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Abstract

We prove that for a maximal almost disjoint familyA on ω, the spaceCp(Ψ (A),2ω) of con-
tinuous Cantor-valued functions with the pointwise convergence topology defined on the M
spaceΨ (A) is not normal. Using CH we construct a maximal almost disjoint familyA for which
the spaceCp(Ψ (A),2) of continuous{0,1}-valued functions defined onΨ (A) is Lindelöf. These
theorems improve some results due to Dow and Simon in [Spaces of continuous functions
Ψ -space, Preprint]. We also prove that this spaceCp(Ψ (A),2) = X is a Michael space; that is,Xn

is Lindelöf for everyn ∈ N and neitherXω nor X × ωω are normal. Moreover, we prove that f
every uncountable almost disjoint familyA on ω and every compactificationbΨ (A) of Ψ (A), the
spaceCp(bΨ (A),2ω) is not normal.
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0. Introduction
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All spaces considered in this article will be Tychonoff. For spacesX andE, Cp(X,E)

denotes the space of all continuous functions defined onX and with values inE with the
topology of pointwise convergence; that is, the topology ofCp(X,E) is inherited from the
Tychonoff productEX . As usual, we writeCp(X) instead ofCp(X,R). We are going to
use the symbolL(X) for theLindelöf numberof spaceX (the minimum infinite cardina
numberτ such that every open cover ofX has a subcover of cardinality� τ ), ande(X) is
theextentof X (the supremum of the cardinalities of all the closed and discrete subs
of X).

Some of the most interesting topics in spacesCp(X,E) are related with their normality
Lindelöf degree and extent, and the relation between them. Next, we give some fund
tal results about the foregoing.

0.1 (Reznichenko [17]). If e(Cp(X)) > ℵ0, thenCp(X) is not normal.

0.2 (Reznichenko [17]). Cp(X) is normal if and only ifCp(X) is collectionwise normal.

As everyCp(X) has cellularity� ℵ0 and every paracompactspace with cellularity� ℵ0
is Lindelöf, we have:

0.3. A spaceCp(X) is paracompact iffCp(X) is Lindelöf.

0.4 (Tkachuk [18]). If Cp(X) is normal, thenCp(X) is countably paracompact.

0.5 (Tkachuk [18]). The spaceCp(X) is hereditarily normal iffCp(X) is perfectly normal.

0.6 (Baturov [2]). LetX be a LindelöfΣ-space. Then for every subspaceY of Cp(X), the
extente(Y ) of Y is equal to the Lindelöf numberL(Y ) of Y .

As a corollary of 0.1 and 0.6, we obtain that ifX is a LindelöfΣ-space, normality
countable extent and Lindelöf property coincide inCp(X). However, ifX is the one-poin
LindelöficationL(ω1) = ω1 ∪ {∗} of the discrete space of cardinalityω1, thenCp(X) is
normal (thene(Cp(X)) = ℵ0), but it is not Lindelöf. It is of general interest to spec
classes of spaces for which countable extent, normality and the Lindelöf property are we
correlated.

Just, Sipacheva and Szeptycki proved in [9] that the spaceX = L(ω1) × (ω + 1) \
{(∗,ω)} has countable extent andCp(X) is not normal. This spaceX is monolithic and
of characterω1. They also construct, using the combinatorial principle♦, a separable an
first-countable spaceY such thatCp(Y ) is not normal and has countable extent. This sp
Y is a Mrówka spaceΨ (A) whereA is an almost disjoint family built along an(ω1–p)-
ultrafilter onω.

Most of the known results about normality or the Lindelöf number in spacesCp(X)

are of the following type: ifCp(X) is normal or Lindelöf, thenX must satisfy certain
topological properties. So, a natural problem is to find some classes of spacesX for which
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Cp(X) is normal or Lindelöf. In this direction, we know that ifX is an Eberlein compact
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space or ifX contains a countable collection of subsetsN such that every open subset
X is the union of a subcollection ofN (in particular, ifX is separable and metrizable
thenCp(X) is Lindelöf.

Recently, Buzyakova [3] discovered that for every ordinalα, Cp(X) is Lindelöf if X =
α \ {β < α: cf(β) > ω}.

Motivated by [3], Dow and Simon [6] analyzed the spacesCp(Ψ (A)) whereA is an
almost disjoint family onω andΨ (A) is the Mrówka space related toA, and answered
several questions posed in [3]. They proved:

(1) for every maximal almost disjoint familyA, Cp(Ψ (A)) is not Lindelöf;
(2) assuming♦, they constructed a mad familyA such thatCp(Ψ (A), {0,1}) is Lindelöf.

ThisA has the characteristic that the Stone–Čech compactification ofΨ (A) coincides
with its one-point compactification;

(3) assumingb > ω1, Cp(Ψ (A),2) is not Lindelöf for every mad familyA.

In this article, we also analyze Lindelöf property and normality in spaces of co
uous functions over a Mrówka space. We prove that ifA is a quasi-maximal almos
disjoint family (in particular, ifA is a mad family),Cp(Ψ (A)) is not normal (Section 3)
Moreover, we construct in Section 4, using CH, a Mrówka mad familyA such that, for
X = Cp(Ψ (A), {0,1}), Xn is Lindelöf andXω andX × ωω are not normal. We also con
struct from CH a Luzin gapA such thatCp(Ψ (A)) has countable extent. In Section 2 w
prove that for every compactificationbΨ (A) of an uncountable almost disjoint familyA,
Cp(bΨ (A)) is not normal. Section 1 is devoted to some basic definitions and basic r
about normality of spacesΨ (A).

