variety of
quotients QJ of ideals on ω. Our methods provide many ideals J for which
these quotients are proper as well as examples of ideals for which the quotient
forcings are improper. Restricting attention to σ-ideals on the Baire space as
opposed to an arbitrary Polish space is both necessary and innocuous: necessary
since it makes the definition of the trace ideal possible, and innocuous because
every proper forcing with continuous reading of names has a presentation on
the Baire space with the continuous reading of names–Claim 2.2.

Earlier results in this area include a note of Steprāns [18] on what in retro-
spect are trace ideals for a small class of forcings, a result of Balcar, Hernández,
and Hrušák [1] regarding the properness of the factor Power(Q)/nowhere dense
sets, and results of Steprāns and Farah concerning the properness of factors
Power(ω)/J for various analytic P-ideals J . It should be noted that the trace
ideals are analytic P-ideals only in the case the original forcing PI had an ex-
haustive submeasure on it by a result of Solecki [17].

The second main theorem deals with the action of forcings on ideals on ω.

Definition 1.4. A forcing destroys an ideal K on ω if it introduces an infinite
set x ⊂ ω such that every ground model element of the ideal K has a finite
intersection with x.

In fact, what is destroyed is the tallness of the ideal K, where K is tall if
every infinite set of natural numbers has an infinite subset in K; we suggested
the terminology of the definition for its brevity. This definition is useful in the
study of maximal almost disjoint families and their preservation under forcings.
It turns out that for many forcings the class of ideals on ω which are destroyed
can be simply understood in terms of the Katětov order ≤K [8], which is an
interesting notion in itself:

Definition 1.5. If J, L are ideals on ω, we say that L ≤K J if there is a function
f : ω → ω such that f -preimages of K-small sets are L-small. Similarly for ideals
on other sets.

It is not difficult to see that if a forcing destroys an ideal L on ω then
it destroys all ideals ≤K-smaller ideals. The paper [3] showed that for many
particular forcings there is a critical ideal J such that the forcing destroys an
ideal L if and only if L ≤K J . It turns out that there is a simple general pattern:
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Theorem 1.6. If I is a σ-ideal on the Baire space and PI is a proper forcing
with the continuous reading of names and L is an ideal on ω then the following
are equivalent:

1. there is a condition B ∈ PI such that B °“the ideal L is destroyed”

2. there is a tr(I)-positive set a such that L ≤K tr(I) ¹ a.

In fact, for many forcings used in practice the trace ideals are homogeneous
in the sense that tr(I) ¹ a ≤K tr(I) in which case the second item of the theorem
can be improved accordingly: L ≤K tr(I).

The notation used in the paper follows the set theoretic standard of [9]. If I
is a σ-ideal on a Polish space X, the symbol PI denotes the poset of I-positive
Borel subsets of X ordered by inclusion. If J is an ideal on a countable set X,
the symbol QJ denotes the poset of J-positive subsets of X ordered by inclusion.
For a tree T ⊂ (2×ω)<ω the symbol [T ] denotes the set of all its infinite branches
and the symbol p[T ] its projection, that is the set of those r ∈ 2ω such that
there is b ∈ ωω such that the pair r, b constitutes a branch through the tree T .
The characteristic function of a set a ⊂ ω is denoted by χ(a). For a sequence
t ∈ 2<ω the symbol [t] denotes the basic open subset of the space 2ω determined
by t. LC denotes the use of suitable large cardinal assumptions.

2 The continuous reading of names

We will begin with several simple observations on the continuous reading of
names.

Claim 2.1. Let I be a σ-ideal on a Polish space X. The following are equivalent:

1. the forcing PI has the continuous reading of names

2. for every I-positive Borel set B and a countable collection {Dn : n ∈ ω} of
Borel sets there is an I-positive Borel set C ⊂ B such that all sets Dn∩C
are relatively open in C

3. for every I-positive Borel set B and every Borel function f : B → Y to a
Polish space Y there is an I-positive Borel set C ⊂ B such that f ¹ C is
continuous.

Proof. (1)→(2). Fix sets B, Dn : n ∈ ω and define a Borel function f : B → 2ω

by f(r)(n) = 1 if r ∈ Dn. By the continuous reading of names there is an
I-positive Borel set C ⊂ B such that f ¹ C is continuous. It is immediate that
the sets Dn ∩ C must be relatively open in C.

(2)→(3). Suppose that B is a Borel I-positive set and f : B → Y is a Borel
function. For every basic open set O from some fixed countable basis for the
space Y , let DO = f−1O. It is clear that DO is a Borel set and if C ⊂ B is any
set such that all sets DO ∩ C are relatively open in C, the function f ¹ C must
be continuous.

(3)→(1). Trivial.
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Claim 2.2. Every proper forcing of the form PI with the continuous reading of
names has a presentation on the Baire space ωω with the continuous reading of
names.

Proof. Suppose that X is a Polish space and I is a σ-ideal on it such that
the forcing PI is proper and has the continuous reading of names. There is a
continuous bijection π : Y → X between a closed subset Y of the Baire space
and the space X ([11] 7.9.) Let J be the σ-ideal on the Baire space generated
by ωω \ Y and the π-preimages of sets in the ideal I. Clearly, PI is forcing
isomorphic to PJ . We claim that PJ has the continuous reading of names. If
B ⊂ ωω is a Borel J-positive set and f : B → 2ω is a Borel function, consider
the Borel I-positive set B′ ⊂ X given by x ∈ B′ ↔ π−1(x) ∈ B and the
function f ′ : B′ → 2ω defined by f ′(x) = f(π−1(x)). Note that as f, π−1 are
both Borel, so is the function f ′. Use the CRN on PI to find an I-positive Borel
set C ′ ⊂ B′ such that the function f ′ ¹ C ′ is continuous. A simple diagram-
chasing argument shows that the function f is continuous on the J-positive set
C = π−1C ′.

Most definable proper partial orderings have the continuous reading of names
under a suitable representation.

Example 2.3. Cohen forcing has the continuous reading of names. Recall that
the Cohen forcing is naturally represented as PI where I is the ideal of meager
sets. Now, in fact, for every Borel function f : 2ω → 2ω there is a meager set
C ∈ I such that the function f ¹ 2ω \ C is continuous [11], 8.38. The Cohen
forcing is the only forcing which satisfies this strengthening of the continuous
reading of names. To show this, suppose that J is a σ-ideal on a Polish space X
such that for every Borel function f : X → 2ω there is a set C ∈ J such that the
function f ¹ X \ C is continuous. Then below some condition, the forcing PJ

has a countable dense subset, and so is in the forcing sense equivalent to Cohen
forcing. If not, [2] Proposition 1.4 shows that one can refine the countable basis
O of the space X into a collection of pairwise disjoint J-positive sets BO : O ∈ O
such that BO ⊂ O. Define f : X → 2ω by f(x)(n) = 1 if x ∈ BOn where On

is the n-th element of the basis O in some fixed enumeration. Suppose that
C ∈ J is a small set such that f ¹ X \C is continuous. This means that the set
BO0 \ C is relatively open in X \ C, containing some basic open neighborhood
On \ C. However, this is impossible since the set BOn ⊂ On is a J-positive
subset disjoint from BO0 .

Example 2.4. [21] 2.2.3. Every proper ωω-bounding poset PI has the contin-
uous reading of names.

