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Completely separable MAD families

Michael Hrugdk and Petr Simon

An infinite family A C [w]¥ is almost disjoint if any two of its distinct elements
have finite intersection. A family A is mazimal almost disjoint (MAD) if it is
almost disjoint and for every X € [w] there is an A € A such that AN X is
infinite. ' ,

There are almost disjoint (hence also MAD) families of cardinality ¢ and many
MAD families with special combinatorial and/or topological properties can be
constructed using set-theoretic assumptions like CH, MA or b = ¢. However,
special MAD families are notoriously difficult to construct in ZFC alone. The
reason being the lack of a device ensuring that a recursive construction of a MAD
family would not prematurely terminate, an object that would serve a similar
purpose as independent linked families do for the construction of special ultrafilters
(see [15]). The notion of a completely separable MAD family is a candidate for
such a device and, moreover, is an interesting notion in its own right.

MAD families provide a powerful tool for topological constructions. Not only
for the study of AN\ N, the Cech-Stone remainder of the discrete countable space
([1, 2]) but also, typically via the corresponding ¥-space [8] the study of conver-
gence properties of topological spaces [6 21].

1 The main problem-

The notion of completely separable MAD family was 1ntroduced by S.H. Hech-
ler [9] in 1971:

Definition. An infinite MAD family A on w is completely separable if for every

. subset M C w either there is an A € A with A C M or there is a ﬁnlte subfamily

BC Awith M C |UB.
A yea.r later, P. Erd6s and S. Shelah asked the central problem of this article:
Problem 1. Does there ezist a completely sepamble MAD family in ZFC?

A MAD family A on w is of true cardinality c if for every subset M C w the
set {A € A: |MNA| =w} is either finite or of size c. It is easily seen that every
completely separable MAD family is of true cardinality c. ‘On the other hand, the
existence of a MAD family of true cardinality ¢ readily implies the existence of a
completely separable MAD family.

An almost disjoint family A is nowhere MAD if for every X C w either X C*
| B for some finite B C A or there is a B € [X]* almost disjoint from all elements
of A. Given a cardinal number &k, a MAD family A is k-partitionable if A can be
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partitioned into x subfamilies {A¢ : £ < £} such that A\ A¢ is nowhere MAD for
every & < K.

Note that a MAD family A is c-partitionable if and only if it is of true car-
dinality c¢. This motivated A. Dow to ask how close can we get to constructmg a
c—partltlonable MAD family:

Problem 2. For which k s there a n—partztwnabie MAD famzly

In [21] it is shown that 2-partitionable families exist in ZFC. This was later
extended by E. van Douwen to show that w-partitionable MAD familes exist. In
fact, one can, in ZFC, construct a t-partitionable MAD family (personal commu-
nication by A. Dow), but it is not known whether there is a b—partitionable MAD
family.

Problem 1 has a close connectlon to the disjoint refinement property. Given
two familes M, A C [w]¥, we say that the family A refines the family M, if for
each M € M there is an A € A such that A C M. We say that a family M C [w]¥
has an almost disjoint refinement if there is an almost disjoint family A C [w]
which refines M. Clearly, not every M C [w]* has an almost disjoint refinement,
M = [w]* being an example. It is known that every uniform ultrafilter on w has
an almost disjoint refinement [3]; to present other examples, we need a definition.
Given R C [w]¥, let

ITR)={M Cw:|[{RER:|MNR|=w} >w}

If R is an infinite partition of w into infinite sets, then Z*(R) has an almost

disjoint refinement [3].
Hence, a MAD family A is completely separable if an only if A is an almost

disjoint refinement of Z+(A). However, the following problem is open, too:

Problem 3. Let A be an infinite MAD family on w. Does there exist an almost

' disjoint refinement of T+(A)?

Note that this is the strongest possible formulation of an almost disjoint refine-

‘ment property: Given an arbitrary family M C [w]“, which has an almost disjoint

refinement B, it is easy to find a MAD family A with M C Z7(A); simply replace
each B € B by infinitely many chsJomt subsets of it and extend to a maximal
almost disjoint family.

If Problem 3 has an positive answer, then so does Problem 1, in a very strong
sense: '

Theorem ([2]). The following statements are equivalent:
(1) For every MAD family A onw, IT(A) has an almost disjoint refinement.
(2) There is a set S C [w]¥ satisfying (a) each infinite M C w contains a
member of S and (b) every infinite MAD family A C S is completely
separable. ' o - :
In particular, if Z*(A) has an almost disjoint refinement for every MAD family

A, then there is a completely separable MAD family. It is another open pr oblem,
whether this 1mp11catlon can be reversed.
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There are consistent affirmative answers to Pr oblem 3. Each of the following
assumptions on cardinal invariants

a=2% b=0, <4, Ss=w

implies that Problem 3 has a positive answer [2, 23].