The concepts, terminology and notations used and not defined in this article c
found in [1,8,10].

1. Preliminaries

The set of all natural numbers is denoted byω, N is the set of positive integers, andR,
Q andP (or ωω) are the spaces of real, rational andirrational numbers with the natura
topology. ByI we denote the unit closed interval[0,1] ⊂ R.

We have already mentioned, in the Introduction, what the Lindelöf degree and the
of a spaceX mean. Another topological cardinal invariant that we are going to deal
is thecellularity of a spaceX, which is denoted byc(X). This is the supremum of th
cardinalities of all collections of open and pairwise disjoint subsets ofX.

Recall that a collectionA of subsets of the natural numbersω is an almost disjoint
family if eachA in A is infinite, and for two different elementsA,B ∈ A, |A ∩ B| < ℵ0.
A maximal almost disjoint family(mad family) is a maximal element in the family of a
the almost disjoint families with the containment order.

A topological spaceX is a Mrówka space(a Mrówka–Isbell spaceor a Ψ -space, see
[7, Problem 5I]) if it has the formω ∪ A, whereA is an almost disjoint family, and it
topology is generated by the following base: each{n} is open for everyn ∈ ω, and an open
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canonical neighborhood ofA ∈A is of the form{A} ∪ B whereB ⊂ ω andA \ B is finite.
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In this case, we denoteX by Ψ (A). This kind of spaces was introduced by Mrówka
[13]. For every almost disjoint familyA, Ψ (A) is a 0-dimensional locally compact first
countable space,A is a closed discrete subspace ofΨ (A) andω is dense. Moreover,Ψ (A)

is pseudocompact if and only ifA is maximal. So,Ψ (A) is not normal ifA is an infinite
mad family.

The following result is obvious.

1.1. Proposition. LetA be an almost disjoint family onω. Then,Ψ (A) is collectionwise
normal if and only if|A| � ℵ0.

The normality ofΨ (A) can be expressed in several ways:

1.2. Proposition. For an almost disjoint familyA the following statements are equivale:

(1) Ψ (A) is normal.
(2) Every functionφ :A → {0,1} has a full extension; that is, there exist a continuou

functionφ̃ :Ψ (A) → {0,1} which extendsφ.
(3) For everyB ⊂A, there is a partitionerC ⊆ ω ofB; that is,A ⊂∗ C for all A ∈ B, and

|A ∩ C| =∗ ∅ for all A ∈ A \B.

So, if 2ω < 2ω1, the spaceΨ (A) is not normal for every uncountableA. Moreover,
Martin Axiom plus¬CH implies that there are spacesΨ (A) which are normal. Indeed
for each subsetX of the Cantor set 2ω, we take the collectionAX = {Af : f ∈ X} where
Af = {f � n: n ∈ ω}. AX is an almost disjoint family of subsets of the countable
2<ω = {f � n: f ∈ 2ω, n ∈ ω}, andΨ (AX) is normal if and only ifX is aQ-set in 2ω.

We will call an almost disjoint familyA Mrówka if the one-point compactificatio
αΨ (A) of Ψ (A) coincides with its Stone–̌Cech compactificationβΨ (A). This kind of
almost disjoint families are maximal and exist in ZFC (see [14]). An almost disjoint fa
A is Mrówka iff βΨ (A) is 0-dimensional and one of the setsf −1(0) ∩A, f −1(1) ∩A is
finite for eachf ∈ C(Ψ (A),2).

We are going to frequently use the following well-known facts.

1.3. Lemma.

(1) If the extent of a normal spaceX is countable, thenX is collectionwise normal.
(2) If X is a collectionwise Hausdorff space andc(X) � ℵ0, then the extent ofX is count-

able.
(3) If Z is dense in a Tychonoff productEX andE is separable, thenc(Z) � ℵ0.

2. Cp(bΨ (A), 2ω) is not normal for every compactification bΨ (A) of Ψ (A)

The following is a generalization of a result due to Corson [5].
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2.1. Theorem. LetX = ∏{Xα : α ∈ A} be the product of separable metric spaces,Y ⊂ X,
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Y everywhere dense inX, and let the spaceZ be a continuous image ofY . If Z × Z is
normal, thenZ is collectionwise normal.

As a consequence of Theorem 2.1, we have:

2.2. Corollary. Let X be a0-dimensional space. IfCp(X,2ω) is normal, then it is collec
tionwise normal.

Proof. Cp(X,2ω) is a dense subset of the product of|X| copies of the separable metr
space 2ω. We have thatCp(X,2ω) ∼= Cp(X,2)ω ∼= Cp(X,2)ω ×Cp(X,2)ω ∼= Cp(X,2ω)×
Cp(X,2ω). So, ifCp(X,2ω) is normal, thenCp(X,2ω)×Cp(X,2ω) is normal. Therefore
by Theorem 2.1,Cp(X,2ω) is collectionwise normal. �

A well-known problem which has not been solved asks if normality ofCp(X,2) (re-
spectively,Cp(X,ω)) implies thatCp(X,2) (respectively,Cp(X,ω)) is collectionwise
normal for every topological spaceX. In our context we can modify this question as f
lows:

2.3. Problems. Is it true that for every almost disjoint familyA, Cp(Ψ (A),2) (respec-
tively, Cp(Ψ (A),ω)) is normal implies thatCp(Ψ (A),2) (respectively,Cp(Ψ (A),ω)) is
collectionwise normal?