Proof. For simplicity assume that the underlying space of the ideal I is 2ω.
Suppose B is a Borel I-positive set and f : B → 2ω is a Borel function. Let
T ⊂ (2 × 2 × ω)<ω be a tree which projects to the graph of the function f .
By a standard absoluteness argument, B °“for some ṡ ∈ 2ω, ḃ ∈ ωω the triple
〈ṙgen , ṡ, ḃ〉 constitutes a branch through the tree Ť”. Since the forcing PI is
bounding, there is a condition D ⊂ B which forces ḃ to be pointwise dominated

4



by some function c ∈ ωω. Let S be the subset of the tree T consisting of
those sequences whose third coordinate is pointwise dominated by the function
c. Then S is a finitely branching tree and

• p[S] is a compact subset of the graph of the function f , so it is a graph of
a continuous subfunction of f

• C = pp[S] is a compact subset of the set B, D forces the generic real into
Ċ and therefore C is I-positive.

All in all, C ⊂ B is an I-positive compact set on which the function f is
continuous.

Example 2.5. If the ideal I is σ-generated by closed sets then the forcing PI

is proper and it has the continuous reading of names.

Proof. The properness of the poset PI is the contents of [21], Lemma 2.3.11.
For the continuous reading of names, let us first deal with the case of the σ-ideal
generated by nowhere dense sets. It is a classical result [11] 8.38 that for every
Polish space X and every Borel function f : X → ωω there is a comeager Gδ

set C ⊂ X such that f is continuous on it.
In the general case, suppose that B is a Borel I-positive set and f : B → ωω

is a Borel function. By a result of Solecki [17], thinning out the set B we
may assume that it is Gδ. Furthermore, removing all the I-small sets O ∩ B
where O is a basic open set, we may assume that every basic open set O,
O ∩B /∈ I ↔ O ∩B 6= 0. Note that the latter operation preserves the fact that
the set B is Gδ. It now immediately follows that then every closed set in the
ideal I is nowhere dense in the set B. Since the set B is Gδ, it is Polish in the
relative topology, and so every set C ⊂ B comeager in B must be positive in
the ideal I. By the first paragraph of the proof, there must be a comeager Gδ

set C ⊂ B such that the function f is continuous on it.

These two classes of examples include many forcings used in practice, such as
the Cohen, Solovay, or Miller reals. In other situations, the continuous reading
of names has to be checked carefully.

Example 2.6. The Laver forcing in the natural presentation has the continuous
reading of names. This is a folklore knowledge, and it follows from Example 3.7
in this paper.

Example 2.7. The Steprāns forcing [19] in the natural presentation does not
have the continuous reading of names. Here the Steprāns forcing PI is obtained
from a Borel function f : 2ω → 2ω which cannot be decomposed into countably
many continuous functions by considering the ideal I σ-generated by the sets
on which the function f is continuous. The poset PI is proper and up to the
forcing equivalence does not depend on the initial choice of the function f–see
[21], 2.3.49.
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It is interesting to note that in a slightly different presentation the ideal asso-
ciated with Steprāns forcing is generated by closed sets and therefore does have
the continuous reading of names. Let us describe this different presentation.

We will need a definite example of a Borel function which cannot be de-
composed into countably many continuous functions, due to Pawlikowski [4].
Consider the space ω + 1 equipped with the order topology, the space (X, σ) =
(ω + 1)ω with the product topology, and the Pawlikowski function P : X → ωω

defined by P (r)(n) = r(n) + 1 if r(n) ∈ ω and P (r)(n) = 0 if r(n) = ω. This
function cannot be decomposed into countably many continuous functions and
it is in a sense a minimal such example [16].

Let I be the σ-ideal on the space X generated by the sets B on which the
function P is continuous. Clearly the poset PI does not have the continuous
reading of names as witnessed by the function P . However, the function P turns
out to be the only obstacle. Namely, if the space X is equipped with the smallest
Polish topology τ ⊃ σ which makes the function P continuous and generates
the same Borel structure, the σ-ideal I is generated by τ -closed sets and so the
forcing PI has the continuous reading of names in this new presentation. An
outline of the easy argument: the topology τ is the product topology on X with
ω+1 viewed as a discrete space. If B ⊂ X is a set such that P ¹ B is continuous
with respect to the topology σ and C is the τ -closure of the set B, then P ¹ C
is continuous with respect to σ as well. If U, V are basic open subsets of (X, σ)
and ωω respectively such that P ′′(B ∩ U) ⊂ V then P ′′(C ∩ U) ⊂ V as well.

Definition 2.8. Let J be an ideal on ω. The Prikry forcing P (J) for the ideal
J is defined as the set of all pairs 〈t, a〉 where t ⊂ ω is a finite set, a ⊂ ω is a
set in the ideal J , and 〈u, b〉 ≤ 〈t, a〉 if t ⊂ u, a ⊂ b and a ∩ u \ t = 0. We will
refer to the union of the first coordinates of conditions in the generic filter as
the generic subset of ω, and denote it by ȧgen.

Example 2.9. Let J be an ideal on ω. The forcing P (J) has the continuous
reading of names if and only if J is a P-ideal.

Proof. Let I be the σ-ideal on 2ω associated with the forcing P (J), namely
I is the collection of those sets B ⊂ 2ω for which it is outright forced that
χ(ȧgen) /∈ B. Thus the poset PI is in the forcing sense equivalent to the poset
P (J), with a canonical correspondence between the respective generic objects.

First suppose that J is not a P-ideal, as witnessed by a countable collection
{an : n ∈ ω} of sets in the ideal such that no set in the ideal contains each of
them modulo a finite set. Consider the Borel function f : 2ω → 2ω defined by
f(r)(n) =the parity of the size of the set {m ∈ an : r(m) = 1}. The function
f is defined on an I-large set, and we claim that it cannot be reduced to a
continuous function on an I-positive Borel set.

Suppose that B is an I-positive Borel set, and 〈t, b〉 °“χ(ȧgen) ∈ Ḃ”. Thin-
ning out the set B we may assume that it consists only of functions r such that
∀m ∈ ω (t(m) = 1 → r(m) = 1 and m ∈ b → r(m) = 0). Let n be such that the
set an \b is infinite. It is not difficult to see that both sets {r ∈ B : f(r)(n) = 0}
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and {r ∈ B : f(r)(n) = 1} are dense in the set B, and therefore the function f
cannot be continuous on B.

Now suppose that J is a P -ideal, B /∈ I is a Borel set, and f : B → ωω

is a Borel function. Let M be a countable elementary submodel of a large
enough structure containing the ideal J , let a ⊂ ω be a set in the ideal J which
modulo finite contains all sets in J ∩M , and for every number n consider the
sets Cn = {r ∈ B : r is M -generic for PI and for all k > n, r(k) = 1 → k /∈ a}.
Since the poset PI is c.c.c., the set B \⋃

n Cn is in the ideal I and there must
be a number n ∈ ω such that the Borel set Cn is I-positive. Set C = Cn ⊂ B;
we will be done if we show that the function f ¹ C is continuous.

Suppose r ∈ C and O ⊂ ωω is a basic open set such that f(r) ∈ O. We must
produce a basic open set P ⊂ 2ω such that r ∈ P and for every real s ∈ P ∩C,
f(r) ∈ O. Look at the M -generic filter G ⊂ M ∩ P (J) associated with the real
r: G = {〈t, b〉 ∈ P (J) ∩M : ∀m ∈ ω m ∈ t → r(m) = 1 ∧m ∈ b → r(m) = 0}.
By the forcing theorem, there must be a condition 〈t, b〉 ∈ G which forces
ḟ(χ(ȧgen)) ∈ O. Let m ∈ ω be a natural number larger than n, larger than all
elements of the finite set t, and larger than all elements of the finite set b \ a.
It is enough to show that whenever s ∈ C is a real such that s ¹ m = r ¹ m
then f(s) ∈ O. A brief inspection reveals that the condition 〈t, b〉 belongs to the
M -generic filter associated with the real s, and by the forcing theorem applied
in the model M , it must be the case that f(s) ∈ O as desired.