Also, if one relaxes meaximality, then one can find an infinite AD family A
which is completely separable in the sense that every set belonging to It(A)
contains an element of A [2].

In conversation, A. Dow remarked that most applications of completely sepa-

rable MAD familes require that they can be recursively constructed, rather then -

that they just exist, which seems to be similar to Problem 3:

Problem 4. Suppose that I+ (A) has an almost disjoint refinement for every MAD
family A. Can every nowhere MAD family be extended to a completely separable
MAD family?

/

2. Topological connection

An equivalent formulation of Problem 3 has been asked also in a purely topo-
logical language. The space SN \ N is not extremally disconnected, so it must
contain a point which belongs to the intersection of closures of two disjoint open
sets. In 1967, R.S. Pierce asked in [19], whether it is possible to show, without us-
ing the Continuum Hypothesis, that there are 3-points in SN\ N, i.e points which
lie simultaneously in the closure of three pairwise disjoint open sets. N. Hind-
man [11] then showed that there are not only 3-points, but even c¢-points in SN\ N
in 1969, and finally B. Balcar and P. Vojtds [3] proved that every point in SN\ N
is a c-point in 1980.

MeanWhlle S.H. Hechler started to conslder nowhere dense sets instead of
points and showed that under MA, if S is any nowhere dense subset of SN \ N,
then there exists a family of ¢ pairwise disjoint open sets each of which contains
S in its closure [10]. Call such a set a c-set. It is easy to show that the following
is nothing but a topological reformulation of Problem 3:

Problem 5. Is every nowhere dense subset of SN\ N a c-set?

The topological language allows to formulate a seemingly easier problem, also
open till now:

Problem 6. Is every nowhere dense subset of BN\ N g 2-set?

Still, this is not the end of the story. A.L. Veksler introduced the following
order on the family of all nowhere dense subsets of a topological space: If C, D
are nowhere dense in X, let C' < D mean that C C D and C is nowhere dense in

‘D. He studied this order in a series of paper; we quote here [25] as a sample. A -

theorem from [22]‘ says that the next problem is again Problem 3 in disguise:
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Problem 7. Is it true that a family of all nowhere dense subsets of SN\ N, when

ordered by <, has no mazimal elements?
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While studying the sequential order of compact spaces A. Dow [6] introduced
the notion of a totally MAD family:

Definition. Given A and B infinite families of subsets of w, say that A is totally

- bounded with respect to B, if for each infinite B/ C B and each h € B'“, there

is an A € A such that AN{J{B \ h[B] : B € B'} is infinite. A MAD family A
is totally MAD if for each 111ﬁ11ite B C A no subset of cardinality less than c¢ is
totally bounded with respect to B.

Dow showed that a totally MAD family exists assuming b = ¢, noted that
every totally MAD family has a refinement which is a completely separable MAD
family and asked:

Problem 8. Is there a totally MAD family in ZFC? Does b = wy imply there is a
totally MAD family?

A positive answer to Dow’s second problem, implies a positive answer to the
following weak form of Problem 1.

Problem 9. Is there o completely separable MAD family assuming ¢ < wg ?

3. MAD families in forcing extensions

While (as mentioned in the introduction) MAD families with strong combina-
torial properties are hard to come by in ZFC, there is also a definite lack of negative
(i.e., consistency) results. In this section we present some of the open test prob-
lems for understanding the behavior of MAD families in forcing extensions. The
first of these problems is due to J. Steprans [24]:

Problem 10. Is there a C’ohen—indgstructz’ble MAD family in ZFC?

K. Kunen [16] showed that the answer is positive under CH. J. Steprans
showed that the answer is also positive in any model obtained by adding N;-many
Cohen reals. Each of b = ¢, a < cov(meagre) and {(v) ([13, 14, 17]) is also
sufficient for the positive answer. The problem has the following combinatorial
translation: ‘

Theorem ([13, 17]). The following statements are equivalent for a MAD fam-

iy A.

(1) A s Cohen-indestructible.
(2) For every f: Q — w there is an A € A such that FA] is somewhere
dense.

Surprisingly, it is not even known whether there is (in ZFC) a MAD family
which survives some forcing extension adding new 1eals (eqmvalently, a single
Sacks real extension):

Problem 11. Is there a Sacks-indestructible MAD family in ZFC?

A flawed proof of this appearéd in [13]. This and other flaws of the paper were
rectified in [5]. The following old problem (sometimes attributed to J. Roitman)
can be formulated as a problem about cardinal invariants of the continuum:

~
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Problem 12. Does 0 = w; imply a = w1 ?

Consult [12, 18] for some partial positive results. Recently S. Shelah [20]
using a novel technique of iteration along templates showed that 9 < a is relatively
consistent with ZFC. J. Brendle [4] presented an axiomatic treatment of Shelah’s
technique and showed that it can not be used to solve Problem 12. ‘/

We would like to thank Alan Dow for commenting on a preliminary version
of the paper and for providing interesting questions.
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