The following result was proved in [4, Theorem 3.2].

2.4. Proposition. Let X be a0-dimensional space. Then, the spaceCp(X,2) is countably
compact if and only ifX is aP -space.

2.5. Proposition. If X is a0-dimensional space which is not aP -space, and ifCp(X,2)×
ωω contains a closed, discrete subspace of cardinality> ℵ0, thenCp(X,2ω) is not normal.

Proof. Cp(X,2ω) is homeomorphic toCp(X,2) × Cp(X,2)ω. Since X is not a P -
space,Cp(X,2) has a closed copy ofω (Proposition 2.4), thenCp(X,2)ω contains a
closed copy of the irrationalsωω. Since e(Cp(X,2) × ωω) > ℵ0, then the extent o
Cp(X,2) × Cp(X,2)ω is also an uncountable cardinal number. But the cellularity
Cp(X,2ω) is countable, soCp(X,2ω) cannot be collectionwise normal (Lemma 1.3(2
and soCp(X,2ω) is not normal (Corollary 2.2). �

The following result is a consequence of a theorem of R. Pol and D.P. Baturov. A
can be found in [1, p. 166].

2.6. Theorem. Let X be an uncountable separable scattered compactum whoseω1th de-
rived set is empty. ThenCp(X,2)× ωω contains an uncountable closed discrete subsp

As a consequence of this result, we obtain the main result of this section.
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2.7. Theorem. Let E ∈ {I,R,P,2ω}. For every uncountable almost disjoint familyA and
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every compactificationbΨ (A) of Ψ (A), the spaceCp(bΨ (A),E) is not normal.

Proof. It is sufficient to prove this theorem whenE = 2ω. The functionf :bΨ (A) →
αΨ (A) defined byf � Ψ (A) is the identity function, andf (x) = p for all x ∈ bΨ (A) \
Ψ (A) where p is the point which compactifiesΨ (A), is an onto closed continu
ous function. Letf # :Cp(αΨ (A),2ω) → Cp(bΨ (A),2ω) defined byf #(g) = g ◦ f .
Then,f #[Cp(αΨ (A),2ω)] is homeomorphic toCp(αΨ (A),2ω) and it is a closed sub
set of Cp(bΨ (A),2ω). But αΨ (A) is a space that satisfies the conditions in Th
rem 2.6; so,Cp(αΨ (A),2ω) is not normal because of Proposition 2.5. Therefore, s
Cp(αΨ (A),2ω) can be consider as a closed subset ofCp(bΨ (A),2ω), this last one is no
normal. �

Observe that the previous result is true forE equal toP or 2ω even if bΨ (A) is not
0-dimensional. On the other hand, Pol gave in [16], using CH, an example of an a
disjoint familyA such thatCp(αΨ (A),2) is Lindelöf.

For k < ω, we will denote byCp,k(X,E) the spaceCp(Cp,k−1(X,E),E) where
Cp,0(X,E) = X. For an uncountable almost disjoint familyA, the spaceΨ (A) is a
closed subset ofCp,2n(Ψ (A),2ω). If the spaceCp,2n(Ψ (A),2ω) were normal, it would
be collectionwise normal (Corollary 2.2); then,Ψ (A) would be collectionwise normal a
well. But this would mean that|A| � ℵ0 (Proposition 1.1); a contradiction. Therefore, for
E ∈ {I,R,P,2ω}, Cp,2n(Ψ (A),E) is not normal for everyn ∈ N.

Moreover, it is known that ifX andCp(X, I) are normal, then each closed discr
subset ofX has to be countable. So, for an uncountable almost disjoint familyA such that
Ψ (A) is normal,Cp,n(Ψ (A),E) is not normal for everyn ∈ N, whereE ∈ {I,R}. This is
the case for a canonical almost disjoint familyΨ (AX) defined by aQ-setX.

3. Cp(Ψ (A)) is not normal when A is a mad family

From now on we are going to use the following standard notations. For spacesX

and E, n ∈ N, points x1, x2, . . . , xn of X and subsetsA1, . . . ,An of E, the symbol
[x1, . . . , xn;A1, . . . ,An] will represent the set{f ∈ EX: f (xi) ∈ Ai ∀i ∈ {1, . . . , n}}. If
Ai = A ⊂ E for all i ∈ {1, . . . , n}, we will write [x1, . . . , xn;A] instead of[x1, . . . , xn;
A, . . . ,A].

Let A be a mad family. For eachA ∈ A, we take the characteristic function of{A} ∪
A in Ψ (A), χ̃A :Ψ (A) → {0,1} (χ̃A(x) = 1 iff x = A or x ∈ A), and the characteristi
function ofA in ω, χA :ω → {0,1} (χA(x) = 1 iff x ∈ A). Now, we consider the setD =
{(χ̃A,χA): A ∈ A} as a subspace of the productZ = Cp(Ψ (A),2) × T , whereT is equal
to {f ∈ 2ω: |f −1(1)| = ℵ0} and has the topology inherited by the Tychonoff product 2ω.