A similar proof can be used to show that the Hechler forcing in the natural
presentation has the continuous reading of names, while the eventually different
real forcing does not have the continuous reading of names.

Example 2.10. The eventually different real forcing does not have the contin-
uous reading of names in any presentation. Here, if I is a σ-ideal on a Polish
space X such that the forcing PI is proper, a different presentation is just a
Borel bijection π : X → Y of X and another Polish space and the ideal J on Y
defined by A ∈ J ↔ π−1A ∈ I. Since Borel injective images of Borel sets are
Borel, it follows that PJ and PI are isomorphic partial orders. The eventually
different real forcing P is the set of all pairs p = 〈tp, fp〉 where tp is a finite
sequence of natural numbers and fp is a finite set of functions in ωω. The order-
ing is defined by q ≤ p if tp ⊂ tq, fp ⊂ fq and (tq \ tp) ∩

⋃
fp = 0. The forcing

P adds an element ẋgen of the Baire space as the union of the first coordinates
of the conditions in the generic filter. The function ẋgen has finite intersection
with every function in the ground model. The forcing P is clearly σ-centered
since any two conditions with the same first coordinate are compatible. Let I
be the σ-ideal of all Borel sets B ⊂ ωω such that P °“ẋgen /∈ Ḃ” so P is in the
forcing sense equivalent to the poset PI .

First we claim that it is enough to show that for no Polish topology τ on the
Baire space extending the standard Baire space topology the forcing PI has the
τ -continuous reading of names. To see this, note that if π : ωω → Y and J is a
presentation of the eventually different forcing, then there is a Polish topology
τ on the Baire space which gives the same Borel structure as the original one
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and makes all the π-preimages of open subsets of Y open [11] 13.A. It is easy to
see that if the forcing PJ had the continuous reading of names, then so would
PI in the topology τ .

Let Bn : n ∈ ω enumerate a basis for the topology τ . These are all Borel
subsets of the Baire space ωω and so there are countable antichains An : n ∈ ω
in the forcing P such that every condition in An forces ẋgen ∈ Ḃn and the
antichains are maximal with respect to this property.

A piece of notation and an easy construction: for a finite set f ⊂ ωω of
functions and a number l ∈ ω write f(l) = {x(l) : x ∈ f}. For every number
m ∈ ω choose a set fm of m + 1 many functions in the Baire space which
return mutually distinct values at every input and moreover such that for all
numbers k, n ∈ ω and every condition q ∈ An there is a number l > k such
that fm(l) ∩ fq(l) = 0. Let h : ωω → ωω be the partial Borel function defined
by h(x)(m) =the least number k such that x(l) /∈ fm(l) for all numbers l > k.
Note that the function h is defined on all but I-many points in the Baire space.
We claim that there is no Borel I-positive set C ⊂ ωω such that h ¹ C is a
τ -continuous function.

Suppose there in fact is such a set C ⊂ ωω. Find a condition p ∈ P such that
p ° ẋgen ∈ Ċ and let m = |fp|. The sets Ck = {x ∈ C : h(x)(m) = k} : k ∈ ω
exhaust all of C and so one of them must be I-positive. This set Ck is relatively
τ -open in the set C, and there must be a set a ⊂ ω such that Ck = C∩⋃

n∈a Bn.
Since the set Ck is I-positive, there must be a number n ∈ a and a condition
q ∈ An such that p, q are compatible conditions. Now use the property of the
finite set fm ⊂ ωω to find a number l > k, |sp|, |sq| such that fm(l) ∩ fq(l) = 0.
Since there are m + 1 many functions in the finite set fm ⊂ ωω and only m
many functions in the set fp, there is a function y ∈ fm such that y(l) /∈ fp(l).
It is now easy to find a finite sequence s extending both sp and sq such that
the condition r = 〈s, fp ∪ fq〉 is a lower bound of p, q and s(l) = y(l). Since the
condition r forces both ẋgen ∈ Ċ and ẋgen ∈ Ḃn, any sufficiently generic point
x ∈ ωω below the condition r will belong to the intersection Bn ∩ C. However,
for every such a point it is the case that h(x)(m) > l > k, contradicting the
assumption that Bn ∩ C ⊂ Ck!

The continuous reading of names is a rather slippery property of ideals. It
is not preserved under Borel isomorphism of ideals. This is to say that there
are σ-ideals I and J on Polish spaces X and Y and a Borel bijection f : X → Y
such that a set A ⊂ Y is in the ideal J iff its f -preimage is in the ideal I,
but the poset PI does have the continuous reading of names while PJ does not.
An instructive example is that of the Steprāns forcing, 2.7. Note that since
Borel injective images of Borel sets are Borel, in this case the function f can
be naturally extended to an isomorphism of the posets PI and PJ . This means
that the continuous reading of names is, in fact, a property of a presentation of
forcing as opposed to a property of the forcing itself. Even so, the continuous
reading of names is perceived as a natural and useful property. We state two of
its important features.
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Claim 2.11. [21] 2.2.2(2) Suppose that I is a σ-ideal on a Polish space X. If
PI is a proper forcing notion with the continuous reading of names then every
Borel I-positive set has a Gδ I-positive subset.

Proof. Suppose that B ⊂ X is a Borel I-positive set, a projection of a closed
set E ⊂ X × ωω. Since the poset PI is proper, there must be an I-positive
Borel set D ⊂ B and a Borel function f defined on the set D whose graph is
a subset of the set E. Use the continuous reading of names and thin out the
set D if necessary so as to make the function f ¹ D continuous. Every partial
continuous function can be extended to a continuous function with a Gδ domain.
Let D ⊂ C, f ⊂ g be such a Gδ set and a continuous extension, with D still
dense in C. It is immediate that g : C → ωω is a function whose graph is a
subset of the set E. Then C ⊂ B is an I-positive Gδ-subset of the set B.

The opposite implication does not hold: compact sets are dense in the nat-
ural presentation of Steprāns forcing [21] 2.3.46, while the continuous reading
of names fails.

Fact 2.12. (LC) The continuous reading of names is preserved under the count-
able support iteration of universally Baire proper forcings of the form PI .

This is proved in the forthcoming [20]. In conjunction with the previous
claim, this means for example that Gδ sets are dense in the countable support
iteration of Laver forcing.

3 Proof of Theorem 1.3

The proof is the same for both the Cantor and Baire space, and we will treat
the Baire space case.

Definition 3.1. The function π : P(ω<ω) → P(ωω) is defined by π(a) = {r ∈
ωω : ∃∞n r ¹ n ∈ a}.

Clearly, the range of the function π is exactly the collection of all Gδ-subsets
of ωω, and the function π preserves inclusion. Moreover, if I is a σ-ideal on ωω

then a ∈ tr(I) if and only if π(a) ∈ I, and the map π ¹ Qtr(I) : Qtr(I) → PI

preserves compatibility. For the remainder of the section fix a σ-ideal I on ωω

such that the poset PI is proper and has the continuous reading of names, and
write J = tr(I).

Claim 3.2. 1. For every set a /∈ J and for every I-positive Gδ subset B ⊂
π(a) there is a set b ⊂ a such that π(b) = B.

2. QJ forces π′′Ġ to be a PI-generic filter, where Ġ is the name for the QJ

generic filter.

Proof. The second item immediately follows from the first and Claim 2.11. For
the first one, suppose B ⊂ π(a) is an I-positive Gδ set, B =

⋂
n On for some

open sets On. By induction on n ∈ ω build sets an ⊂ a in the following way:
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1. Each an ⊂ ω<ω is an antichain and it refines an−1. For notational conve-
nience let a−1 be the singleton containing the empty sequence.

2. B ⊂ ⋃
t∈an

[t] ⊂ On.

After the construction is complete, writing b =
⋃

n an we will have π(b) = B
as required. Suppose the antichain an has been obtained. For each t ∈ an let
c(t) be the collection of all proper extensions u ∈ ω<ω of t such that [u] ⊂ On+1,
and no proper initial segment of u longer than t has this property. Note that
c(t) ⊂ ω<ω is an antichain. For each u ∈ c(t) let d(u) be the collection of
all proper extensions v of u which are in the set a, such that no proper initial
segment of v longer than u has this property. Note that each d(u) is an antichain.
It is not difficult to verify that the set an+1 =

⋃{d(u) : u ∈ c(t), t ∈ an} has the
desired properties.

Claim 3.3. The poset QJ is proper.

Proof. Let M be a countable elementary submodel of a large structure with
I ∈ Mand let a ∈ QJ ∩M be a condition. Let 〈Dn : n ∈ ω〉 be an enumeration
of all open dense subsets of the poset QJ in the model M . We will find sets
an ⊂ a and functions gn : an → Dn ∩M with the following properties.

1. Each set an ⊂ ω<ω is an antichain and it refines an−1.

2. The set b =
⋃

n an ⊂ a is J-positive.

3. For each sequence t ∈ an the set {u ∈ b : t ⊂ u} is a subset of gn(t).

It follows that the set b ⊂ a is the required M -master condition in the poset
QJ . To see this, choose a J-positive set c ⊂ b and an open dense set D = Dn ∈
M for some number n. For each sequence t ∈ an write bt = {u ∈ b : t ⊂ u}.
Since the set an ⊂ ω<ω is an antichain, it is the case that π(c) =

⋃
t∈an

π(c∩ bt)
and therefore one of the sets c ∩ bt : t ∈ an must be J-positive. Such a set
c ∩ bt ⊂ c has the condition gn(t) ∈ Dn ∩M above it as required.

To perform the construction, find an M -master condition B ⊂ π(a) for the
poset PI . Thinning out the condition B we may assume that for every dense
set E ∈ M of the poset PI , B ⊂ ⋃

(E ∩ M). Thinning out the condition B
even further, by Claim 2.1, we may assume that for every set C ∈ PI ∩M the
intersection C∩B is relatively open in B. Thinning out the condition B further
still we may assume that it is a Gδ set such that for every basic open set O,
B ∩ O /∈ I ↔ B ∩ O 6= 0. Fix a representation B =

⋂
n On, for some open sets

On.
The induction hypotheses on the construction of the sets an are the following.

1. Each an ⊂ ω<ω is an antichain and it refines an−1.

2. B ⊂ ⋃
t∈an

[t] ⊂ On.
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3. For every n, gn(t) ⊂ {u ∈ a : t ⊂ u} is a condition in the open dense set
Dn. For every n ∈ m, t ∈ an and u ∈ am such that t ⊂ u, u ∈ gn(t) and
gm(u) ⊂ gn(t). For notational convenience put g−1(0) = a.

4. For each t ∈ an, B ∩ [t] is a nonempty subset of π(gn(t)).

Now suppose that an, gn have been constructed. Fix a node t ∈ an. We will
show how the part of the antichain an+1 below t will be constructed. Let E
be the part of the open dense set Dn+1 ⊂ QJ below the condition gn(t) ∈ QJ .
Claim 3.2 shows that the set π′′(E) is dense below the condition π(gn(t)). Then
B ∩ [t] ⊂ ⋃

(π′′E ∩M) =
⋃

π′′(E ∩M) by the choice of the M -master condition
B. Note that for every condition p ∈ E ∩ M the set π(p) ∩ B ⊂ B ∩ [t] is
relatively open by the choice of the condition B ∈ PI again. It is now easy to
build an antichain d ⊂ ω<ω below the node t so that for every u ∈ d it is the
case that [u] ⊂ On+1 and there is a condition p(u) ∈ E∩M such that B∩ [u] is a
nonempty subset of π(p(u)), and B∩ [t] ⊂ ⋃

u∈d[u]. Let c be then the collection
of all nodes v ∈ ω<ω such that there is some u ∈ d such that u ⊂ v, v ∈ p(u),
B ∩ [v] 6= 0 and no proper initial segment of v is an extension of u in p(u). The
set c is an antichain below the node t, and it is the part of the antichain an+1

below t. For every node v ∈ c let gn+1(v) = p(u) ∩ {w ∈ ω<ω : v ⊂ w}. The
induction hypotheses are easily seen to be satisfied.

Claim 3.4. The remainder poset R = QJ/PI preserves stationary subsets of
ω1 and it is ℵ0-distributive.

Note that the proof below leaves open the possibility that the remainder col-
lapses the stationarity of the set [ω2]ℵ0 \ V and therefore fails to be proper.

Proof. Here the remainder poset R is computed via the QJ -name for the PI -
generic filter obtained in Claim 3.2. Note that writing ṙgen for the canonical
PI -generic real we have t ⊂ ṙgen ↔ the set {u ∈ ω<ω : t ⊂ u} is in the QJ -
generic filter, this for every sequence t ∈ ω<ω.

The fact that PI °“Ṙ is stationary preserving” follows abstractly from the
proof of the previous claim: if M is a countable elementary submodel containing
the ideal I and B ∈ PI is any M -master condition for the poset PI then there
is an M -master condition b ∈ QJ such that π(b) ⊂ B. Namely, suppose that
Ṡ is a PI -name for a stationary subset of ω1 and Ċ is a QJ -name for a club
in ω1. We must find a condition b ∈ QJ and an ordinal α ∈ ω1 such that
b ° α̌ ∈ Ṡ ∩ Ċ. Note that as Ṡ is forced to be stationary, there must be a model
M and a M -master condition B forcing M̌ ∩ ω1 ∈ Ṡ. Writing α = M ∩ ω1 and
finding an M -master condition b ∈ QJ such that π(b) ⊂ B we see that b, α work
as required.

For the distributivity, suppose that ḟ is a QJ -name for an ω-sequence of
ordinals. We must prove that ḟ ∈ V [ṙgen ]. To this end, revisit the proof of
the previous claim again. Assume that ḟ ∈ M and for each number k ∈ ω find
a number nk ∈ ω such that the conditions in the open dense set Dnk

⊂ QJ

decide the value of ḟ(ǩ). Look again at the master condition b =
⋃

n an. It is

11



not difficult to see that b forces that for each n ∈ ω there is exactly one initial
segment of the real ṙgen in the set an; call it tn. Consequently, the sequence
ḟ can be recovered in the model V [ṙgen ] by the following formula: ḟ(ǩ) is that
ordinal which is forced by the condition gnk

(tnk
) to be the value of ḟ(ǩ).

This completes the proof of Theorem 1.3, the rest of this section is devoted
to speculations about the surrounding issues.

It is interesting to see what the ℵ0-distributive tail QJ/PI can be. From the
definitions it is equal to the collection of all ground model sets a ⊂ ω<ω such
that the PI -generic real has infinitely many initial segments in a, ordered by
inclusion. In many cases it is, in the forcing sense, equivalent to P(ω)/fin of the
PI extension. To prove this it is enough to show that PI forces every infinite
subset of the generic real ṙgen (understood now as a path through ω<ω) to have
an infinite subset of the form a ∩ ṙgen for some set a in the ground model. We
can verify this property in a great number of cases and disprove in others, but
we do not have a suitable general criterion.

Proposition 3.5. Let I be a σ-ideal on 2ω σ-generated by a σ-compact family
of closed sets. The forcing PI is proper and bounding, and writing J = tr(I),
QJ = PI ∗ P(ω)/fin.

Here, the hyperspace of closed subsets of 2ω is equipped with the usual
Hausdorff topology, and a family of closed sets is σ-compact if it is a countable
union of compact sets.