3.1. Claim. The setD is a closed and discrete subset ofZ = Cp(Ψ (A),2) × T of cardi-
nality |A|.
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Proof. For eachA ∈ A, V = [A; {1}] × T = {(f, g) ∈ Z: f (A) = 1} is an open set con-
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taining(χ̃A,χA), andV ∩ D = {(χ̃A,χA)}. So,D is discrete.
Assume now that(f, g) ∈ clY D whereY = Cp(Ψ (A),2) × 2ω. If for somen ∈ ω,

f (n) �= g(n), thenW = [n; {f (n)}] × [n; {g(n)}] is an open subset ofY , (f, g) ∈ W and
W ∩ D = ∅. This is not possible; hence,f � ω = g.

If (f, g) ∈ clY D \ D, thenf � A ≡ 0. In fact, ifA,B ∈ A with A �= B andf (A) = 1 =
f (B), then[A,B; {1}] × 2ω is an open subset ofY which contains(f, g) and which does
not intersectD. Now, if f takes the value 1 only in one element ofA, sayA, then, since
f � ω = g and(f, g) /∈ D, either there isn /∈ A such thatf (n) = 1 or there isn ∈ A for
which f (n) = 0. So,W = [A,n; {1}] × 2ω in the first case, orW = [A,n; {1}, {0}] in the
second case, is an open set inY , (f, g) ∈ W andW ∩ D = ∅, which is not possible. We
conclude thatf � A ≡ 0. But this means (sinceA is a mad family) that(f � ω)−1(1) is
finite. Therefore(f, g) /∈ Z. �
3.2. Claim. The spaceT is homeomorphic toωω.

Proof. In fact,T is dense in 2ω, its complement 2ω \ T is equal toF = ⋃
n<ω Fn where

Fn = {f ∈ 2ω: |{s < ω: f (s) = 1}| � n}. So,F is dense andFσ in 2ω. We conclude tha
T is homeomorphic to the irrational numbers (see [8, p. 370]).�

So, the spaceCp(Ψ (A),2) × ωω contains a closed and discrete subspace of ca
nality |A|. SinceΨ (A) is not aP -space,Cp(Ψ (A),2) has a closed copy ofω (Propo-
sition 2.4). (The set{χn: n < ω} whereχn is the characteristic function of{0, . . . , n}
in Ψ (A), is a closed and discrete subspace ofCp(Ψ (A),2).) Thus,Cp(Ψ (A),2) × ωω

is a closed subspace ofCp(Ψ (A),2ω), Cp(Ψ (A), I ) and Cp(Ψ (A)). So, we have
|A| � e(Cp(Ψ (A),2ω)) � e(Cp(Ψ (A), I )) � e(Cp(Ψ (A))) � w(Cp(Ψ (A))) = |A| �
L(Cp(Ψ (A),2ω)) � L(Cp(Ψ (A), I )) � L(Cp(Ψ (A))) � w(Cp(Ψ (A))) = |A|, where
w(Cp(Ψ (A))) is the weight of spaceCp(Ψ (A)). That is:

3.3. Claim. Let A be a mad family. Then,e(Cp(Ψ (A),2ω)) = e(Cp(Ψ (A), I )) =
e(Cp(Ψ (A))) = L(Cp(Ψ (A),2ω)) = L(Cp(Ψ (A), I )) = L(Cp(Ψ (A))) = |A|.

Besides, ifX is collectionwise normal andc(X) � ℵ0, then the extent ofX is countable.
Therefore, we conclude:

3.4. Theorem. LetA be an infinite maximal almost disjoint family onω. Then, the space
Cp(Ψ (A),2ω), Cp(Ψ (A),ωω), Cp(Ψ (A), I ), Cp(Ψ (A)) are not normal, and their exten
and Lindelöf number are all equal to|A|.

Proof. In fact, the cellularity ofCp(Ψ (A),2ω) is equal toℵ0. If Cp(Ψ (A),2ω) were nor-
mal, it would be collectionwise normal (Corollary 2.2), and, by Lemma 1.3, its extent
be countable, contrary to Claim 3.3. The last assertion of this theorem is Claim 3.3.�

It is easy to prove from Theorem 3.4 that for every almost disjoint familyA such that
there is a mad familyB ⊃A with |B \A| < ℵ0, the spacesCp(Ψ (A),2ω), Cp(Ψ (A),ωω),
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Cp(Ψ (A), I ) andCp(Ψ (A)) are not normal, and their extents coincide with their Lindelöf
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degrees and they are all equal to|A|. In the caseA has a countable infinite difference wi
a mad family, we cannot further use the same techniques, but they have the same pr
as we are going to prove next. In order to obtain our purpose we are going to use g
results. We decided to present Theorems 3.4 and 3.9 below and their proofs sep
because for mad families we were able to give a more constructive proof, which sho
nature of spaceCp(Ψ (A)) more clearly.

Given a topological spaceX and a subspaceY of X, we denote byχ(Y,X) thecharacter
of Y in X; that is,χ(Y,X) = min{|B|: B is a base ofY in X}, whereB is a base ofY in
X means that each element inB is open inX, and for each open setA of X containingY ,
there isB ∈ B such thatY ⊆ B ⊆ A.

3.5. Definition. An almost disjoint familyA of subsets ofω is quasi-maximalif there is a
maximal almost disjoint familyB containingA and such that|B \A| � ℵ0.

Obviously, every maximal almost disjoint family is quasi-maximal and, since e
almost disjoint family with cardinalityℵ0 is not maximal, every quasi-maximal almo
disjoint family has cardinality not equal toℵ0.