Proof. The ideals I considered in this proposition form a class considered in
[7]. There it is proved that the poset PI is proper and bounding; it has the
continuous reading of names simply because the ideal is generated by closed
sets–Example 2.5. In fact a standard determinacy argument [7] Corollary 3.21
shows the following: fix a σ-ideal I σ-generated by a collection F =

⋃
n Fn in

which the sets Fn ⊂ K(2ω) are closed. Call a tree T ⊂ 2<ω I-fat if for every
node t ∈ T and every number n there is a number m such that no set in Fn

meets all the open sets determined by the extensions of the node t in the tree
T of length m. Then a Borel set B ⊂ 2ω is I-positive if and only if it contains
all branches of some I-fat tree. Therefore the poset of I-fat trees is naturally
isomorphic with a dense subset of the poset PI and below we will identify it
with PI .

We will show that PI °“every infinite subset of ṙgen has an infinite subset
of the form a ∩ ṙgen for some set a in the ground model”. Suppose T ∈ PI is
an I-fat tree, T °“ẋ ⊂ ṙgen is an infinite set”. A standard fusion argument will
give an I-fat tree S ⊂ T such that for every number n there is m > n such that
every sequence s ∈ S of length m has an initial segment of length ≥ n in the
set a = {t ∈ S : S ¹ t ° ť ∈ ẋ} ⊂ S. Clearly S °“ǎ ∩ ṙgen is an infinite subset
of ẋ” as desired.

The following definition is not standard. It is an attempt to restate a com-
monly used combinatorial forcing property in topological terms.

12



Definition 3.6. Let I be a σ-ideal on some Polish space X with a fixed metric
d. We say that the poset PI has the pure decision property (with respect to
the metric d) if for every I-positive Borel set B ⊂ X and every Borel map
f : (B, d) → (Y, e) into a compact metric space there is a Borel I-positive set
C ⊂ B on which the map f is a contraction.

Example 3.7. The Laver forcing has the pure decision property in the standard
representation, with respect to the metric of least difference on ωω: d(x, y) =
2−n where n is the smallest number where the functions x, y ∈ ωω differ.

Proof. Let B be Borel I-positive set and f : (B, d) → (Y, e) be a Borel map into
a compact metric space. Thinning out the set B if necessary we may assume
that B = [T ] for some Laver tree T ⊂ ω<ω. To simplify the notation assume
that T has an empty trunk.

Before we proceed recall the well known fact that for every Laver tree S and
Borel partition [S] =

⋃
i∈n Ai into finitely many pieces there is a Laver tree

U ⊂ S with the same trunk such that the set [U ] is included in one of the pieces
of the partition.

Now for every n find a finite 2−n−1-network yn ⊂ Y , that is, a set such that
every point of the space Y is 2−n−1-close to one of its elements. By induction
on n ∈ ω build a fusion sequence of Laver trees Tn so that T0 = T, Tn+1 agrees
with Tn on sequences of length n+1 and for every such a sequence t ∈ Tn there
is an element xt ∈ yn such that for every path r through Tn+1 extending the
sequence t, the element f(r) ∈ Y is 2−n−1-close to xt. This is possible by the
observation in the previous paragraph. Note that by the triangle inequality this
means that for two such paths r0, r1 the elements f(r0), f(r1) ∈ Y will have
e-distance ≤ 2−n. Let S be the fusion of the sequence of trees Tn. It is not
difficult to see that the set C = [S] has the required properties.

Proposition 3.8. If I is a σ-ideal on ωω such that the poset PI is proper and
has the pure decision property with respect to the metric of least difference on
ωω, then Qtr(I) = PI ∗ P(ω)/fin.

Proof. Note that the pure decision property implies the continuous reading of
names.

Suppose that B ∈ PI forces ẋ ⊂ ṙgen to be an infinite set. Since the poset
PI is proper, thinning out the set B if necessary we can find a Borel map
f : B → 2ω such that B °“ẋ = {ṙgen ¹ n : n ∈ ḟ(ṙgen)}”. Consider the metric e
of least difference on 2ω and use the pure decision property to find an I-positive
set C ⊂ B such that f : C → 2ω is a contraction. This means that for every
sequence t ∈ ω<ω, all reals r ∈ C extending the sequence t return the same
value b(t) ∈ 2 for f(r)(|t|). Let a = {t ∈ ω<ω : b(t) = 1}. It follows from the
definitions that C ° ẋ = a ∩ ṙgen , and the proposition follows.

Example 3.9. The Cohen poset forces that there is an infinite set x ⊂ ṙgen
without an infinite subset of the form a∩ ṙgen , a ∈ V . Just let an initial segment
t of ṙgen into ẋ if and only if ṙgen(|t|) = 0.
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As a final remark in this section, once we produced so many ideals J for
which the factor forcing QJ is proper, we should also produce some for which it
is not proper. The following proposition of independent interest shows how to
do exactly that in several ways. First, an instrumental definition.

Definition 3.10. Let β be a limit ordinal. We say that an inclusion-decreasing
sequence 〈Iα : α ∈ β〉 of σ-ideals on a Polish space does not stabilize if for every
ordinal α ∈ β and every Iα-positive Borel set B there is an ordinal α ∈ γ ∈ β and
a Borel set C ⊂ B which is Iα-small but Iγ-positive. This is equivalent to saying
that, writing I =

⋂
α Iα, the sets Iα∩PI are all dense in PI . Restated again, this

is equivalent to saying that for every I-positive Borel set B, I ¹ B 6= Iα ¹ B–
hence the terminology.

Similarly, we say that an inclusion-decreasing sequence 〈Jα : α ∈ β〉 of ideals
on some countable set X does not stabilize if for every ordinal α ∈ β and Jα-
positive set a ⊂ X there is an ordinal α ∈ γ ∈ β and a set b ⊂ a which is
Jα-small but Jγ-positive. This is the same as to say, writing J =

⋂
α Jα, that

the sets Jα ∩QJ are dense in the factor forcing QJ .

Proposition 3.11. Assume the Continuum Hypothesis. If I is a σ-ideal on a
Polish space, then

1. PI collapses ℵ1 if and only if I =
⋂

n∈ω In for an inclusion-decreasing
sequence of σ-ideals which does not stabilize.

2. Suppose PI preserves ℵ1. PI is nowhere c.c.c. if and only if I =
⋂

α∈ω1
Iα

for an inclusion-decreasing sequence of σ-ideals which does not stabilize.

If J is an ideal on a countable set, then

3. QJ adds an unbounded real if and only if J =
⋂

n∈ω Jn for an inclusion-
decreasing sequence of ideals which does not stabilize.

4. If J =
⋂

n∈ω Jn for an inclusion-decreasing sequence of P-ideals which
does not stabilize, then QJ collapses ℵ1.

Proof. For the first equivalence, assume that PI collapses ℵ1. Let ḟ : ω̌ → ω̌1 be
a name for a function with cofinal range. For every number n ∈ ω let In be the
ideal generated by sets B ∈ PI which force the first n values of the function ḟ to
be bounded by some fixed countable ordinal, together with all sets in the ideal
I. It is clear that 〈In : n ∈ ω〉 is an inclusion-decreasing sequence of σ-ideals
which does not stabilize, and I =

⋂
n In. On the other hand, suppose that

I =
⋂

n In for some inclusion-decreasing sequence of σ-ideals which does not
stabilize. Since the ideals In are dense in the poset PI , we can pick a maximal
antichain An ⊂ In from each, and by CH it will be enough to show that every
condition in PI is compatible with uncountably many elements of one of these
antichains. Indeed, if B ∈ PI is a condition, then B /∈ In for some number n,
and B must be compatible with uncountably many elements of the antichain
An, because if X ⊂ An is a countable set, then C =

⋃
X ∈ In and the condition

B \ C /∈ In is a condition incompatible with all elements of the set X.
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For the second equivalence, assume that the poset PI preserves ℵ1 and is
nowhere c.c.c. Then there is a name ḟ for a function from ω1 to itself which is
not bounded by any ground model such function. To see this, let 〈Mα : α ∈ ω1〉
be a tower of countable elementary submodels of some large structure, and
define ḟ(α) = min{β ∈ ω1 : for every maximal antichain A ∈ Mα the unique
element in it which belongs to the generic filter is in the model Mβ}. Since the
forcing PI preserves ℵ1, and by CH PI ⊂

⋃
α Mα, this is well-defined. If p ∈ PI

is a condition and g : ω1 → ω1 is a function, find an ordinal α ∈ ω1 such that
p ∈ Mα, a maximal antichain A ∈ Mα which has uncountably many elements
below the condition p, and an element q ∈ A \ Mg(α) below the condition p.
Then q °“g(α) ∈ ḟ(α)”, and it follows that the function ḟ is unbounded.

Now, given an ordinal α let Iα be the ideal generated by the sets B ∈ PI for
which there is a countable ordinal β such that B forces all values {ḟ(γ) : γ ∈ α}
to be smaller than β, together with all sets in the ideal I. It is clear that
〈Iα : α ∈ ω1〉 is an inclusion decreasing sequence of σ-ideals. Since the function
ḟ is not dominated by any ground model function, it is the case that I =

⋂
α Iα,

and since the forcing PI preserves ℵ1, the sequence of ideals does not stabilize.
For the other direction, let I =

⋂
α Iα. Suppose B ∈ PI is a Borel set; we

must find an uncountable antichain below it. It must be the case that B /∈ Iα for
some countable ordinal α. Now since the sequence of ideals does not stabilize,
the ideal Iα is dense in the poset PI , and therefore there must be a maximal
antichain A below B which consists solely of Iα-small sets. This antichain must
be uncountable, because otherwise

⋃
A ∈ Iα and B \⋃

A /∈ Iα is a condition in
PI which avoids all elements of the maximal antichain, a contradiction.

For the third equivalence, first suppose that QJ °“ḟ ∈ ωω is an unbounded
function”. Let Jn = {a ⊂ ω : there is a number m such that a forces the first n
values of the function ḟ to be smaller than m}. It is immediate that 〈Jn : n ∈ ω〉
is an inclusion-decreasing sequence of ideals which does not stabilize. Since ḟ
is forced unbounded, J =

⋂
Jn. On the other hand, suppose that J =

⋂
n Jn

is the intersection of an inclusion decreasing sequence of ideals which does not
stabilize. Each ideal Jn is dense in QJ , so we can find a maximal antichain
An ⊂ Jn. Now, suppose a ∈ QJ . There are two cases. In the first case,
there is no condition b ⊂ a which is compatible with at most countably many
elements of

⋃
n An. Then a °“ℵ1 is collapsed and by the CH an unbounded real

is added”. In the second case, there is such a condition b, compatible only with
elements {ak

n : k ∈ ω} of the antichain An. Let ḟ ∈ ωω be defined by f(n) =
the unique k such that ak

n is in the generic filter. The condition b forces this
function to be well-defined, and we will be done if we prove that it forces it not
to be bounded by any ground model function. Indeed, if c ⊂ b is a condition
and g ∈ ωω is a function, it must be the case that c /∈ Jn for some number n,
d =

⋃
k∈g(n) ak

n ∈ Jn, c \ d /∈ Jn and clearly c \ d ⊂ c is a condition forcing
g(n) ≤ ḟ(n).

Finally, for the fourth item, suppose that J =
⋂

n Jn is an intersection of
an inclusion decreasing sequence of P-ideals which does not stabilize. Every
ideal Jn is dense in the factor QJ , therefore we can find a maximal antichain
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An ⊂ Jn. We will be done if we show that every condition a ∈ QJ is compatible
with uncountably many elements of one of these antichains. Indeed, if a ∈ QJ ,
then a /∈ Jn for some number n, and a must be compatible with uncountably
many elements of the antichain An. This is true because if X ⊂ An is a countable
set then there is a set b ∈ Jn containing all elements of X modulo finite, and
then a \ b /∈ Jn is a condition which is incompatible with all elements of the set
X!

The following example answers a question of Ilijas Farah–Question 4.3 of [6].

Example 3.12. An analytic P-ideal J such that the factor QJ collapses ℵ1.
Let 〈αn : n ∈ ω〉 be a decreasing sequence of positive real numbers smaller
than 1. Let Jn be the summable P-ideal associated with the weight function
k 7→ k−αn . We claim that 〈Jn : n ∈ ω〉 is an inclusion-decreasing sequence of
ideals which does not stabilize. The inclusions are clear. To see that stabilization
is impossible, choose a number n and a set a /∈ Jn. We will produce a set b ⊂ a,
b ∈ Jn \ Jn+1. By induction on m ∈ ω find mutually disjoint finite sets bm ⊂ a
such that Σk∈bmk−αn ≤ 2−m while Σk∈bmk−αn+1 ≥ 1. Then b =

⋃
m bm will be

as desired. To find the set bm, first find a number km ∈ ω such that for every
k > km it is the case that k−αn ≤ 2−m−1k−αn+1 ≤ 2−m−1 and then find a finite
set bm consisting of numbers larger than km such that the sum Σk∈bmk−αn is
between 2−m−1 and 2−m.

Let J =
⋂

n Jn. This is an Fσδ ideal, and a simple diagonalization argument
shows that it is a tall P-ideal. The proposition shows that the factor QJ collapses
ℵ1 in the presence of CH. If CH fails, the argument only shows that QJ is not
proper, and we do not know if it has to collapse c to ℵ0.

Note that this ideal is of minimal possible complexity for the factor QJ to
be improper. All quotients of Fσ ideals are σ-closed by a theorem of Just and
Krawczyk [10].

Example 3.13. Let 〈Kn : n ∈ ω〉 be a decreasing sequence of ideals on ω
which does not stabilize. Consider the forcings Ln of all trees T ⊂ ω<ω such
that every node s ∈ T longer than some fixed t ∈ T splits into Kn-positively
many immediate successors. It is not difficult to show that the posets Ln are
proper and have the continuous reading of names–the arguments closely follow
those for Laver forcing. Let In : n ∈ ω be the σ-ideals on ωω associated with
these forcings; a Borel set B ⊂ ωω is In-positive if and only if [T ] ⊂ B for
some tree T ∈ Ln. It is not difficult to see that the ideals form an inclusion-
decreasing sequence which does not stabilize. Let Jn = tr(In), let I =

⋂
n In,

and let J =
⋂

n Jn = tr(I). Now PI is not prpoer by the proposition. Since
each of the forcings PIn has the continuous reading of names, a review of the
proof of Claim 3.2 shows that PI naturally regularly embeds into QJ . Ergo, the
forcing PJ cannot be proper either.
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4 The proof of Theorem 1.6

As in the previous section, fix a σ-ideal I on 2ω (the ωω case is identical) such
that the poset PI is proper and has the continuous reading of names, and let
J = tr(I).