3.6. Proposition. LetA be an almost disjoint family onω. Then,χ(A,Ψ (A)) = ℵ0 if and
only if A is quasi-maximal.

Proof. Assume thatχ(A,Ψ (A)) = ℵ0 and |A| � ℵ0. Let M = {Mn: n ∈ ω} ⊆ P(ω)

be a countable collection of subsets ofω which are closed inΨ (A) and such thatB =
{Ψ (A)\M: M ∈ M} is a base ofA in Ψ (A). LetD = {M ∈M: |M| = ℵ0}. Let {Ln: n ∈
ω} be an enumeration ofD in such a way that ifD is finite, thenL0, . . . ,Ln0 are all
different,D = {L0, . . . ,Ln0} andLn = Ln0 for all n � n0, and ifD is infinite, Ln �= Lm

if n �= m. Now we takeS0 = L0, S1 = L1 \ L0, . . . , Sn+1 = Ln+1 \ ⋃
i�n Li, . . . , and

S = {Sn: n < ω}. It happens that the new collectionA ∪ {S ∈ S: |S| = ℵ0} is a maximal
almost disjoint family.

For the converse implication assume thatA is an almost disjoint family andB is a mad
family such thatA ⊂ B and |B \ A| � ℵ0. Let C = B \ A andH = {Ψ (A) \ ⋃

K: K ⊂
[ω]<ω ∪ C and |K| < ℵ0}. Of course,H is countable. Without loss of generality, we c
assume that the elements inC are pairwise disjoint. It is not difficult now to verify thatH
is a base forA in Ψ (A). �

The following result is a generalization of Proposition IV.7.4 in [1] and its proof require
a slight modification to that given for it in [1].

3.7. Theorem. Let X be a0-dimensional space with an open, countable and dense s
M such that the setA of isolated points inF = X \ M is not countable and is dense inF .
If moreoverχ(F,X) � ℵ0, thenCp(X,2) × ωω contains a closed, discrete subspace
cardinality |A|.
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3.8. Theorem. LetA be an infinite quasi-maximal almost disjoint family onω. Then, the
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spacesCp(Ψ (A),2ω), Cp(Ψ (A),ωω), Cp(Ψ (A), I ), Cp(Ψ (A)) are not normal.

Proof. Because of Proposition 3.6 and Theorem 3.7,Cp(Ψ (A),2)×ωω contains a closed
and discrete subset of cardinality|A| > ℵ0. Now, we use Proposition 2.5 in order
conclude thatCp(Ψ (A),2ω) is not normal. SinceCp(Ψ (A),2ω) is a closed subset o
Cp(Ψ (A),ωω), Cp(Ψ (A), I ) andCp(Ψ (A)), they are also not normal.�
3.9. Theorem. Let A be a quasi-maximal almost disjoint family onω. Then, the exten
of spacesCp(Ψ (A),2ω), Cp(Ψ (A),ωω), Cp(Ψ (A), I ), Cp(Ψ (A)) coincide with their
Lindelöf degree and they are all equal to|A|.

Proof. This is a consequence of Theorem 3.8 and some similar arguments to those
before Claim 3.3. �

Proposition 0.3 and Theorem 3.8 induce us to askif there is a maximal almost disjoin
family A for whichCp(Ψ (A),2ω) is countably paracompact. Following some argume
tions in [19] it is possible to prove thatV = L implies that every countably paracompa
space of character� 2ℵ0 is collectionwise Hausdorff. So, sinceχ(Cp(Ψ (A),2ω)) � 2ℵ0

andc(Cp(Ψ (A),2ω)) � ℵ0, we obtain the following result (see Lemma 1.3(2) and Th
rem 3.9).

3.10. Theorem (V = L). For every quasi-maximal almost disjoint familyA, the space
Cp(Ψ (A),2ω) is not countably paracompact.

3.11. Problem. Can Theorem 3.10 be proved in ZFC without any additional set theore
axiom?

4. A Lindelöf Cp(Ψ (A), 2) from CH

In this section we present the construction of a maximal almost disjoint familyA ⊆ [ω]ω
such thatCp(Ψ (A),2) is Lindelöf. We assume CH.

For an almost disjoint familyA andi ∈ {0,1}, we denote byσ i
n(A) the closed subspac

{f ∈ Cp(Ψ (A),2): |f −1(i) ∩ A| � n} of Cp(Ψ (A),2). If A is Mrówka (that is, if the
one-point compactification ofΨ (A) coincides with its Stone–̌Cech compactification), the
Cp(Ψ (A),2) = ⋃

n∈ω,i∈{0,1} σ i
n(A). For everyn < ω, σ 0

n (A) is homeomorphic toσ 1
n (A).