Suppose that some condition B ∈ PI forces some ideal K on ω to be de-
stroyed, by an infinite set ẋ ⊂ ω with finite intersection with every ground model
element of the ideal K. Let ḟ(n) be defined to be the n-th element of the set ẋ.
By the continuous reading of names, there is a set a ⊂ 2<ω such that a =

⋃
n an,

an ⊂ 2<ω is an antichain, an+1 refines an, π(a) ⊂ B is an I-positive Gδ set, and
for every number n and every sequence t ∈ an the condition {r ∈ π(a) : t ⊂ r}
decides the value of ḟ(n) to be some definite number g(t) ∈ ω. We claim that
the function g : a → ω is a Katětov reduction of the ideal K to J ¹ a. And
indeed, if c ∈ K were a set such that the preimage b = g−1c is J-positive, then
clearly π(b) ⊂ π(a) ⊂ B is a condition forcing the set c to have an infinite
intersection with the set ẋ, contrary to the choice of B and ẋ.

On the other hand, if an ideal K has Katětov reduction g : a → ω to the
ideal J ¹ a for some J-positive set a ⊂ 2<ω, then the condition π(a) ∈ PI forces
that the generic path ṙgen destroys the ideal J ¹ a and the set g′′(ṙgen ∩ a) ⊂ ω
destroys the ideal K. The first statement is immediate from the definition of
the function π, and for the second statement note that if some set c ∈ K had
infinite intersection with the set g′′(ṙgen ∩ a), then its preimage b = g−1c ⊂ a
would have to have infinite intersection with ṙgen , contradicting the fact that
b ∈ J . Theorem 1.6 follows.

Given a particular forcing PI , Theorem 1.6 gives a satisfactory characteriza-
tion of the collection of the ideals which it destroys. The opposite question also
makes sense: given an ideal on ω, is it easy to recognize those forcings which
destroy it? The following observation plays an important role in answering this
question. Recall that for a tall ideal J on ω, the cardinal cov∗(J) equals to
min{|A| : A ⊂ J ∧ ∀a ∈ [ω]ω ∃b ∈ A |a ∩ b| = ℵ0} [8].

Proposition 4.1. Suppose that I is a σ-ideal on ωω generated by analytic sets
such that PI is a proper forcing with the continuous reading of names. Let
J = tr(I). Then

cov(I) ≤ cov∗(J) ≤ max{cov(I), d}.
Proof. The first inequality is easy. If A ⊂ J is a family such that π′′A does not
cover the whole space, any path through ω<ω converging to a point in ωω\⋃ π′′A
is an infinite subset of ω<ω which has finite intersection with all elements of the
family A.

The second inequality requires more care. First fix several auxiliary objects.
Let κ = max{cov(I), d}. Let F be the collection of all functions f : ω<ω →
P(ω<ω) such that for every sequence t ∈ ω<ω, the value f(t) is a finite set of
extensions of the sequence t including t itself. Since κ ≥ d, there is a collection
{fα : α ∈ κ} ⊂ F such that for every function f ∈ F there is an ordinal α ∈ κ
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such that f(t) ⊂ fα(t) holds for every sequence t ∈ ω<ω. Fix also a collection
{Cα : α ∈ κ} of analytic sets in the ideal I covering the whole space. Since every
analytic set is a union of ≤ d many compact sets, we may assume that all sets
Cα are in fact compact, Cα = [Tα] for some finitely branching tree Tα ⊂ ω<ω.

To construct the family witnessing cov∗(J) ≤ κ, for ordinals α, β ∈ κ define
a set aα,β ⊂ ω<ω in the following way: by induction on n ∈ ω find numbers mn

such that m0 = 0 and mn+1 is longer than all sequences in the set aα,β(n) =⋃{fα(t) : t ∈ Tβ ∩ ωmn}. In the end, let aα,β =
⋃

n aα,β(n). Also, for each
sequence t ∈ ω<ω and every ordinal α ∈ κ, let bα,t =

⋃
n∈ω fα(tan). We claim

that the collection A = {aα,β : α, β ∈ κ} ∪ {bα,t : α ∈ κ, t ∈ ω<ω} is a subset
of the trace ideal J and every infinite subset of ω<ω has an infinite intersection
with one of its elements.

It is not difficult to see that aα,β ∈ J , since every path meeting infinitely
many elements of the set aα,β must meet infinitely many elements of the tree
Tβ , and therefore π(aα,β) = [Tβ ] ∈ I. Also, trivially, π(bα,t) = 0 ∈ J , and so
A ⊂ I. Now suppose x ⊂ ω<ω is an infinite set. Let S ⊂ ω<ω be the tree of all
sequences s ∈ ω<ω with infinitely many extensions in the set x. There are two
cases. Either the tree S has some terminal node t. This means that there are
infinitely many elements of the set x below the node t but only finitely many
below all of its immediate extensions. It is immediately clear that then some
set bα,t ∈ A covers the infinite set of all extensions of the sequence t which are
in x. If the tree S has no terminal nodes then it has to have a cofinal branch,
which then is an element of some set [Tβ ]. Define a function f ∈ F by setting
f(t) = {t and some extension of the sequence t which is in the set x if there is
one}. If α ∈ κ is then an ordinal such that ∀t ∈ ω<ω f(t) ⊂ fα(t), it is clear
that the set aα,β ∈ A has an infinite intersection with the set x as desired.

Example 4.2. A forcing destroys the trace of the Kσ-ideal I on ωω if and only
if it adds an unbounded real. For every ideal K on ω, if there is some forcing
which adds an unbounded real and does not kill K then Miller forcing is such.

Proof. Note that cov(I) = d. The argument in the proposition then exactly
proves the first equivalence. For the other sentence, note that if some forcing P
adds an unbounded real and preserves the ideal K, then K 6≤K tr(I) because P
destroys tr(I). But Theorem 1.6 then says that PI , the Miller forcing, preserves
K as well.

Example 4.3. The dominating number d cannot be omitted in the statement
of the proposition. There is a forcing which does not add random reals even
in iteration but destroys tr(null). However, there is no such forcing which is
bounding.

Proof. Every ideal K on ω can be destroyed by a σ-centered forcing, namely the
forcing P (K). This is in particular true when K = tr(null). Centered forcings
do not add random reals even when they are iterated with finite support.
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Example 4.4. In some particular cases the upper bound in the proposition is
not optimal. If I is the Laver ideal then cov(I) = cov(tr(I)) = b and a forcing
adds a dominating real if and only if it destroys tr(I).

5 The complexity of the trace ideals

The complexity of the trace ideals is closely tied to the complexity of the σ-ideals
generating them. Recall that a σ-ideal I on a Polish space X is Π1

1 on Σ1
1 ([11]

29.E, 35.9) if for every analytic set A ⊂ 2ω × X the collection {y ∈ 2ω :the
vertical section Ay is in I} is co-analytic.

Proposition 5.1. Suppose that I is a σ-ideal on ωω such that the factor forcing
PI is proper and has the continuous reading of names, and every analytic I-
positive set has a Borel I-positive subset. The following are equivalent:

• I is Π1
1 on Σ1

1

• the trace ideal tr(I) is co-analytic.

Proof. The top to bottom direction follows immediately from the definitions. If
I is Π1

1 on Σ1
1 then consider the set A ⊂ P(ω<ω) × ωω given by 〈a, x〉 ∈ A if

x ∈ π(a). This is clearly a Borel set, and a ∈ tr(I) ↔ Aa ∈ I by the definitions.
The latter is a coanalytic condition.

For the bottom to top direction suppose that tr(I) is co-analytic. Let A ⊂
2ω × ωω be an analytic set, with a tree T ⊂ (2× ω × ω)<ω such that A = p[T ].
The proof will be complete if we show that for every y ∈ 2ω, Ay /∈ I if and only
if there is a set b ⊂ ω<ω decomposed into antichains b =

⋃
n an and a function

g : b → T for n ∈ ω such that

• the antichain an+1 refines an

• g preserves extension and whenever u ∈ an then g(u) is a sequence of
length n whose first coordinates form an initial segment of u and y

• b /∈ tr(I).