We are going to writeσn(A) instead ofσ 1
n (A). Thus,

4.1. Theorem. If A is a Mrówka mad family, thenCp(Ψ (A),2) is Lindelöf if and only if
σn(A) is Lindelöf for eachn ∈ ω.

To characterize whenσn(A) is Lindelöf, we need certain terminology and notati
For an almost disjoint familyA, A⊥ is the ideal{b ⊂ ω: |b ∩ a| < ℵ0 ∀a ∈ A}; and for
a, b ∈ P(ω), a
b will denote their symmetric difference; that isa
b = (a ∪ b) \ (a ∩ b).
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For a subseta of ω, we will distinguish between the characteristic function ofa in 2ω and

h

-

ows

et
g

the characteristic function ofa in 2Ψ (A) by denoting asχa the former andχ̂a the latter.
Given an almost disjoint familyA andY ⊆ P(ω), we will say thatAn is concentratedon
Y , if for each open subsetU of the Cantor set 2ω containingχY = {χy : y ∈ Y}, there is
a countableB ⊆ A such thatχ⋃

x ∈ U for all x ∈ [A \ B]n. And we will say thatAn +
A⊥ is concentratedon Y , if for each open setU ⊇ Y , there is a countableB ⊆ A such
that χ(

⋃
x)
b ∈ U for all x ∈ [A \ B]n and all b ∈ A⊥. We now state a theorem whic

characterizes whenσn(A) is Lindelöf, for an almost disjoint familyA.

4.2. Theorem. Suppose thatA is an almost disjoint family andn > 0. Thenσn(A) is
Lindelöf if and only ifAk +A⊥ is concentrated onA⊥ for eachk � n.

Before we prove this theorem, we note one corollary:

4.3. Corollary. Suppose thatA = {aα: α < ω1} is mad. Thenσn(A) is Lindelöf if and only
if Ak is concentrated on[ω]<ω for all k � n.

Proof. HereA⊥ is precisely[ω]<ω, so by the theorem it suffices to show thatAk is con-
centrated on[ω]<ω if and only if Ak + [ω]<ω is concentrated on[ω]<ω. One direction is
trivial, for the other direction, assume thatAk is concentrated on[ω]<ω. Fix an open neigh
borhoodU of χ[ω]<ω = {χs : s ∈ [ω]<ω}. For eachs ∈ [ω]<ω, let Us = {f + χs : f ∈ U}
be the translate ofU by χs . We have that,χa ∈ Us if and only if χa
s ∈ U . EachUs is an
open neighborhood ofχ[ω]<ω , and there are only countably many such translates. It foll
that there is a countable subsetB of A such that for allx ∈ [A \ B]k and alls ∈ [ω]<ω,
χ⋃

x ∈ Us . That is,χ(
⋃

x)
s ∈ U . �
Proof of the theorem. By induction onn. Note first thatσ0(A) = {χ̂b: b ∈A⊥} is home-
omorphic to the subset{χb: b ∈ A⊥} of 2ω, soσ0(A) is Lindelöf. Supposen � 1 and that
for all k � n, Ak +A⊥ is concentrated onA⊥. By induction assume thatσn−1(A) is Lin-
delöf. Fix a coverU of σn(A) constituted by canonical open subsets ofCp(Ψ (A),2). By
the inductive hypothesis, there is a countableV ⊆ U such thatσn−1(A) ⊆ ⋃

V . For each
x ∈ [A]n, let Fx = {f ∈ σn(A): f −1(1) ∩ A = x}. EachFx is homeomorphic to a subs
of 2ω; so it is covered by a countable subsetUx of U . Thus it suffices to prove the followin
lemma:

4.4. Lemma. D = {x ∈ [A]n: Fx is not covered byV} is countable.

Proof. If D is not countable, choose an uncountable set{xα: α ∈ ω1} ⊆ [A]n andfα ∈ Fxα

such thatfα /∈ ⋃
V . By going to a subset we may assume that thexα ’s form a
-system

with rootr. So, for eachα, there is a memberbα of A⊥ such thatfα � ω is the characteristic
function of(

⋃
xα)
bα .

ConsiderFr . It is covered byV . Let

W =
⋃{

V ∩ 2ω: V ∈ V andV ∩ Fr �= ∅}
.
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Let Wr be the translate ofW by
⋃

r: Wr = {f +χ⋃
r : f ∈ W }. That is, fora ⊂ ω, χa ∈

n

trated

f
-

ct

ach
Wr if and only if χa
(
⋃

r) ∈ W . First, note thatWr is a neighborhood ofA⊥. To see this,
fix x ∈ A⊥. Thus the characteristic function ofx
(

⋃
r) extends to a continuous functio

f ∈ Fr . And sinceV coversFr , there is aV ∈ V with f ∈ V . So, χx
(
⋃

r) ∈ V ∩ 2ω.
Therefore,χx ∈ Wr as required.

By changing the setsbα on a finite set, we may assume thatfα � ω is the characteristic
function of

⋃
r
(

⋃
(xα \ r) ∪ bα). By our assumption of concentration, we may fixβ so

that (
⋃

xα \ r) ∪ bα ∈ Wr for all α > β . Thusfα � ω ∈ W for all α > β . If we choose
α > β large enough so that the supports of allV ∈ V lie belowα we get thatfα is covered
by V . Contradiction. This finishes the proof of the lemma; hence, we have demons
the necessity of 4.2. �

Now we give the proof of the sufficiency of Theorem 4.2. Suppose thatAk +A⊥ is not
concentrated onA⊥ for somek � n. So, we may fix an openU ⊆ 2ω, a disjoint family
{yα: α < ω1} ⊆ [A]k , andbα ∈ A⊥ such that

(1) χA⊥ = {χb: b ∈A⊥} ⊂ U , and
(2) gα = χ(

⋃
yα)
bα

/∈ U for eachα < ω1.

Eachgα extends naturally to a continuousfα :Ψ (A) → 2 such thatfα(a) = 1 if and
only if a ∈ yα . Since{yα: α < ω1} is a disjoint family, any complete accumulation point o
thefα ’s must be inσ0(A). Moreover, sinceU containsχA⊥ = σ0(A), there is a neighbor
hoodV of σ0(A) such thatf � ω ∈ U for eachf ∈ V . Thus,fα /∈ V for all α < ω1. This
means that{fα : α < ω1} has no complete accumulation point inσn(A). �
4.5. Theorem. AssumeCH. There is a Mrówka maximal almost disjoint familyA such that
Cp(Ψ (A),2) is Lindelöf.

Proof. Let {Uα: ω � α ∈ ω1} enumerate all open sets in 2ω that contain[ω]<ω. For eachβ ,
let Uβ be a family of canonical basic open sets in 2ω such that

⋃
Uβ = Uβ . Let {xα: ω �

α < ω1} enumerate all infinite co-infinite subsets ofω. We will construct{aα: α < ω1}
recursively, so that itis a Mrówka mad familyA satisfyingAn is concentrated on[ω]<ω

for eachn. To begin the construction, let{an: n ∈ ω} be any partition ofω into infinite sets.
Assume that{aβ : β < α} has been chosen so that:
(a) For eachβ ∈ [ω,α) and for eachx ∈ [aγ : β � γ < α]<ω, χ(

⋃
x)
s ∈ Uβ for every

s ∈ [ω]<ω.
(b) {aβ : β < α} is an almost disjoint family.
(c) For eachβ ∈ [ω,α), aβ has infinite intersection withxβ and withω \ xβ (unless one

of these sets is covered by a finite union ofaξ ’s with ξ < β).
If xα or ω \ xα is covered by a finite set from{aβ : β < α}, we do nothing at stageα

(or just chooseaα almost disjoint from previousaβ arbitrary). Otherwise, to constru
aα , enumerate as(Vn, yn) all pairs (U ′

β, y) whereβ ∈ [ω,α), y ∈ [aγ : β � γ < α]<ω

and U ′
β is a finite translate ofUβ (U ′

β = {U + χs : U ∈ Uβ} for a s ∈ [ω]<ω where
U + χs = {f + χs : f ∈ U}). Note that (a) can be equivalently formulated as for e
suchx, χx is in every finite translate ofUβ . Thus, by (a), we have thatχs


⋃
yn

is in
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⋃
Vn for every s ∈ [ω]<ω. Also enumerate{aβ : β < α} as {bn: n ∈ ω}. We will con-

To

at

o-
,

structaα as the union of finite setssn by recursion onn as follows: having chosensm
and integerskm for m < n so thatsm ⊆ km and sm ∩ ki = si for eachi < m < n, we
consider the pair(Vn, yn). Note that the characteristic function ofsn−1 ∪ ⋃

yn is of
the form χs


⋃
yn

for a s ∈ [ω]<ω. Thus by (a), we have thatχsn−1∪⋃
yn

∈ ⋃
Vn. So,

there isVn = [t0, . . . , tk; {ε0}, . . . , {εk}] ∈ Vn (εi ∈ {0,1}) such thatχsn−1∪⋃
yn

∈ Vn. Take
k′
n > max{t0, . . . , tk, kn−1}. Now choosej0 ∈ xα andj1 /∈ xα such thatji > k′

n and such
thatji /∈ ⋃{bi : i � n}. Let sn = sn−1 ∪ {j0, j1}, and letkn > max{j0, j1}. This completes
the recursive construction ofaα . Clearly, by construction, (b) and (c) are preserved.
see that (a) is preserved, suppose thatβ ∈ [ω,α) andx ∈ [aγ : β � γ � α]<ω, and fix a
finite setC. Consider the translateχ⋃

x + χC of χ⋃
x . If aα /∈ x then there is nothing to

show. So, suppose thataα ∈ x. Then,(Uβ + χC,x \ {aα}) is enumerated as(Vn, yn) in
the construction ofaα , whereUβ + χC = {U + χC : U ∈ Uβ}. Recall thatχsn−1∪⋃

yn
is an

element of the basic open set[t0, . . . , tk; {ε0}, . . . , {εk}]. By the construction we have th
χaα∪⋃

yn
(ti ) = χsn−1∪

⋃
yn

(ti ) = εi . Thusχ⋃
x ∈ ⋃

Vn. Hence, by definition ofVn, we have
thatχ⋃

x + χC ∈ Uβ as required.
This completes the construction of the almost disjoint familyA = {aα: α ∈ ω1}. By (b)

and (c)A is a Mrówka mad family. And by (a)Ak is concentrated on[ω]<ω for eachk as
required. �
4.6. Corollary. For the mad familyA constructed in Theorem4.5, the spaceCp(βΨ (A),2)

is Lindelöf.

Proof. It is sufficient to observe that the functionφn :σn → {f ∈ Cp(βΨ (A),2):
|f −1(1)| � n} defined byφn(f ) equal to the continuous extensioñf of f to βΨ (A),
is a continuous function for alln ∈ N. �

The spaceCp(Ψ (A),2) whereA is the Mrówka mad family constructed in The
rem 4.5, provides us, in CH, with a nice example of aMichael space(see [11,12]). Indeed

4.7. Theorem. Let A be the Mrówka almost disjoint family constructed in Theorem4.5,
and letX be the spaceCp(Ψ (A),2). Then we have:

(1) Xn is Lindelöf for everyn ∈ N andXω is not normal.
(2) X × ωω is not normal.