Note that this is an analytic condition. To prove this equivalence, if there are
such objects b and g, it is clear that the I-positive set π(b) is a subset of Ay

and therefore Ay /∈ I. On the other hand, if Ay /∈ I then Ay has a Borel I-
positive subset C by the assumptions, and by the properness and the continuous
reading of names of the poset PI there is even a Borel I-positive Gδ-set D ⊂ C
and a continuous function f : D → [T ] such that for every real r ∈ D, the
second coordinate of the value f(r) is just r itself. It is then easy to construct
b and g as above in such a way that π(b) = D and for every real r ∈ D,
f(r) =

⋃
u⊂r g(u).
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This lemma gives us a rather good criterion for checking whether a given
trace ideal is co-analytic or not. If the poset PI adds a dominating real then the
ideal I is not Π1

1 on Σ1
1, [21], C.0.16. A quick review of forcings used in practice

shows that many of them which do not add dominating reals (such as the Cohen
or Solovay real) are associated with Π1

1 on Σ1
1 ideals. However, Arnold Miller

[14] constructed a definable c.c.c. ideal I such that the poset PI does not add
a dominating real while the ideal I is still not Π1

1 on Σ1
1. Therefore a careful

check for this property is frequently necessary.
In many cases ocurring in practice, the trace ideal is in fact co-analytic and

not Borel. Typically, if I is the ideal of countable sets then the trace ideal is
a complete co-analytic set since the collection of uncountable closed sets is. In
other cases, the trace ideal is Borel, such as when I is the meager ideal or the
Lebesgue null ideal. We have no good criterion as to when that happens. We
have just a conjecture:

Conjecture 5.2. Suppose that I is a σ-ideal on 2ω or ωω such that the factor
poset PI is proper with continuous reading of names. If the trace ideal is analytic
then it is in fact Borel.

This conjecture can be viewed as a variation on the Kechris-Louveau-Woodin
theorem [12], which says that analytic σ-ideals of closed sets are Gδ. We can
verify it in a good number of cases:

Lemma 5.3. Suppose that I is a σ-ideal on ωω such that PI is proper and
bounding. If the trace ideal is analytic then it is Borel.

Proof. Since the poset PI is bounding, compact sets are dense in it and it has
the continuous reading of names, Example 2.4. If a set a ⊂ ω<ω is not in the
trace ideal, apply these two properties below the condition π(a) to the name
ḟ(n) =the n-th initial segment of the generic real in the set ǎ. It follows that a
set a ⊂ ω<ω is not in the trace ideal if and only if there is a tree T and disjoint
finite subsets {bn : n ∈ ω} of T such that [T ] /∈ I and each bn is a maximal
antichain in T consisting only of elements of the set a. What is the complexity
of the latter statement? The trace ideal restricted to trees is analytic, therefore
Borel by the Kechris-Louveau-Woodin theorem [12], and so this is an analytic
statement. Thus the trace ideal is both analytic and co-analytic, therefore
Borel.

The trace ideals can be Borel in a number of other situations. If I is a
c.c.c. ergodic Π1

1 on Σ1
1 σ-ideal on the Baire space then the trace ideal tr(I) is

Borel. Recall that the ideal I is ergodic [21], 5.4.1, if there is a countable Borel
equivalence relation E on ωω such that every Borel E-invariant set is in I or
its complement is in I. Then a set a ⊂ ω<ω is in the trace ideal iff π(a) ∈ I
iff the complement of the E-saturation of the set π(a) is not in I. These are a
coanalytic and an analytic statement respectively, showing that tr(I) is a Borel
ideal.

Specific examples of c.c.c. ergodic Π1
1 on Σ1

1 σ-ideals with the continuous
reading of names include the Cohen and random forcing as well as their finite
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iterations. Other examples are hard to come by, and the following example
identifies a large class.

Example 5.4. Suppose that J is an analytic P-ideal, and I is the σ-ideal
associated with the Prikry poset P (J). Then the following are equivalent:

1. J is Fσ

2. I is Π1
1 on Σ1

1

3. P (J) does not add a dominating real

4. the trace ideal is Borel.

Proof. For the implication (1)→(2) write J<ω = {a ⊂ [ω]<ℵ0 \{0} : ∃b ∈ J∀x ∈
a x ∩ b 6= 0}. It is clear that this is an ideal on the set [ω]<ℵ0 \ {0}. A useful
observation:

Claim 5.5. If J is an Fσ ideal then J<ω is Fσ again.

Proof. By a theorem of Mazur [13] there is a lower semicontinuous submeasure
µ on P(ω) such that J = {a ⊂ ω : µ(a) < ∞}. (A submeasure on P(ω) is lower
semicontinuous if its value on a given set is just the supremum of its values on
the finite subsets of the set.) Let µ<ω be a function on P([ω]<ℵ0) defined by
µ<ω(b) = inf{µ(a) : ∀x ∈ b x ∩ a 6= 0}. It is not difficult to verify that this is a
lower semicontinuous submeasure such that J<ω = {b ⊂ [ω]<ℵ0 : µ<ω(b) < ∞}.
The claim follows.

By [21] C.0.14, to prove the (1)→(2) implication of the Example it is just
necessary to show that the collection of countable subsets of P (J) which are
maximal antichains is a Borel set. In order to do this, let A ⊂ P (J) be a
countable set. Then A is a maximal antichain if and only if it is an antichain
and for every finite set t ⊂ ω, every condition of the form 〈t, a〉 is compatible
with some element of A. The latter condition is equivalent to: either there
is some condition 〈u, b〉 ∈ A such that u ⊂ t and b ∩ t \ u = 0, or the set
at = {x ⊂ ω : ∃b 〈t ∪ x, b〉 ∈ A} is not in the ideal J<ω. By the Claim, this is a
Borel statement.

(2) implies (3) by [21], C.0.16. (3) implies (1) by a result of Solecki: if an
analytic P-ideal J is not Fσ then the ideal 0×Fin is Rudin-Blass reducible to J
[15], 3.3. Let f : ω → ω × ω be such a finite-to-one reduction. Since the P (J)
generic set ȧgen ⊂ ω has a finite intersection with a ground model set b ⊂ ω if
and only if b ∈ J , it immediately follows that f ′′ȧgen has a finite intersection
with a ground model set b ⊂ ω × ω if and only if b ∈ 0×Fin. Let g ∈ ωω be
defined by g(n) = min{m ∈ ω : 〈n,m〉 ∈ f ′′ȧgen}. A brief inspection reveals
that this is a well-defined function modulo finite dominating all ground model
functions.

This leaves us with the equivalence of (2) and (4). Note that the forcing
PI has the continuous reading of names by Example 2.9 and so (4) implies (2)
by Proposition 5.1. For the opposite direction note that (2) implies the trace
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ideal is co-analytic by that same Proposition, so it is enough to show from (2)
that the trace ideal is analytic. To this end, use the ergodicity of the ideal I
again. For a set a ⊂ 2ω, a ∈ tr(I) if and only if the complement of the closure
of the set π(a) under finite changes is I-positive, which is an analytic condition
by (2).

6 Open questions

Question 6.1. Let I be the meager ideal on 2ω, let J = tr(I). What is the
remainder forcing QJ/PI? Similarly for the Lebesgue measure zero ideal.

Question 6.2. Is there a simple preservation criterion on the forcing PI which
is equivalent to the remainder forcing being equal to P(ω)/fin?

Question 6.3. Is every proper forcing of the form PI regularly embeddable
into a proper forcing of the form QJ?

Question 6.4. Assume CH. Is it true that for every ideal J on a countable set,
the factor forcing QJ collapses ℵ1 if and only if it is ℵ0-generated?

Question 6.5. The various definable improper forcings produced in the paper
should collapse c to ℵ0 in ZFC. Is this really true?
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