Proof. By Claim 3.1 and Theorem 3.4,X × ωω = Cp(Ψ (A),2) × ωω and Xω ∼=
Cp(Ψ (A),2ω) are not normal.

Furthermore,Cp(Ψ (A),2)k ∼= Cp(Ψ (A),2k), and

Cp

(
Ψ (A),2k

) =
⋃
n<ω

⋃
i∈{0,1,...,2k−1}

σ i
n(A).

But, eachσ i
n(A) is Lindelöf (Theorem 4.5), soCp(Ψ (A),2)k is Lindelöf. �
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We could ask about the possibility of constructing an almost disjoint familyA for which
for

e

-

ther
n-
an

e

es.

t

Cp(Ψ (A),2) is σ -compact. But this is in vain; in fact, Paniagua proved in [15] that
every uncountable almost disjoint familyA, Cp(Ψ (A),2) is notσ -compact.

A classical problem inCp-theory questions whether Lindelöfness ofCp(X) implies
thatCp(X) × Cp(X) is Lindelöf. We do not know the answer even for a Mrówka spacX

yet.

4.8. Problem. Let A be an almost disjoint family, and assume thatCp(Ψ (A)) is Lindelöf.
Then, isCp(Ψ (A))2 Lindelöf?

An almost disjoint familyA is separable, if for each countableB ⊆ A, B can be sepa
rated fromA\B. That is, there isX ⊆ ω such thatA ⊆∗ X for eachA ∈ B andA∩X =∗ ∅
for eachA ∈ A \ B. An almost disjoint familyA is aLuzin gapif no disjoint uncountable
B,C ⊆A can be separated in this way. If an almost disjoint familyA = {Aα: α < ω1} has
the property that for eachα and for eachn, {β < α: Aβ ∩ Aα ⊆ n} is finite, thenA is a
Luzin gap. Any suchA will be called astandardLuzin gap.

In the paper [9], a separable Luzin gapA such thatCp(Ψ (A)) is not normal but has
countable extent, was constructed using♦ . In the same paper the authors asked whe
Cp(Ψ (A)) has countable extent for every separable Luzin gap. Here we construct a sta
dard Luzin gap using CH such thatσ1(A) has uncountable extent. We do not know if it c
be made separable.

Example. Assuming CH there is a standard Luzin gapA such thatσ1(A) has uncountabl
extent. Moreover, it has the property thatA is not concentrated onA⊥.

Proof. We first construct a perfect treeT ⊆ 2<ω as follows. LetX ⊆ ω consist of all
elementskn of the form

kn =
(

n∑
i=0

2i

)
+ n.

Suppose thatn ∈ ω andT ∩ 2�kn+1 has been defined so thatT ∩ 2kn+1 has exactly 2n+1

elements{sj : j < 2n+1}. For eachj < 2n+1, let tj be the unique extension ofsj such that
dom(tj ) = kn +1+2n+1, tj (kn +j +1) = 1 andtj has value 0 at all other new coordinat
Let T ∩ 2kn+1 = {tj : j < 2n+1} and let

T ∩ 2kn+1+1 = {
t�j i: j < 2n+1, i ∈ 2

}
.

This completes the recursive definition ofT . If f is a maximal branch throughT , we
denote byaf = f −1(1). let [T ] denote the set of all suchaf . Note that this is a perfec
subset of 2ω. Note also thatT has the following key properties

(a) For anya ∈ [T ], a \ X is infinite.
(b) For any subsetY ⊆ X, there isa ∈ [T ] such thata ∩ X = Y .
(c) If a andb are distinct elements of[T ], thena ∩ b ∩ (ω \ X) is finite.
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We now construct an almost disjoint familyA by recursion. The point of the construc-

it

t

,

.
ce

h.

69

po-

93–997.
ll. 45

aces

) 1091–
tion is (a) to makeA a Luzin gap, (b) to make sure that the open set 2ω \ [T ] contains all
elements ofA⊥, and finally, (c) to make sure that[T ] ∩A is uncountable. If we do this,
will follow that A will not be concentrated onA⊥, thus completing the proof.

To do all this we fix an enumeration{yα: α ∈ ω1} of [T ]. Having defined an almos
disjoint familyAα = {ai

β : β < α, i ∈ 2} for someα < ω1, so that

(1) for eachβ < α, if yβ ∈A⊥
β thena0

β ∩ yβ is infinite. Moreover, in this case,a0
β = yβ or

a0
β = yβ ∪ zβ for some otherzβ ∈ [T ];

(2) for β < α, a1
β ∈ [T ].

If yα ∈ A⊥, enumerateAα as{bn: n ∈ ω}. Construct by recursionY ⊆ X so thatY is
almost disjoint from eachbn and so thatY ∩ bn �⊆ n. Let a ∈ [T ] be such thata ∩ X = Y .
This is possible by property (b) ofT . The branchf of T that determinesa is distinct from
all the branches that determine the sets inAα , thus, by property (c),a is almost disjoint
from all elements ofAα . Let a0

α = a ∪ yα . In the case thatyα /∈ A⊥, proceed as above
and leta0

α = a. To definea1
α repeat the construction usingAα ∪ {a0

α} in place ofAα . This
completes the construction ofA. It follows by construction thatA is a standard Luzin gap
Also, by choice of theA1

α , A ∩ [T ] is uncountable. Finally, it also follows by our choi
of a0

α , that noyα /∈A⊥ so thatA⊥ ⊆ 2ω \ [T ] as required. �
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